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The image reconstruction for electrical impedance tomography (EIT) mathematically is a typed nonlinear ill-posed inverse
problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy
perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and
effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and
numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the
numerical instability and is robust to data noise in the EIT image reconstruction.Moreover, compared with the classical Landweber
iteration method, our approach improves the convergence rate. The results are promising.

1. Introduction

Electrical impedance tomography (EIT) is an imagingmodal-
ity which seeks to reconstruct the electrical conductivity
distribution inside the interested objection from the sur-
face electrical measurements. The process of generating an
image from themeasurements is called image reconstruction.
Being a noninvasive, portable, and inexpensivemethodology,
the EIT technique has been extensively applied in medical
imaging, geophysical exploration, nondestructive testing of
materials, and so forth [1–3].

However, the image reconstruction for EIT mathemati-
cally is by nature a nonlinear and ill-posed inverse problem,
which makes the image reconstruction a challenging task.
Nonlinearity increases the requirement for using iterative
image reconstruction techniques rather than noniterative
ones, while ill-posedness makes any numerical reconstruc-
tion method require some form of regularization technique
to obtain stable solution. Image quality greatly depends on
the performance of the forward solver and the measurement
errors but also depends on the regularization technique and
the converging nature of iterative algorithm used in inverse
problem. At present, various reconstruction algorithms have

been developed to improve the image quality and increase
the speed of inversion algorithms [4–10]. In the past few
years, iterative image reconstructionwith an updated forward
solution has been investigated. In particular, the Landweber
iteration method is one of the most straightforward and pop-
ular iterative algorithms for image reconstruction problem
[11–14]. The advantages of this algorithm include the simple
implementation and low computational cost, due to the fact
that only the gradient information of the data fitting is used
in the process of implementing the image reconstruction.
Nevertheless, the ill-conditioning of the sensitivity matrix
makes the convergence of Landweber iteration algorithm
relatively slow and need a lot of iterations to get a good-
quality image. Landweber iteration has a semiconvergence
characteristic; that is, reconstructed image error often starts
to increase gradually after getting to local minimum. Some
preconditioningmethods have been proposed to speed up the
convergence rate [15–17].

Homotopy perturbation method is a novel and effective
iterationmethod,which has been successfully applied to solve
various of nonlinear equations [18–20] in various branches of
science and engineering. Recently, it has also been extended
for dealingwith nonlinear ill-posed inverse problems [21, 22].
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The essential idea of this method is to introduce a homotopy
parameter and combine the traditional perturbation method
with the homotopy technique. One of the most notable
features of homotopy perturbation method is that usually
only a few perturbation terms can be sufficient to obtain a
reasonably accurate solution. In this paper, a novel iteration
regularization scheme based on the homotopy perturba-
tion technique, namely, homotopy perturbation inversion
method, is applied to investigate the EIT inverse problem
for the first time. Numerical simulations are carried out
to illustrate the feasibility and effectiveness of this method.
Simulation results indicate that thismethod can overcome the
numerical instability and is robust to data noise in the EIT
image reconstruction. Moreover, in contrast to the classical
Landweber iteration method, our approach improves the
convergence rate. As a result an efficient method for EIT
image reconstruction is introduced.

The outline of this paper is as follows. In Section 2,
we briefly describe the mathematical model for the EIT
forward and inverse problem. In Section 3, the homotopy
perturbation inversion scheme is presented, which is an
iteration regularization scheme. A stable reconstruction is
guaranteed provided the step length parameter is chosen
appropriately and a stopping rule is formulated. To illustrate
the well performance of this method, numerical simulations
are provided in Section 4. Finally, a short conclusion is drawn
in Section 5.

2. Mathematical Formulation of
the EIT Problem

In this section we give a brief account on the mathematical
model for EIT, which is composed of forward problem and
inverse problem.

