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Interval-valued univex functions are introduced for differentiable programming problems. Optimality and duality results are
derived for a class of generalized convex optimization problems with interval-valued univex functions.

1. Introduction

Imposing the uncertainty upon the optimization problems is
an interesting research topic. The uncertainty may be inter-
preted as randomness, fuzziness, or interval-valued fuzziness.
The randomness occurring in the optimization problems
is categorized as the stochastic optimization problems, and
the imprecision (fuzziness) occurring in the optimization
problems is categorized as the fuzzy optimization problems.
In order to perfectly match the real situations, interval-
valued optimization problems may provide an alternative
choice for considering the uncertainty into the optimization
problems.That is to say, the coefficients in the interval-valued
optimization problems are assumed as closed intervals. Many
approaches for interval-valued optimization problems have
been explored in considerable details; see, for example, [1–
3]. Recently, Wu has extended the concept of convexity for
real-valued functions to LU-convexity for interval-valued
functions, then he has established the Karush-Tucker con-
ditions [4–6] for an optimization problem with interval-
valued objective functions under the assumption of LU-
convexity. Similar to the concept of nondominated solution
in vector optimization problems, Wu has proposed a solu-
tion concept in optimization problems with interval-valued
objective functions based on a partial ordering on the set of
all closed intervals, then the interval-valued Wolfe duality
theory [7] and Lagrangian duality theory [8] for interval-
valued optimization problems have been proposed. Recently,

Wu [9] has studied the duality theory for interval-valued
linear programming problems.

In 1981, Hanson [10] introduced the concept of invexity
and establishedKarush-Tucker type sufficient optimality con-
ditions for a nonlinear programming problem. In [11], Kaul
et al. considered a differentiable multiobjective program-
ming problem involving generalized type I functions. They
investigated Karush-Tucker type necessary and sufficient
conditions and obtained duality results under generalized
type I functions. The class of B-vex functions has been
introduced by Bector and Singh [12] as a generalization
of convex functions, and duality results are established
for vector valued B-invex programming in [13]. Bector et
al. [14] introduced the concept of univex functions as a
generalization of B-vex functions introduced by Bector et al.
[15]. Combining the concepts of type I and univex functions,
Rueda et al. [16] gave optimality conditions and duality results
for several mathematical programming problems. Aghezzaf
and Hachimi [17] introduced classes of generalized type I
functions for a differentiable multiobjective programming
problem and derived some Mond-Weir type duality results
under the above generalized type I assumptions. Gulati et al.
[18] introduced the concept of (𝐹, 𝛼, 𝜌, 𝑑)-𝑉-type I functions
and also studied sufficiency optimality conditions and duality
multiobjective programming problems.

This paper aims at extending the Karush-Tucker opti-
mality conditions to nonconvex optimization problem with
interval-valued functions. First, we extend the concept of
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univexity for a real-valued function to an interval-valued
function and present the concept of interval-valued univex
functions.Then, the Karush-Tucker optimality conditions are
proposed for an interval-valued function under the assump-
tion of interval-valued univexity.

2. Preliminaries

Let one denotes by I the class of all closed intervals in 𝑅.
𝐴 = [𝑎𝐿, 𝑎𝑈] ∈ I denotes a closed interval, where 𝑎𝐿 and
𝑎𝑈 mean the lower and upper bounds of 𝐴, respectively. For
every 𝑎 ∈ 𝑅, we denote 𝑎 = [𝑎, 𝑎].

Definition 1. Let 𝐴 = [𝑎𝐿, 𝑎𝑈] and 𝐵 = [𝑏𝐿, 𝑏𝑈] be in I; one
has

(i) 𝐴+𝐵 = {𝑎+𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [𝑎𝐿+𝑏𝐿, 𝑎𝑈+𝑏𝑈];
(ii) −𝐴 = {−𝑎 : 𝑎 ∈ 𝐴} = [−𝑎𝑈, −𝑎𝐿];
(iii) 𝐴 × 𝐵 = {𝑎𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [min

𝑎𝑏
,max
𝑎𝑏
],

where min
𝑎𝑏
= min{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈} and

max
𝑎𝑏
= max{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈}.

