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A modification of the variational iteration method (VIM) for solving systems of nonlinear fractional-order differential equations
is proposed. The fractional derivatives are described in the Caputo sense. The solutions of fractional differential equations (FDE)
obtained using the traditional variational iteration method give good approximations in the neighborhood of the initial position.
Themain advantage of the present method is that it can accelerate the convergence of the iterative approximate solutions relative to
the approximate solutions obtained using the traditional variational iteration method. Illustrative examples are presented to show
the validity of this modification.

1. Introduction
Recently, fractional-order calculus has been studied as an
alternative calculus in mathematics. Numerous problems in
physics, chemistry, biology, and engineering can be modeled
with fractional derivatives [1–12]. On the other hand, in con-
trol society, fractional-order dynamic systems and controls
have gained an increasing attention [13–17], and also motion
of an elastic column fixed at one end loaded at the other can
be formulated in terms of a system of fractional differential
equations [18]. Sincemost fractional differential equations do
not have exact analytic solutions, approximate and numerical
techniques, therefore, are used extensively.

The variational iteration method is relatively new appro-
aches to provide approximate solutions to linear and non-
linear problems. The variational iteration method, which is
proposed byHe [19], was successfully applied to find the solu-
tions of several classes of variational problems. Some research
works in this field are [20–25]. Recently, the application of
the method is extended for fractional differential equations
[26, 27].

Daftardar-Gejji and Jafari [28] have explored the Ado-
mian decomposition method to obtain solution of a system

of linear and nonlinear fractional differential equations.
Further in [29], they have suggested a modification (termed
as “revised ADM”) of this method and applied revised
method for solving systems of linear/nonlinear ordinary and
fractional differential equations [30].

The objective of this paper is the use of revised variational
iteration method (RVIM) for solving systems of nonlinear
fractional-order differential equations. We demonstrate that
the approximate solution thus obtained converges faster
relative to the approximate solutions by standard variational
iteration method. Several illustrative examples have been
presented.

2. Definitions and Preliminaries

In this section, we give some definitions and properties of
the fractional calculus [9] which are used further in this
paper.

Definition 1. A real function 𝑓(𝑡), 𝑡 > 0 is said to be in the
space 𝐶

𝛼
, 𝛼 ∈ R if there exists a real number p (> 𝛼), such

that 𝑓(𝑡) = 𝑡𝑝𝑓
1
(𝑡), where 𝑓

1
∈ 𝐶[0,∞].



2 Abstract and Applied Analysis

Definition 2. A function 𝑓(𝑡), 𝑡 > 0 is said to be in the space
𝐶𝑚
𝛼
, 𝑚 ∈ 𝑁⋃{0} if𝑓(𝑚) ∈ 𝐶

𝛼
.

Definition 3. The left-sided Riemann-Liouville fractional
integral of order 𝜇 ≥ 0, of a function 𝑓 ∈ 𝐶

𝛼
, 𝛼 ≥ −1 is

defined as

𝐼
𝜇

𝑡
𝑓 (𝑡) =

{{
{{
{

1

Γ (𝜇)
∫
𝑡

0

𝑓 (𝜏)

(𝑡 − 𝜏)1−𝜇
𝑑𝜏, 𝜇 > 0, 𝑡 > 0,

𝑓 (𝑡) , 𝜇 = 0.

(1)

Definition 4. The left-sided Caputo fractional derivative of 𝑓,
𝑓 ∈ 𝐶𝑚

−1
, 𝑚 ∈ 𝑁 ∪ {0}, is defined as

𝐷
𝜇

𝑡
𝑓 (𝑡) =

𝑑𝜇𝑓 (𝑡)

𝑑𝑡𝜇

=

{{{
{{{
{

𝐼𝑚−𝜇 [
𝑑𝑚𝑓 (𝑡)

𝑑𝑡𝑚
] , 𝑚 − 1 < 𝜇 < 𝑚, 𝑚 ∈ 𝑁,

𝑑𝑚𝑓 (𝑡)

𝑑𝑡𝑚
, 𝜇 = 𝑚.