We first consider a typical acquisition experiment for EIT.
Assume that 𝐿 electrodes with perfect conductor have been
fixed around the surface 𝜕Ω of the object. Current is injected
through some subset of these electrodes to excite the object
under investigation, and the induced voltages are measured
at all 𝐿 electrodes. This procedure is repeated many times
with different electrodes until a sufficient amount of data has
been obtained. Mathematical models for the measurement
are described in [23, 24]. The complete electrode model,
nowadays the standard model for medical applications, is
presently the most accurate model for EIT since it takes into
account the presence of the discrete electrodes and the effect
of the contact impedance and can match the measurement
precision of the experiment well [24].Themodel is composed
of the following equations:

∇ ⋅ (𝜎∇𝑢) = 0, in Ω,

𝜎
𝜕𝑢

𝜕𝑛
= 0, on 𝜕Ω

⋃
𝐿

𝑙=1
𝑒
𝑙

,

∫
𝑒𝑙

𝜎
𝜕𝑢

𝜕𝑛
𝑑𝑆 = 𝐼

𝑙
, for 𝑙 = 1, 2, . . . , 𝐿,

𝑢 + 𝑧
𝑙
𝜎
𝜕𝑢

𝜕𝑛
= 𝑈
𝑙
, on 𝑒

𝑙
, 𝑙 = 1, 2, . . . , 𝐿,

(1)

where 𝜎 is the electrical conductivity, 𝑢 is the electrical poten-
tial, 𝑒

𝑙
denotes the 𝑙th electrode, 𝑧

𝑙
is the effective contact

impedance between the 𝑙th electrode and tissue, and 𝑛 is the
unit outward normal to 𝜕Ω and 𝜕𝑢/𝜕𝑛 = ∇𝑢⋅𝑛. Furthermore,
𝑈
𝑙
and 𝐼
𝑙
are the electrical potential and electrical current on

the 𝑙th electrode, respectively. In addition, in order to ensure
the solvability of the elliptic boundary value problem (1) and
the uniqueness of the solution, the following conditions are
required to be satisfied:

𝐿

∑

𝑙=1

𝐼
𝑙
= 0,

𝐿

∑

𝑙=1

𝑈
𝑙
= 0. (2)

We denote vectors consisting of the electrical potentials
and currents on the electrodes by 𝑈 and 𝐼; that is, 𝑈 =

(𝑈
1
, 𝑈
2
, . . . , 𝑈

𝐿
) ∈ R𝐿 and 𝐼 = (𝐼

1
, 𝐼
2
, . . . , 𝐼

𝐿
) ∈ R𝐿,

respectively.

2.1. The Forward Problem and Finite Element Approximation.
For known conductivity distribution 𝜎, injecting current 𝐼,
and contact impedance 𝑧

𝑙
, the forward problem is to find the

internal electrical potentials 𝑢 inΩ and the voltages𝑈 on the
electrodes that satisfy the complete electrode model (1). In
practice the system (1) cannot be solved analytically for any
arbitrary distribution, and therefore numerical approxima-
tions must be used to find an approximate solution. Finite
element method [25, 26] is particularly well suited to the
discretization of this problem.

As we all know, the procedure in the finite element
method starts with the so-called variational (Galerkin) for-
mulation of the problem (1), also called the weak form. We
first need define some notation. By 𝐻

1
(Ω) we denote the

𝐿
2
(Ω)-based Sobolev space with smoothness index 1, and

𝐻̃
1
(Ω) = {𝑢 ∈ 𝐻

1
(Ω) : ∫

𝜕Ω
𝑢 𝑑𝑆 = 0}. For convenience, let us

denote the space of length 𝐿 by R𝐿
⬦
= {𝑉 ∈ R𝐿 : ∑

𝐿

𝑙=1
𝑉
𝑙
= 0}.

The weak formulation of the forward problem can be stated
as follows: given a current vector 𝐼 ∈ R𝐿

⬦
, a conductivity

distribution 𝜎, and positive contact impedance 𝑧
𝑙
, to find the

solution (𝑢, 𝑈) ∈ 𝐻1(Ω) ⊕R𝐿
⬦
such that

𝑏 ((𝑢, 𝑈) , (V, 𝑉)) =
𝐿

∑

𝑙=1

𝐼
𝑙
𝑉
𝑙
, ∀ (V, 𝑉) ∈ 𝐻1 (Ω) ⊕R

𝐿

⬦
,

(3)

where the strictly elliptic bilinear form 𝑏 is defined by

𝑏 ((𝑢, 𝑈) , (V, 𝑉))

= ∫
Ω

𝜎∇𝑢 ⋅ ∇V 𝑑𝑥 +
𝐿

∑

𝑙=1

1

𝑧
𝑙

∫
𝑒𝑙

(𝑢 − 𝑈
𝑙
) (V − 𝑉

𝑙
) 𝑑𝑆.