Then, we can see that

𝐴 − 𝐵 = 𝐴 + (−𝐵) = [𝑎
𝐿
− 𝑏
𝑈
, 𝑎
𝑈
− 𝑏
𝐿
] ,

𝑘𝐴 = {𝑘𝑎 : 𝑎 ∈ 𝐴} =
{

{

{

[𝑘𝑎𝐿, 𝑘𝑎𝑈] if 𝑘 ≥ 0,

[𝑘𝑎𝑈, 𝑘𝑎𝐿] if 𝑘 < 0,

(1)

where 𝑘 is a real number.
By using Hausdorff metric, Neumaier [19] has proposed

Hausdorff metric between the two closed intervals𝐴 and 𝐵 as
follows:

𝑑
𝐻 (𝐴, 𝐵) = max {󵄨󵄨󵄨󵄨󵄨𝑎

𝐿
− 𝑏
𝐿󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑈
− 𝑏
𝑈󵄨󵄨󵄨󵄨󵄨
} . (2)

Definition 2. Let 𝐴 = [𝑎𝐿, 𝑎𝑈] and 𝐵 = [𝑏𝐿, 𝑏𝑈] be two closed
intervals in 𝑅. One writes 𝐴 ⪯ 𝐵 if and only if 𝑎𝐿 ≤ 𝑏𝐿 and
𝑎𝑈 ≤ 𝑏𝑈, 𝐴 ≺ 𝐵 if and only if 𝐴 ⪯ 𝐵 and 𝐴 ̸= 𝐵, that is, the
following (a1), (a2), or (a3) is satisfied:

(a1) 𝑎𝐿 < 𝑏𝐿 and 𝑎𝑈 ≤ 𝑏𝑈;
(a2) 𝑎𝐿 ≤ 𝑏𝐿 and 𝑎𝑈 < 𝑏𝑈;
(a3) 𝑎𝐿 < 𝑏𝐿 and 𝑎𝑈 < 𝑏𝑈.

Definition 3 (see [20]). Let 𝐴 = [𝑎𝐿, 𝑎𝑈] and 𝐵 = [𝑏𝐿, 𝑏𝑈] be
two closed intervals, the gH-difference of 𝐴 and 𝐵 is defined
by

[𝑎
𝐿
, 𝑎
𝑈
] ⊖
𝑔
[𝑏
𝐿
, 𝑏
𝑈
]

= [min (𝑎𝐿 − 𝑏𝐿, 𝑎𝑈 − 𝑏𝑈) ,max (𝑎𝐿 − 𝑏𝐿, 𝑎𝑈 − 𝑏𝑈)] .
(3)

For example, [1, 3]⊖
𝑔
[0, 3] = [0, 1], [0, 3]⊖

𝑔
[1, 3] =

[−1, 0]. And 𝑎 − 𝑏 = [𝑎, 𝑎]⊖
𝑔
[𝑏, 𝑏] = [𝑎 − 𝑏, 𝑎 − 𝑏] = 𝑎 − 𝑏.

Proposition 4. (i) For every 𝐴, 𝐵 ∈ I, 𝐴⊖
𝑔
𝐵 always exists

and 𝐴⊖
𝑔
𝐵 ∈ I.

(ii) 𝐴⊖
𝑔
𝐵 ⪯ 0 if and only if 𝐴 ⪯ 𝐵.

3. Interval-Valued Univex Functions

Definition 5 (interval-valued function). The function 𝑓 :
Ω → I is called an interval-valued function, whereΩ ⊆ 𝑅𝑛.
Then, 𝑓(x) = 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is a closed interval in 𝑅 for each

x ∈ 𝑅𝑛, and𝑓(x) can be also written as𝑓(x) = [𝑓𝐿(x), 𝑓𝑈(x)],
where𝑓𝐿(x) and𝑓𝑈(x) are two real-valued functions defined
on 𝑅𝑛 and satisfy 𝑓𝐿(x) ≤ 𝑓𝑈(x) for every x ∈ Ω.