(2)

3. The VIM for FDE

The principles of the variational iteration method and its
applicability for various kinds of differential equations are
given in [20, 31]. In [26], He showed that the variational
iteration method is also valid for fractional differential
equations. In this section, following the discussion presented
in [26], we extend the application of the variational iteration
method to solve the fractional differential equation as follows:

𝐷𝛼
𝑡
𝑦 (𝑡) + 𝑁 (𝑦 (𝑡)) = 𝑓 (𝑡) , 0 < 𝛼 ≤ 1, (3)

where 𝑁 is an operator with respect to 𝑦(𝑡) and 𝑓(𝑡) is
a known function. According to the variational iteration
method, we can construct the correction functional for (3)
as follows:

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) + 𝐼𝛼

𝑡
[𝜆 (𝐷𝛼
𝑡
𝑦
𝑛
(𝑡) + 𝑁 (𝑦

𝑛
(𝑡)) − 𝑓 (𝑡))]

= 𝑦
𝑛
(𝑡) +

1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝜆 (𝑠)

× [𝐷𝛼
𝑠
𝑦
𝑛
(𝑠) − 𝑁 (𝑦

𝑛
(𝑠))

−𝑓 (𝑠)] 𝑑𝑠,

(4)

where 𝜆 is the general Lagrange multiplier, which can be
identified optimally via variational theory [32].

To identify approximately Lagrangemultiplier, some app-
roximations must be made. The correction functional equa-
tion (4) can be approximately expressed as follows:

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡)

+ ∫
𝑡

0

𝜆 (𝑠) [𝑦
󸀠

𝑛
(𝑠) + 𝑁 (𝑦

𝑛
(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠.

(5)

Here we apply restricted variations 𝑦
𝑛
to the term 𝑁(𝑦), and

in this case, we can easily determine the multiplier. Making
the aforementioned functional stationary, noticing that 𝛿𝑦

𝑛
=

0,

𝛿𝑦
𝑛+1

(𝑡) = 𝛿𝑦
𝑛
(𝑡) + 𝛿∫

𝑡

0

𝜆 (𝑠) [𝑦
󸀠

𝑛
(𝑠) − 𝑓 (𝑠)] 𝑑𝑠 (6)

yields the Lagrange multiplier 𝜆 = −1, and substituting into
the functional equation (4), we obtain the following iteration
formula:

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼𝛼

𝑡
[𝐷𝛼
𝑡
𝑦
𝑛
(𝑡) + 𝑁 (𝑦

𝑛
(𝑡)) − 𝑓 (𝑡)] . (7)

The initial approximation 𝑦
0
(𝑡) can be freely chosen if it

satisfies the initial conditions of the problem. Finally, we
approximate the solution 𝑦(𝑡) = lim

𝑛→1
𝑦
𝑛
(𝑡) by the 𝑁th

term 𝑦
𝑁
(𝑡).

4. The System of FDE and Revised VIM

Let us consider the following system of fractional differential
equations:

𝐷
𝛼𝑖

𝑡
𝑦
𝑖
(𝑡) + 𝑁

𝑖
(𝑦
1
(𝑡) , . . . , 𝑦

𝑚
(𝑡)) = 𝑓

𝑖
(𝑡) ,

0 < 𝛼
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑚,

(8)

where 𝑁
𝑖
are operators with respect to 𝑦

𝑖
(𝑡) and 𝑓

𝑖
(𝑡) are

known functions. In this case, the correction functionals are
obtained as follows:

𝑦
𝑖(𝑛+1)

(𝑡) = 𝑦
𝑖𝑛

(𝑡) − 𝐼
𝛼𝑖

𝑡
[𝐷
𝛼𝑖

𝑡
𝑦
𝑖𝑛

(𝑡)

+ 𝑁
𝑖
(𝑦
1𝑛

(𝑡) , . . . , 𝑦
𝑚𝑛

(𝑡)) −𝑓
𝑖
(𝑡)]

𝑖 = 1, 2, . . . , 𝑚.