(4)

Indeed, the existence and uniqueness of a solution (𝑢, 𝑈) ∈

𝐻
1
(Ω)⊕R𝐿

⬦
have been shown using the Lax-Milgram lemma

in [24].
Now we consider the piecewise linear function {𝜙

𝑖
} as the

finite element basis function, and the solution domainΩ will
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be divided into small triangles elements. We approximate the
potential distribution 𝑢 within Ω as

𝑢
ℎ
=

𝑁

∑

𝑖=1

𝛼
𝑖
𝜙
𝑖

(5)

and potentials 𝑈 on the electrodes as

𝑈
ℎ
=

𝐿−1

∑

𝑙=1

𝛽
𝑗
𝑛
𝑗
, (6)

where 𝑁 is the number of nodes in finite element mesh,
𝑛
1
= [1, −1, 0, . . . , 0]

𝑇, 𝑛
2
= [1, 0, −1, 0, . . . , 0]

𝑇
∈ R𝐿, and

so forth and 𝛼
𝑖
and 𝛽

𝑗
are the coefficients to be determined.

For notational reasons we identify 𝑢
ℎ and 𝑈

ℎ with their
coordinates and write 𝑢ℎ = (𝛼

1
, . . . , 𝛼

𝑁
), 𝑈ℎ = (𝛽

1
, . . . , 𝛽

𝐿−1
).

By substituting these two approximations into variational
equation (3) and by choosing V = 𝜙

𝑖
and 𝑉 = 𝑛

𝑗
, we obtain a

discrete linear system

𝐴 (𝜎) 𝑏 = 𝑓, (7)

where the data vector 𝑓 = (0, 𝐼)𝑇 with 0 ∈ R𝑁 and 𝐼 = (𝐼
1
−

𝐼
2
, 𝐼
1
− 𝐼
3
, . . . , 𝐼

1
− 𝐼
𝐿
), the determined coefficient vector 𝑏 =

(𝑢
ℎ
, 𝑈
ℎ
)
𝑇, and the stiffness matrix

𝐴 (𝜎) = (
𝐵 𝐶

𝐶
𝑇
𝐷
) , (8)

with

𝐵
𝑖𝑗
= ∫
Ω

𝜎∇𝜙
𝑖
⋅ ∇𝜙
𝑗
𝑑𝑥

+

𝐿

∑

𝑙=1

1

𝑧
𝑙

∫
𝑒𝑙

𝜙
𝑖
𝜙
𝑗
𝑑𝑆, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

𝐶
𝑖𝑙
= −

1

𝑧
𝑙

∫
𝑒𝑙

𝜙
𝑖
𝑑𝑆, 𝑖 = 1, 2, . . . , 𝑁, 𝑙 = 1, 2, . . . , 𝐿 − 1,

𝐷
𝑙𝑙
=
1

𝑧
𝑙

∫
𝑒𝑙

𝑑𝑆, 𝑙 = 1, 2, . . . , 𝐿 − 1.

(9)

After solving the determined coefficients 𝑏 = 𝐴(𝜎)
−1
𝑓, we

can use (6) to find the approximate potentials 𝑈ℎ on the
electrodes.

2.2. The Inverse Problem. In practice, the conductivity distri-
bution 𝜎 is not known. What we know is merely all pairs of
injected current data 𝐼 and resulting voltage data 𝑈 on the
electrodes.The inverse problem under the complete electrode
model (1) is to estimate the conductivity distribution 𝜎 from
these data.

By Ohm’s law, the output is indeed a measurement
(discretization) of the linear current-to-voltage operator that
is, 𝑅
𝜎
: 𝐼 ∈ R𝐿

⬦
→ 𝑈 ∈ R𝐿

⬦
, which maps the applied

electrode current data 𝐼 to the computed electrode voltage

data 𝑈 or denoted by 𝑈(𝜎) to emphasize the dependence on
the conductivity parameter as follows:

𝑈 (𝜎) = 𝑅
𝜎
𝐼 (10)

and 𝑅
𝜎
𝐼 = Υ
𝐷
𝑢 ∈ R𝐿

⬦
, where Υ

𝐷
: 𝐻̃
1
(Ω) → R𝐿

⬦
denotes the

Dirichlet trace operator, which projects the solution 𝑢 of the
forward problem to the electrode voltages 𝑈.