Definition 6 (continuity of an interval-valued function). The
function 𝑓 : Ω ⊆ 𝑅𝑛 → I is said to be continuous at 𝑥 ∈ Ω
if both 𝑓𝐿(x) and 𝑓𝑈(x) are continuous functions of x.

The concept of gH-derivative of a function 𝑓 : (𝑎, 𝑏) →
I is defined in [19].

Definition 7. Let 𝑥
0
∈ (𝑎, 𝑏) and ℎ be such that 𝑥

0
+ℎ ∈ (𝑎, 𝑏),

then the gH-derivative of a function 𝑓 : (𝑎, 𝑏) → I at 𝑥
0
is

defined as

𝑓
󸀠
(𝑥
0
) = lim
𝑥→0

[𝑓 (𝑥
0
+ ℎ) ⊖

𝑔
𝑓 (𝑥
0
)] . (4)

If 𝑓󸀠(𝑥
0
) ∈ I exists, then we say that 𝑓 is generalized

Hukuhara differentiable (gH-differentiable, for short) at 𝑥
0
.

Moreover, [21] also proved the following theorem.

Theorem 8. Let 𝑓 : (𝑎, 𝑏) → I be such that 𝑓(𝑥) =
[𝑓𝐿(𝑥), 𝑓𝑈(𝑥)]. The function 𝑓(𝑥) is gH-differentiable if and
only if 𝑓𝐿(𝑥) and 𝑓𝑈(𝑥) are differentiable real-valued func-
tions. Furthermore,

𝑓
󸀠
(𝑥) = [min {(𝑓𝐿)

󸀠

(𝑥) , (𝑓
𝑈
)
󸀠

(𝑥)} ,

max {(𝑓𝐿)
󸀠

(𝑥) , (𝑓
𝑈
)
󸀠

(𝑥)}] .

(5)

Definition 9 (gradient of an interval-valued function). Let
𝑓(x) be an interval-valued function defined on Ω, where
Ω is an open subset of 𝑅𝑛. Let 𝐷

𝑥𝑖
(𝑖 = 1, 2, . . . , 𝑛) stand

for the partial differentiation with respect to the 𝑖th variable
𝑥
𝑖
. Assume that 𝑓𝐿(x) and 𝑓𝑈(x) have continuous partial

derivatives so that 𝐷
𝑥𝑖
𝑓
𝐿
(x) and 𝐷

𝑥𝑖
𝑓
𝑈
(x) are continuous.

For 𝑖 = 1, 2, . . . , 𝑛, define

𝐷
𝑥𝑖
𝑓 (x) = [min (𝐷

𝑥𝑖
𝑓
𝐿
(x) , 𝐷𝑥𝑖𝑓

𝑈
(x)) ,

max (𝐷
𝑥𝑖
𝑓
𝐿
(x) , 𝐷𝑥𝑖𝑓

𝑈
(x))] .

(6)

We will say that 𝑓(x) is differentiable at x, and we write

∇𝑓 (x) = (𝐷𝑥1𝑓 (x) , 𝐷𝑥2𝑓 (x) , . . . , 𝐷𝑥𝑛𝑓 (x))
𝑡

. (7)

We call ∇𝑓(x) the gradient of the interval-valued univex
function at x.
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Example 10. Let 𝑓 : R2 → I defined by 𝑓(x) = [𝑥2
1
+ 𝑥2
2
,