(9)

Here we construct the following iteration formula instead of
the iteration formula obtained with the standard variational
iteration method equation (9):

𝑦
𝑖(𝑛+1)

(𝑡)

= 𝑦
𝑖𝑛

(𝑡) − 𝐼
𝛼𝑖

𝑡
[𝐷
𝛼𝑖

𝑡
𝑦
𝑖𝑛

(𝑡)

+ 𝑁
𝑖
(𝑦
1(𝑛+1)

(𝑡) , . . . , 𝑦
(𝑖−1)(𝑛+1)

(𝑡) ,

𝑦
(𝑖)𝑛

(𝑡) , . . . , 𝑦
𝑚𝑛

(𝑡)) − 𝑓
𝑖
(𝑡)] .

(10)

In fact, the updated values𝑦
1(𝑛+1)

(𝑡), . . . , 𝑦
(𝑖−1)(𝑛+1)

(𝑡) are used
for finding 𝑦

𝑖(𝑛+1)
(𝑡). We called it the revised variational

iteration method (RVIM). This technique can accelerate the
convergence of iterative approximate solutions relative to
the approximate solutions obtained using the traditional
variational iteration method. The effect of this correction
is clear in 𝑦

𝑖(𝑛+1)
(𝑡) because the updated values are used
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Figure 1: Simulation of the approximate results for 𝛼 = .98 and exact solution for 𝛼 = 1 of the Van der pol system.
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Figure 2: Simulation of the approximate results for 𝛼 = 1 and exact solution of the Van der pol system.

to compute it. Tatari and Dehghan have employed this
technique for systems of ordinary differential equations [33].

5. Test Examples

In this section, we illustrate the applicability of revised vari-
ational iteration method to systems of nonlinear fractional-
order differential equations.

Example 1. Consider the following system of nonlinear frac-
tional-order Van der pol:

𝐷𝛼
𝑡
𝑥 (𝑡) = 𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝑥 (𝑡) − .5𝑥(𝑡)

2𝑦 (𝑡) + .5𝑦 (𝑡) ,

(0 < 𝛼 ≤ 1)

(11)

with the initial condition

𝑥 (0) = 0, 𝑦 (0) = 1. (12)

The standard VIM for (11) leads to the following iteration
formula:

𝑥
(𝑛+1)

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼𝛼

𝑡
[𝐷𝛼
𝑡
𝑥
𝑛
(𝑡) − 𝑦

𝑛
(𝑡)] ,

𝑦
(𝑛+1)

(𝑡) = 𝑦
𝑛
(𝑡) − ∫

𝑡

0

[
𝑑𝑦
𝑛
(𝑠)

𝑑𝑠
+ 𝑥
𝑛
(𝑠)

+.5𝑥
𝑛
(𝑠)
2𝑦
𝑛
(𝑠) − .5𝑦

𝑛
(𝑠) ] 𝑑𝑠.

(13)

The use of the revised VIM for (11) results in the following
formula:

𝑥
(𝑛+1)

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼𝛼

𝑡
[𝐷𝛼
𝑡
𝑥
𝑛
(𝑡) − 𝑦

𝑛
(𝑡)] ,

𝑦
(𝑛+1)

(𝑡) = 𝑦
𝑛
(𝑡) − ∫

𝑡

0

[
𝑑𝑦
𝑛
(𝑠)

𝑑𝑠
+ 𝑥
(𝑛+1)

(𝑠)

+.5𝑥
(𝑛+1)

(𝑠)
2𝑦
𝑛
(𝑠) − .5𝑦

𝑛
(𝑠) ] 𝑑𝑠.