Nowwe denote the solution operator by 𝐹(𝜎; 𝐼), such that

𝑈 (𝜎) = 𝐹 (𝜎; 𝐼) , (11)

where 𝐹 relates the conductivity distribution 𝜎 with the
corresponding virtual measurements 𝑈, often referred to as
the parameter-to-observation map, also called the forward
operator. Notably, 𝐹 depends linearly on 𝐼 but nonlinearly
on 𝜎. For a fixed current vector 𝐼, we can view 𝐹(𝜎; 𝐼) as
a function of 𝜎 only. It is important to distinguish between
the PDE operator 𝐴(𝜎) and the forward operator 𝐹(𝜎).
Though both are associated with the model problem (1), their
meaning is not the same. Indeed, 𝐴(𝜎) describes the forward
problem, while 𝐹(𝜎) actually represents its solution.

However, in practical applications, actual observations
for EIT are typically potential differences between certain
electrodes, denoted by𝑈obs, whichmay not be known exactly
and unavoidably noisy due to the measurement or model
error. Thus the observation model response of EIT can be
formulated as the following nonlinear operator equation:

𝑈
obs

= 𝐹 (𝜎) + 𝑒, (12)

where 𝑒 is the noise in the measurements.
Thus the inverse problem for EIT becomes that of finding

the approximation conductivity distribution 𝜎 from the
observed partial noisy knowledge 𝑈

obs, also called image
reconstruction.

3. Homotopy Perturbation Inversion Method

One popular approach to deal with the inverse problem (12) is
the nonlinear least-square method

min
𝜎

󵄩󵄩󵄩󵄩󵄩
𝐹(𝜎) − 𝑈

obs󵄩󵄩󵄩󵄩󵄩

2

. (13)

The corresponding Euler equation of (13) is given by

𝐹
󸀠
(𝜎)
𝑇
(𝐹 (𝜎) − 𝑈

obs
) = 0. (14)

By the homotopy perturbation technique, a fixed point
homotopy function𝐻(V, 𝑝) : 𝑅 × [0, 1] → 𝑅 is constructed
for (14), which satisfies

𝐻(V, 𝑝) = 𝑝 [𝐹
󸀠
(V)𝑇 (𝐹 (V) − 𝑈obs

)]

+ (1 − 𝑝) (V − 𝜎
0
) = 0,

(15)

where 𝑝 ∈ [0, 1] is an embedding homotopy parameter and
𝜎
0
is an initial guess which incorporate a prior estimate of
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the true conductivity distribution 𝜎∗. Obviously, from these
definitions we will have

𝐻(V, 0) = V − 𝜎
0
= 0,

𝐻 (V, 1) = 𝐹
󸀠
(V)𝑇 (𝐹 (V) − 𝑈obs

) = 0.

(16)

As the parameter 𝑝 changed continuously from zero to one,
the trivial problem 𝐻(V, 0) = 0 is continuously deformed to
the original problem 𝐻(V, 1) = 0 that is, V changed from 𝜎

0

to the approximation solution 𝜎. In topology, this is called
deformation, and 𝜎 − 𝜎

0
and 𝐹󸀠(𝜎)𝑇(𝐹(𝜎) − 𝑈

obs
) are called

homotopic.
Next, according to the homotopy perturbation technique,

we can use the parameter 𝑝 as a small parameter and assume
that the solution of (15) can be expressed as a power series in
𝑝,

V = 𝜎
0
+ 𝑝𝜎
1
+ 𝑝
2
𝜎
2
+ 𝑝
3
𝜎
3
+ ⋅ ⋅ ⋅ . (17)

As 𝑝 → 1, the approximate solution of (14) is obtained with

𝜎 = lim
𝑝→1

V = 𝜎
0
+ 𝜎
1
+ 𝜎
2
+ 𝜎
3
+ ⋅ ⋅ ⋅ . (18)

We rewrite (15) with the Taylor expansion of 𝐹(𝜎) at 𝜎
0
and

ignore the higher order term, which yields

𝐻(V, 𝑝) = 𝑝 [𝐹
󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) + 𝐹
󸀠
(𝜎
0
) (V − 𝜎

0
) − 𝑈

obs
)]

+ (1 − 𝑝) (V − 𝜎
0
) = 0.

(19)

Substituting (17) into (19), we will have

𝑝 [𝐹
󸀠

(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) + 𝐹
󸀠
(𝜎
0
)

× (𝑝𝜎
1
+ 𝑝
2
𝜎
2
+ 𝑝
3
𝜎
3
+ ⋅ ⋅ ⋅ ) − 𝑈

obs
) ]

+ (1 − 𝑝) (𝑝𝜎
1
+ 𝑝
2
𝜎
2
+ 𝑝
3
𝜎
3
+ ⋅ ⋅ ⋅ ) = 0.