2𝑥2
1
+ 2𝑥2
2
+ 3]. So 𝑓𝐿(x) = 𝑥2

1
+ 𝑥2
2
and 𝑓𝑈(x) = 2𝑥2

1
+

2𝑥2
2
+ 3. 𝐷

𝑥1
𝑓𝐿(x) = 2𝑥

1
, 𝐷
𝑥2
𝑓𝐿(x) = 2𝑥

2
, 𝐷
𝑥1
𝑓𝑈(x) = 4𝑥

1
,

𝐷
𝑥2
𝑓𝑈(x) = 4𝑥

2
. Thus,

𝐷
𝑥1
𝑓 (x) =

{

{

{

[2𝑥
1
, 4𝑥
1
] if 𝑥

1
≥ 0,

[4𝑥
1
, 2𝑥
1
] if 𝑥

1
< 0,

𝐷
𝑥2
𝑓 (x) =

{

{

{

[2𝑥
2
, 4𝑥
2
] if 𝑥

2
≥ 0,

[4𝑥
2
, 2𝑥
2
] if 𝑥

2
< 0.

(8)

Thus,

∇𝑓 (x) =

{{{{{{{{{

{{{{{{{{{

{

([2𝑥
1
, 4𝑥
1
] , [2𝑥

2
, 4𝑥
2
])
𝑡 if 𝑥

1
≥ 0, 𝑥

2
≥ 0,

([2𝑥
1
, 4𝑥
1
] , [4𝑥

2
, 2𝑥
2
])
𝑡 if 𝑥

1
≥ 0, 𝑥

2
< 0,

([4𝑥
1
, 2𝑥
1
] , [2𝑥

2
, 4𝑥
2
])
𝑡 if 𝑥

1
< 0, 𝑥

2
≥ 0,

([4𝑥
1
, 2𝑥
1
] , [4𝑥

2
, 4𝑥
2
])
𝑡 if 𝑥

1
< 0, 𝑥

2
< 0.

(9)

Further,

∇
𝐿
𝑓 (x) =

{{{{{{{{{

{{{{{{{{{

{

(2𝑥
1
, 2𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
≥ 0,

(2𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
< 0,

(4𝑥
1
, 2𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
≥ 0,

(4𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
< 0.

∇
𝑈
𝑓 (x) =

{{{{{{{{{

{{{{{{{{{

{

(4𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
≥ 0,

(4𝑥
1
, 2𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
< 0,

(2𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
≥ 0,

(2𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
< 0.

(10)

Remark 11. If 𝑓𝐿 = 𝑓𝑈, then ∇𝑓(x) of interval-valued func-
tions is the extension of ∇𝑓(x), where 𝑓 : Ω → 𝑅.

The concept of convexity plays an important role in the
optimization theory. In recent years, the concept of convexity
has been generalized in several directions by using novel
and innovative techniques. An important generalization of
convex functions is the introduction of univex functions,
which was introduced by Bector et al. [15].

Let 𝐾 be a nonempty open set in 𝑅𝑛, and let 𝑓 : 𝐾 → 𝑅,
𝜂 : 𝐾 × 𝐾 → 𝑅𝑛, Φ : 𝑅 → 𝑅, and 𝑏 : 𝐾 × 𝐾 × [0, 1] → 𝑅+,
𝑏 = 𝑏(x, y, 𝜆). If the function 𝑓 is differentiable, then 𝑏 does
not depend on 𝜆; see [12] or [15].

Definition 12. A differentiable real-valued function 𝑓 is said
to be univex at y ∈ 𝐾 with respect to 𝜂,Φ, 𝑏 if for all x ∈ 𝐾

𝑏 (x, y)Φ [𝑓 (x) − 𝑓 (y)] ≥ 𝜂𝑡 (x, y) ∇𝑓 (y) . (11)

Let𝐾 be a nonempty open set in 𝑅𝑛, and let 𝑓 : 𝐾 → I
be an interval-valued function, 𝜂 : 𝐾 × 𝐾 → 𝑅𝑛, Φ : I →

I, and 𝑏 : 𝐾 × 𝐾 × [0, 1] → 𝑅+, 𝑏 = 𝑏(x, y, 𝜆).