(14)

Starting with the initial approximations 𝑥
0
(𝑡) = 0 and 𝑦

0
(𝑡) =

1, we can easily obtain the results using (13) and (14).
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Figure 3: Simulation of the approximate results for 𝛼
1
= 𝛼
2
= .98 and exact solution for 𝛼

1
= 𝛼
2
= 1 of the Brusselator system.
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Figure 4: Simulation of the approximate results for 𝛼
1
= 𝛼
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= 𝛼
3
= .98 and exact results for 𝛼
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= 1 of the Genesio-Tesi system for
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1
= 6.5, 𝛽

2
= 2.92, 𝛽

3
= 1.2, and 𝛽

4
= 1.0.
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Figure 5: Simulation of the approximate results for 𝛼
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3
= 1 and exact results of the Genesio-Tesi system for parameters 𝛽
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= 1.2, and 𝛽

4
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In Figures 1 and 2, the results from VIM and RVIM
are shown. Figures 1(a) and 1(b) show comparison between
the approximate solutions (𝑥(𝑡) ≅ 𝑥

4
(𝑡)), ((𝑦(𝑡) ≅ 𝑦

4
(𝑡))

of (11) obtained using VIM and RVIM for the special case
𝛼 = .98 and the numerical solutions for the special case
𝛼 = 1, respectively. Figures 2(a) and 2(b), show approximate
solutions (𝑥(𝑡) ≅ 𝑥

5
(𝑡)), ((𝑦(𝑡) ≅ 𝑦

4
(𝑡)) of (11) using VIM and

RVIM for the special case 𝛼 = 1 and the numerical solutions,
respectively.

Example 2. Consider the system of nonlinear fractional-
order Brusselator:

𝐷𝛼1𝑦 (𝑡) = .1𝑥 (𝑡) − 𝑥(𝑡)
2𝑦 (𝑡) ,

𝐷𝛼2𝑥 (𝑡) = .5 − 1.1𝑥 (𝑡) + 𝑥(𝑡)
2𝑦 (𝑡)

(0 < 𝛼
1
, 𝛼
2
≤ 1)

(15)

with the initial conditions

𝑥 (0) = .4, 𝑦 (0) = 1.5. (16)

In this example, the use of the variational iteration method
leads to

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼1

𝑡
[𝐷
𝛼1

𝑡
𝑦
𝑛
(𝑡) − .1𝑥

𝑛
(𝑡) + 𝑥2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] ,

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡)

− 𝐼
𝛼2

𝑡
[𝐷
𝛼2

𝑡
𝑥
𝑛
(𝑡) − .5 + 1.1𝑥

𝑛
(𝑡) − 𝑥2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] .

(17)

Using the RVIM, we obtain

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼1

𝑡
[𝐷
𝛼1

𝑡
𝑦
𝑛
(𝑡) − .1𝑥

𝑛
(𝑡) + 𝑥2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] ,

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼

𝛼2

𝑡
[𝐷
𝛼2

𝑡
𝑥
𝑛
(𝑡) − .5 + 1.1𝑥

𝑛
(𝑡)

−𝑥2
𝑛
(𝑡) 𝑦
(𝑛+1)

(𝑡)] .

(18)

We consider the initial approximations 𝑥
0
(𝑡) = .4 + (.5 ×

(𝑡𝛼2/Γ[𝛼
2

+ 1])) and 𝑦
0
(𝑡) = 1.5. Results are shown in

Figure 3. Figures 3(a) and 3(b) show comparison between
the approximate solutions (𝑥(𝑡) ≅ 𝑥

2
(𝑡)), (𝑦(𝑡) ≅ 𝑦

3
(𝑡))

of (15) obtained using VIM and RVIM for the special case
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𝛼
1

= 𝛼
2

= .98 and the numerical solutions for the special
case 𝛼

1
= 𝛼
2
= 1, respectively.