(20)

Equating the coefficients for the different power of 𝑝, we get
the following formulations:

𝑝
1
: 𝐹
󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) − 𝑈

obs
) + 𝜎
1
= 0,

𝑝
𝑘+1

: 𝐹
󸀠
(𝜎
0
)
𝑇
𝐹
󸀠
(𝜎
0
) 𝜎
𝑘
+ 𝜎
𝑘+1

− 𝜎
𝑘
= 0,

𝑘 = 1, 2, 3, . . . .

(21)

Then starting with an initial prior estimate 𝜎
0
and in turn

solving (21), we can obtain

𝜎
1
= −𝐹
󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) − 𝑈

obs
) ,

𝜎
𝑘+1

= (𝐼 − 𝐹
󸀠
(𝜎
0
)
𝑇
𝐹
󸀠
(𝜎
0
))
𝑘

(−𝐹
󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) − 𝑈

obs
)) ,

𝑘 = 1, 2, 3, . . . .

(22)

Thus by (18) we can get the approximate solution of (14); that
is,

𝜎 = lim
𝑝→1

V = 𝜎
0
+ 𝜎
1
+ 𝜎
2
+ 𝜎
3
+ ⋅ ⋅ ⋅

= 𝜎
0
+ (−𝐹

󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) − 𝑈

obs
))

+ (𝐼 − 𝐹
󸀠
(𝜎
0
)
𝑇
𝐹
󸀠
(𝜎
0
)) (−𝐹

󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) − 𝑈

obs
))

+ (𝐼 − 𝐹
󸀠
(𝜎
0
)
𝑇
𝐹
󸀠
(𝜎
0
))
2

(−𝐹
󸀠
(𝜎
0
)
𝑇
(𝐹 (𝜎
0
) − 𝑈

obs
))

+ ⋅ ⋅ ⋅ .

(23)

The above formulation will allow us to construct two
types of iteration methods for solving the nonlinear inverse
problem (12). The first iteration scheme is to use the first-
order approximation, as follows, for a given prior 𝜎

0
,

𝜎
𝑘+1

= 𝜎
𝑘
− 𝛼
𝑘
𝐹
󸀠
(𝜎
𝑘
)
𝑇
(𝐹 (𝜎
𝑘
) − 𝑈

obs
) , (24)

which is the well-known classical Landweber iteration
method (CLIM) [27], viewed as one of the variations of the
steepest gradient descent method, and the second iteration
scheme is to use the second-order approximation, as follows,
for a given prior 𝜎

0
,

𝜎
𝑘+1

= 𝜎
𝑘
− 𝛼
𝑘
(2𝐼 − 𝐹

󸀠
(𝜎
𝑘
)
𝑇
𝐹
󸀠
(𝜎
𝑘
))

× (𝐹
󸀠
(𝜎
𝑘
)
𝑇
(𝐹 (𝜎
𝑘
) − 𝑈

obs
)) ,

(25)

where 𝛼
𝑘
is an appropriately chosen step length. Since the

iteration-varying step length usually shows better perfor-
mance than the constant value, the step length 𝛼

𝑘
for itera-

tions (24) and (25) was chosen with the same criterion; that
is,𝛼
𝑘
= 1/𝜆max(𝐽𝑘

𝑇
𝐽
𝑘
), where 𝐽

𝑘
is the Jacobianmatrix of𝐹(𝜎)

calculated at the 𝑘th iteration 𝜎
𝑘
and 𝜆max(𝐽𝑘

𝑇
𝐽
𝑘
) denotes the

maximum eigenvalue of 𝐽
𝑘

𝑇
𝐽
𝑘
. We here call iteration scheme

(25) the homotopy perturbation inversionmethod (HPIM). It
has faster convergence than the classical Landweber iteration
(24), which has been analyzed and proved in [28].