Definition 13 (interval-valued univex function). A differen-
tiable interval-valued function 𝑓 is said to be univex at y ∈ 𝐾
with respect to 𝜂, Φ, 𝑏 if for all x ∈ 𝐾

𝑏 (x, y)Φ [𝑓 (x) ⊖𝑔𝑓 (y)] ⪰ 𝜂
𝑡
(x, y) ∇𝑓 (y) . (12)

Remark 14. (i) An interval-valued univex function is the
extension of a univex function by 𝑓𝐿 = 𝑓𝑈.

(ii) Φ : I → I could be deduced from 𝜙 : 𝑅 → 𝑅 by
Φ(𝐴) := {𝑦 : ∃𝑥 ∈ 𝐴, 𝜙(𝑥) = 𝑦, 𝑦 ∈ 𝑅}.

Example 15. Consider the real-valued function 𝜙
1
given by

𝜙
1
(𝑥) = 𝑥 + 1, 𝑥 ∈ 𝑅, then we can obtain Φ

1
([𝑎𝐿, 𝑎𝑈]) =

[𝑎𝐿 + 1, 𝑎𝑈 + 1]. If 𝜙
2
(𝑥) = |𝑥|, 𝑥 ∈ 𝑅. Then

Φ
2
([𝑎
𝐿
, 𝑎
𝑈
]) =

{{{{{

{{{{{

{

[𝑎
𝐿, 𝑎𝑈] if 𝑎𝐿 ≥ 0,

[−𝑎𝑈, −𝑎𝐿] if 𝑎𝑈 ≤ 0,

[0,max (−𝑎𝐿, 𝑎𝑈)] if 𝑎𝐿 < 0, 𝑎𝑈 ≥ 0.

(13)

Example 16. Let 𝑓(𝑥) = [𝑥2, 2𝑥2 + 3], 𝑥 ∈ 𝑅, 𝑏 = 1, 𝜂(𝑥, 𝑦) =
𝑥 − 𝑦, Φ = Φ

2
, then 𝑓(𝑥) is univex with respect to 𝑏, 𝜂, and

Φ.

Example 17. Let 𝑓(𝑥) = [𝑥3, 𝑥3 + 1], 𝑥 ∈ 𝑅,

𝑏 (𝑥, 𝑦) =
{

{

{

𝑦2

𝑥 − 𝑦
if 𝑥 ≥ 𝑦,

0 if 𝑥 ≤ 𝑦,

𝜂 (𝑥, 𝑦) = {
𝑥2 + 𝑦2 + 𝑥𝑦 if 𝑥 ≥ 𝑦,
𝑥 − 𝑦 if 𝑥 ≤ 𝑦.

(14)

Let Φ : I → I be defined by Φ([𝑎𝐿, 𝑎𝑈]) = 3[𝑎𝐿, 𝑎𝑈], then
𝑓(𝑥) is univex with respect to 𝑏, 𝜂 and Φ.

4. Optimality Criteria

Let 𝑓(x), 𝑔
1
(x), . . . , 𝑔

𝑚
(x) be differentiable interval-valued

functions defined on a nonempty open set 𝑋 ⊆ 𝑅𝑛.
Throughout this paper we consider the following primal
problem (P):

min 𝑓 (x)

s.t. 𝑔 (x) ⪯ 0, 𝑖 = 1, 2, . . . , 𝑚.
(P)

Let 𝑃 := {x ∈ 𝑋 : 𝑔(x) ⪯ 0, 𝑖 = 1, 2, . . . , 𝑚}. We say x∗ is
an optimal solution of (P) if 𝑓(x) ⪰ 𝑓(x∗) for all P-feasible x.
In this section, we obtain sufficient optimality conditions for
a feasible solution x∗ to be efficient or properly efficient for
(P) in the form of the following theorems.
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Theorem 18. Let x∗ be P-feasible. Suppose that

(i) there exist 𝜂, Φ
0
, 𝑏
0
, Φ
𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 such that

𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 𝜂

𝑡
(x, x∗) ∇𝑓 (x∗) , (15)

−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)] ⪰ 𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗) (16)

for all feasible x;
(ii) there exist y∗ = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑡
∈ 𝑅𝑚 such that

∇𝑓 (x∗) +
𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗) = 0, (17)

y∗ ≥ 0. (18)

Further, suppose that

Φ
0 (𝐴) ⪰ 0 󳨐⇒ 𝐴 ⪰ 0, (19)

𝐴 ⪯ 0 󳨐⇒ Φ
𝑖 (𝐴) ⪰ 0, (20)

𝑏
0
(x, x∗) > 0, 𝑏

𝑖
(x, x∗) > 0 (21)

for all feasible x. Then, x∗ is an optimal solution of (P).

Proof. Let x be P-feasible. Then,

𝑔
𝑖 (x) ⪯ 0. (22)

From (20), we conclude that

Φ
𝑖
[𝑔
𝑖
(x)] ⪰ 0. (23)

Thus,

Φ
𝐿

𝑖
[𝑔
𝑖 (x)] ≥ 0,

Φ
𝑈

𝑖
[𝑔
𝑖 (x)] ≥ 0.

(24)

By (15) and Definition 2, we have

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝐿

≥ {𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

,

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝑈

≥ {𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

.

(25)

From (17),

𝜂
𝑡
(x, x∗) ∇𝑓 (x∗) + 𝜂𝑡 (x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗) = 0. (26)

It follows from Definition 2 that

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

+ {𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

= 0,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

+ {𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

= 0.

(27)

It is equivalent to

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

= −{𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

= −{𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

.

(28)

From (16), we have

{−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝐿 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝐿

,

{−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝑈 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝑈

.

(29)

From Definition 1, we have

−{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝑈 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝐿

,

−{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝐿 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝑈

.

(30)

Thus,

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝐿

≥ {𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

= −{𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

≥

𝑚

∑
𝑖=1

{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝑈

≥

𝑚

∑
𝑖=1

{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝐿

≥ 0,

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝑈

≥ {𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝐿

≥ 0.

(31)

So,

𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0. (32)

From (21), it follows that

Φ
0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0. (33)

By (19),

𝑓 (x) ⊖𝑔𝑓 (x
∗
) ⪰ 0. (34)

From Proposition 4, it follows that

𝑓 (x) ⪰ 𝑓 (x∗) . (35)

Therefore, x∗ is an optimal solution of (P).
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Theorem 19. Let x∗ be P-feasible. Suppose that

(i) there exist 𝜂, Φ
0
, 𝑏
0
, Φ
𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 such that

𝜂
𝑡
(x, x∗) ∇𝑓 (x∗) ⪰ 0 󳨐⇒ 𝑏

0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0,

(36)

−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)] ⪯ 0 󳨐⇒ 𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗) ⪯ 0

(37)

for all feasible x;
(ii) there exist y∗ = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑡
∈ 𝑅𝑚 such that

∇𝑓 (x∗) +
𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗) = 0, (38)

y∗ ≥ 0. (39)

Further, suppose that

Φ
0 (𝐴) ⪰ 0 󳨐⇒ 𝐴 ⪰ 0, (40)

𝐴 ⪯ 0 󳨐⇒ Φ
𝑖 (𝐴) ⪰ 0, (41)

𝑏
0
(x, x∗) > 0, 𝑏

𝑖
(x, x∗) > 0 (42)

for all feasible x. Then, x∗ is an optimal solution of (P).

Proof. Let x be P-feasible. Then, 𝑔
𝑖
(x∗) ⪯ 0, from (41), we

obtain that

Φ
𝑖
[𝑔
𝑖
(x∗)] ⪰ 0. (43)

So,

−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)] ⪯ 0. (44)

By (37),

𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗) ⪯ 0. (45)

Thus,

−

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗) ⪰ 0. (46)

Then, we have

− {

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝑈

= {−

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝐿

≥ 0,

− {

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝐿

= {−

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝑈

≥ 0.