Example 3. Consider the system of nonlinear fractional-
order Genesio-Tesi

𝐷𝛼1𝑥 (𝑡) = 𝑦 (𝑡) ,

𝐷𝛼2𝑦 (𝑡) = 𝑧 (𝑡) ,

𝐷𝛼3𝑧 (𝑡) = −𝛽
1
𝑥 (𝑡) − 𝛽

2
𝑦 (𝑡) − 𝛽

3
𝑧 (𝑡) + 𝛽

4
𝑥(𝑡)
2,

(0 < 𝛼
1
, 𝛼
2
, 𝛼
3
≤ 1) ,

(19)

where 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
are system parameters. With the

initial conditions,

𝑥 (0) = −2, 𝑦 (0) = .5, 𝑧 (0) = 2. (20)

In view of the variational iteration method, we set

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼

𝛼1

𝑡
[𝐷
𝛼1

𝑡
𝑥
𝑛
(𝑡) − 𝑦

𝑛
(𝑡)] ,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼2

𝑡
[𝐷
𝛼2

𝑡
𝑦
𝑛
(𝑡) − 𝑧

𝑛
(𝑡)] ,

𝑧
𝑛+1

(𝑡) = 𝑧
𝑛
(𝑡) − 𝐼

𝛼3

𝑡
[𝐷
𝛼3

𝑡
𝑧
𝑛
(𝑡) + 𝛽

1
𝑥
𝑛
(𝑡) + 𝛽

2
𝑦
𝑛
(𝑡)

+𝛽
3
𝑧
𝑛
(𝑡) − 𝛽

4
𝑥
𝑛
(𝑡)
2] .

(21)

The revised variational iteration method would lead to

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼

𝛼1

𝑡
[𝐷
𝛼1

𝑡
𝑥
𝑛
(𝑡) − 𝑦

𝑛
(𝑡)] ,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼2

𝑡
[𝐷
𝛼2

𝑡
𝑦
𝑛
(𝑡) − 𝑧

𝑛
(𝑡)] ,

𝑧
𝑛+1

(𝑡) = 𝑧
𝑛
(𝑡) − 𝐼

𝛼3

𝑡
[𝐷
𝛼3

𝑡
𝑧
𝑛
(𝑡) + 𝛽

1
𝑥
(𝑛+1)

(𝑡) + 𝛽
2
𝑦
(𝑛+1)

(𝑡)

+ 𝛽
3
𝑧
𝑛
(𝑡) − 𝛽

4
𝑥
(𝑛+1)

(𝑡)
2] .

(22)

Beginning with the initial approximations 𝑥
0
(𝑡) = −2 and

𝑦
0
(𝑡) = .5, 𝑧

0
(𝑡) = 2, we can easily obtain the results. Results

are shown in Figures 4 and 5. Figures 4(a), 4(b), and 4(c)
show comparison between the approximate solutions (𝑥(𝑡) ≅
𝑥
9
(𝑡)), (𝑦(𝑡) ≅ 𝑦

9
(𝑡)) and (𝑧(𝑡) ≅ 𝑧

9
(𝑡)) of (19) obtained using

VIM and RVIM for the special case 𝛼
1
= 𝛼
2
= 𝛼
3
= .98 and

the numerical solutions for the special case 𝛼
1
= 𝛼
2
= 𝛼
3
= 1,

respectively.

Figures 5(a), 5(b), and 5(c), show approximate solutions
(𝑥(𝑡) ≅ 𝑥

8
(𝑡)), (𝑦(𝑡) ≅ 𝑦

7
(𝑡)), and (𝑧(𝑡) ≅ 𝑧

7
(𝑡)) of (19) using

VIM and RVIM for the special case 𝛼
1
= 𝛼
2
= 𝛼
3
= 1 and the

numerical solutions, respectively.

6. Conclusion

The variational iteration method is an efficient method for
solving various kinds of problems. In this paper, we have
suggested a modification of this method which is called
“revised variational iterationmethod.”We employ the revised
VIM for solving a systems of nonlinear fractional-order

differential equations. The revised method yields a series
solution which converges faster than the series obtained by
standard VIM. Illustrative examples presented clear support
for this claim.

Mathematica has been used for computation and graphs
presented in this paper.
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