Considering the measurement errors of the observation
data 𝑈obs we employ the discrepancy principle as a stopping
rule for HPIM, which determines the stopping index 𝑘

∗
=

𝑘
∗
(𝛿, 𝑈

obs
) by

󵄩󵄩󵄩󵄩󵄩
𝑈

obs
− 𝐹 (𝜎

𝑘∗
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜏𝛿 <

󵄩󵄩󵄩󵄩󵄩
𝑈

obs
− 𝐹 (𝜎

𝑘
)
󵄩󵄩󵄩󵄩󵄩
, 0 ≤ 𝑘 < 𝑘

∗
,

(26)

for some sufficiently large 𝜏 > 0. In fact, this stopping rule
renders this method as a regularization method.

4. Numerical Simulations

In this section, some numerical results for simulated data
were presented to demonstrate the feasibility and effec-
tiveness of the homotopy perturbation inversion method
(HPIM). The quality of the images reconstructed by HPIM
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(a) (b)

Figure 1:The forward and inverse models. (a) the forward model with 1968 triangulation elements; (b) the inverse model with 492 elements.
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Figure 2: Three simulation phantoms.

is compared with that of the classical Landweber iteration
method (CLIM). All the simulations are 2D, as this allows
an easier visualization of the results and faster simulation.
A 16-electrode system was selected for simulations. We used
constant injection current between adjacent electrodes and
adjacent voltage measurement between all other electrodes.
To avoid committing what is referred to as an inverse crime,
two different finite element meshes were used for the forward
inverse solvers, as shown in Figure 1, and the small green
strips on the perimeter of the meshes show the position of
the ideal electrodes. A mesh with 1968 elements and 1049
nodes was used for the forward simulations. For the inverse
computations anothermeshwith 492 elements and 279 nodes
was used to reduce the computational burden. Considering
the simplicity’s sake of mesh refinement, we divided one
element used in the inverse calculation into four elements to
generate the forward mesh. In the reconstructions, contact
impedances under the electrodes were assumed to be known
and are set to be 0.05 for all electrodes.

Figure 2 shows three original phantom models used for
our simulations.The phantoms from left to right have various
inclusions at different locations, occupying 36 cells, 16 cells,
and 28 cells on the total size (492 cells) of the unknown
discrete conductivity vector, respectively. The higher (back-
ground) and lower (inclusions) conductivity distribution
values are set to be 1.0 and 6.0, respectively.

In the following, images for these three phantom models
were reconstructed by the homotopy perturbation inversion
method (HPIM) and classical Landweber iteration method
(CLIM), respectively. For all simulations, the synthetic ideal
data were generated using the finite element forward model
based on the EIDORS 2DEIT software developed byVauhko-
nen et al. [29].There are a total of 256 data points being gener-
ated for the entire survey.The initial conductivity distribution
values for both methods are set to the background values.

In addition to the reconstructed images, in order to com-
pare the reconstruction performancemore quantitatively, the
following criteria are used:

DE =
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝜎
†
) − 𝑈

obs󵄩󵄩󵄩󵄩󵄩 , RE =

󵄩󵄩󵄩󵄩󵄩
𝜎
†
− 𝜎
∗󵄩󵄩󵄩󵄩󵄩

‖𝜎
∗
‖

, (27)

where 𝜎† represents the reconstructed conductivity distri-
bution, 𝜎∗ is the true one, and DE and RE represent the
discrepancy error and relative image error, respectively.

4.1. Noise-Free Case. The numerical performances of HPIM
and CLIM were first tested by the noise-free data. Figures
3(a), 3(b), 4(a), 4(b), 5(a), and 5(b) show the reconstructed
results obtained fromHPIM andCLIM for three different test
phantoms, respectively. Columns from left to right in each
figure represent the reconstructions at iterations 10, 20, and
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Figure 3: Reconstruction results with HPIM (see (a)) and CLIM (see (b)) for the first phantom at different iteration number, as well as
convergence behavior (see (c)). (c) Left: discrepancy error; right: relative error. In both plots, the horizontal axes denote the time of the
iteration process.

Table 1: Comparison of relative errors for the reconstructions displayed in Figures 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b).