(47)

From (38) and Definition 2, it follows that

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

+ {𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

= 0,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

+ {𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

= 0.

(48)

It is equivalent to

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

= −{𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

= −{𝜂
𝑡
(x, x∗)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

.

(49)

Therefore,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

≥ 0,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

≥ 0.

(50)

From Definition 2, we obtain that

𝜂
𝑡
(x, x∗) ∇𝑓 (x∗) ⪰ 0. (51)

By (36),

𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0. (52)

Then, from (40) and (42), we have

𝑓 (x) ⊖𝑔𝑓 (x
∗
) ⪰ 0. (53)

From Proposition 4, it follows that

𝑓 (x) ⪰ 𝑓 (x∗) . (54)

Therefore, x∗ is an optimal solution of (P).

5. Duality

Consider the following:

max 𝑓 (u)

s.t. ∇𝑓 (u) +
𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u) = 0,

𝑦
𝑖
∇𝑔
𝑖 (u) ⪰ 0

𝑦
𝑖
≥ 0.

(D)

Theorem 20 (weak duality). Let x be P-feasible, and let (u, y)
be D-feasible. Assume that there exist 𝜂, Φ

0
, 𝑏
0
, Φ
𝑖
, 𝑏
𝑖
, 𝑖 =

1, 2, . . . , 𝑚 such that

𝑏
0 (x, u) Φ0 [𝑓 (x) ⊖𝑔𝑓 (u)] ⪰ 𝜂

𝑡
(x, u) ∇𝑓 (u) ,

−𝑏
𝑖 (x, u) Φ𝑖 [𝑔𝑖 (u)] ⪰ 𝜂

𝑡
(x, u) ∇𝑔𝑖 (u)

(55)
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at u;

Φ
0 (𝐴) ⪰ 0 󳨐⇒ 𝐴 ⪰ 0,

𝑏
0 (x, u) > 0, 𝑏

𝑖 (x, u) ≥ 0
(56)

and ∑𝑚
𝑖=1
𝑏
𝑖
(x, u)𝑦

𝑖
Φ
𝑖
(𝑔
𝑖
(u)) ⪰ 0. Then, 𝑓(x) ⪰ 𝑓(u).

Proof. It is similar to the proof of Theorem 18.

Theorem 21 (weak duality). Let x be P-feasible, and let (u, y)
beD-feasible. Assume that there exist 𝜂,Φ

0
, 𝑏
0
,Φ
1
, 𝑏
1
such that

𝜂
𝑡
(x, u) ∇𝑓 (u) ⪰ 0 󳨐⇒ 𝑏0 (x, u) Φ0 [𝑓 (x) ⊖𝑔𝑓 (u)] ⪰ 0,

(57)

−𝑏
1 (x, u) Φ1 [

𝑚

∑
𝑖=1

𝑦
𝑖
𝑔
𝑖 (u)] ⪯ 0 󳨐⇒

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u) ⪯ 0

(58)

at u;

Φ
0 (𝐴) ⪰ 0 󳨐⇒ 𝐴 ⪰ 0, (59)

𝐴 ⪰ 0 󳨐⇒ Φ
1 (𝐴) ⪰ 0, (60)

𝑏
0 (x, u) > 0, 𝑏

1 (x, u) ≥ 0. (61)

Then, 𝑓(x) ⪰ 𝑓(u).

Proof. Since (u, y) is D-feasible, then 𝑦𝑡
𝑖
∇𝑔
𝑖
(u) ⪰ 0, from (60)

and (61),

−𝑏
1 (x, u) Φ1 [

𝑚

∑
𝑖=1

𝑦
𝑖
𝑔
𝑖 (u)] ⪯ 0. (62)

Then, we have

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u) ⪯ 0. (63)

Thus,

−

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u) ⪰ 0,

− {

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝑈

= {−

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝐿

≥ 0,

− {

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝐿

= {−

𝑚

∑
𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝑈

≥ 0.