Iterations Figure 3(a) Figure 3(b) Figure 4(a) Figure 4(b) Figure 5(a) Figure 5(b)
10 steps 0.2150 0.2239 0.1213 0.1414 0.1718 0.1895
20 steps 0.2072 0.2208 0.1133 0.1355 0.1593 0.1839
50 steps 0.1954 0.2147 0.1066 0.1216 0.1500 0.1713

50, respectively. It can be seen that HPIM is superior to CLIM
and can reconstruct the conductivity distribution even after
10-step iteration. After 20 iterations, the reconstruction per-
formance with HPIM shows great improvement over CLIM.
To compare the performance of the above twomethods more
quantitatively, the relative errors of reconstructed images in

Figures 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b), using (27), are
calculated and listed in Table 1. It can be observed that HPIM
has less relative error than CLIM at the same iterations. To
visibly illustrate the convergence behavior of both methods,
we also draw the curves from discrepancy errors and relative
errors versus iteration time for the reconstructions of these
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Figure 4: Reconstruction results with HPIM (see (a)) and CLIM (see (b)) for the second phantom at different iteration number, as well
as convergence behavior (see (c)). (c) Left: discrepancy error; right: relative error. In both plots, the horizontal axes denote the time of the
iteration process.

three phantoms, as shown in Figures 3(c)–5(c). It is clear
that the discrepancy errors and relative errors of HPIM are
consistently lower than those of CLIM. As can be expected,
the convergence rate of the proposed HPIM is accelerated
significantly compared to that of CLIM.

4.2. Noise-Contaminated Case. Studies indicate that EIT
image reconstruction process is a typical ill-posed problem.
A small perturbation in the input data may yield a large
fluctuation of the solution, which may make the inversion
results meaningless. In the data acquisition processes, the
measurement data unavoidably contain noise.The robustness
of reconstruction techniquewith respect to noise is crucial. In

order to simulate real measurement environment, the noise-
contaminated input data are used to evaluate the numerical
performance and robustness to noise of HPIM. Usually,
the synthetic Gaussian noise was generated to simulate
systematic and random errors existing in the data acquisition
processes. The resulting noisy data was indicated by adding
noise to the synthetic ideal data, defined as

𝑈
noise

= 𝑈
syn

+ 𝜀 ⋅ 𝑛, (28)

where 𝜀 is the noise level and 𝑛 is a noise vector obeying a
Gaussian distribution with zeromean and standard deviation
of 1.
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Figure 5: Reconstruction results with HPIM (see (a)) and CLIM (see (b)) for the third phantom at different iteration number, as well as
convergence behavior (see (c)). (c) Left: discrepancy error; right: relative error. In both plots, the horizontal axes denote the time of the
iteration process.

Table 2: Comparison of reconstructions for the second phantom with 𝜏 = 20 at four different noise levels.

𝜀
HPIM CLIM

𝑘
∗

DE RE 𝑇 (s) 𝑘
∗

DE RE 𝑇 (s)
5% 20 0.9974 0.1199 8.6813 43 0.9997 0.1186 17.8413
3% 27 0.5999 0.1923 12.1581 59 0.5993 0.1912 25.1848
1% 91 0.1999 0.1051 38.3450 190 0.2000 0.1034 77.1894
0.5% 234 0.0993 0.0997 101.8921 479 0.1000 0.0980 221.6608
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Figure 6: Reconstruction results by HPIM for three phantoms with different noise levels. (a) 𝜀 = 5%; (b) 𝜀 = 3%; (c) 𝜀 = 1%; (d) 𝜀 = 0.5%.

In the following, we illustrate the performance of HPIM
for the noise-contaminated case by comparing against the
common CLIM. According to the stopping rule (26) with
𝜏 = 20, for each phantom, the corresponding reconstructed
images by HPIM under four different noise levels of 5%, 3%,
1%, and 0.5% are listed in Figures 6(a)–6(d), respectively. As
can be expected, HPIM shows the favorable robustness. Since
the images reconstructed by CLIM have the similar qualities

of those by HPIM, we do not list them in Figure 6. We
summarized more detailed computational results in Table 2,
which is against the second phantom with two inclusions,
and the corresponding reconstructed images are partially
displayed in the middle column of Figure 6. Here 𝑘

∗
and 𝑇

denote the stooping steps and the CPU time (in seconds),
respectively. We find from Table 2 that images reconstructed
by HPIM have the similar error qualities to those by CLIM,
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but in less steps and computational time. Additionally, it also
can be seen from Figure 6 and Table 2 that with the increase
of the noise levels the reconstruction quality decreases, which
indicates that the accuracy of the measurement data has an
effect on the imaging quality.

5. Conclusion

This paper presents an application of homotopy perturbation
inversion method to the image reconstruction for EIT. Simu-
lation results indicate the feasibility and effectiveness of this
method. Compared with the classical Landweber iteration
method, our approach reduces the computational time and
produces more satisfactory effect.
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