(64)

Since (u, y) is D-feasible we can obtain that,

∇𝑓 (u) +
𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u) = 0. (65)

So,

𝜂
𝑡
(x, u) ∇𝑓 (u) + 𝜂𝑡 (x, u)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u) = 0. (66)

By Definition 2, it follows that

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝐿

+ {𝜂
𝑡
(x, u)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝐿

= 0,

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝑈

+ {𝜂
𝑡
(x, u)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝑈

= 0.

(67)

Therefore,

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝐿

= −{𝜂
𝑡
(x, u)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝐿

≥ 0,

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝑈

= −{𝜂
𝑡
(x, u)

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝑈

≥ 0.

(68)

Then,

𝜂
𝑡
(x, u) ∇𝑓 (u) ⪰ 0. (69)

By (57),

𝑏
0 (x, u) Φ0 [𝑓 (x) ⊖𝑔𝑓 (u)] ⪰ 0. (70)

From (59) and (61),

𝑓 (x) ⊖𝑔𝑓 (u) ⪰ 0. (71)

thus,

𝑓 (x) ⪰ 𝑓 (u) . (72)

Theorem 22 (strong duality). If x∗ is P-optimal and a con-
straint qualification is satisfied at x∗, then there exists y∗ =
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑡
∈ 𝑅𝑚 such that (x∗, y∗) is D-feasible and the

values of the objective functions for (P) and (D) are equal at
x∗ and (x∗, y∗), respectively. Furthermore, if for all P-feasible x
andD-feasible (u, y), the hypotheses ofTheorem 19 are satisfied,
then (x∗, y∗) is D-optimal.

Proof. Since a constraint qualification is satisfied at x∗, there
exists y∗ ∈ 𝑅𝑚 such that the following Kuhn-Tucker condi-
tions are satisfied:

∇𝑓 (x∗) +
𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖
(x∗) = 0,

𝑚

∑
𝑖=1

𝑦
𝑖
∇𝑔
𝑖
(x∗) = 0,

𝑦
𝑖
≥ 0.

(73)

Therefore, (x∗, y∗) is D-feasible.
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Suppose that (x∗, y∗) is not D-optimal. Then, there exists
a D-feasible (u, y) such that 𝑓(u) ≻ 𝑓(x∗). This contradicts
Theorem 20. Therefore, (x∗, y∗) is D-optimal.

6. Numerical Example

Consider the following example:

minimize 𝑓 (x) = [𝑥1 − sin (𝑥2) + 1, 𝑥1 − sin (𝑥2) + 3]

subject to 𝑔
1 (x)

= [sin (𝑥
1
) − 4 sin (𝑥

2
) − 2,

sin (𝑥
1
) − 4 sin (𝑥

2
)] ⪯ 0,

𝑔
2 (x) = [2 sin (𝑥1) + 7 sin (𝑥2) + 𝑥1 − 7,

2 sin (𝑥
1
) + 7 sin (𝑥

2
) + 𝑥
1
− 6]

⪯ 0,

𝑔
3 (x) = [2𝑥1 + 2𝑥2 − 5, 2𝑥1 + 2𝑥2 − 3] ⪯ 0,

𝑔
4 (x) = [4𝑥

2

1
+ 4𝑥
2

2
− 12, 4𝑥

2

1
+ 4𝑥
2

2
− 9] ⪯ 0,

𝑔
5 (x) = [− sin (𝑥1) − 1, − sin (𝑥1)] ⪯ 0,

𝑔
6 (x) = [− sin (𝑥2) − 1, − sin (𝑥2)] ⪯ 0.

(74)

Note that the interval-valued objective function is univex
with respect to 𝑏 = 1, 𝜂(x, u) = x − u, Φ([𝑎𝐿, 𝑎𝑈]) = [𝑎𝐿, 𝑎𝑈],
and every 𝑔

𝑖
(𝑖 = 1, 2, . . . , 6) is univex with respect to 𝑏 = 1,

Φ([𝑎𝐿, 𝑎𝑈]) = [𝑎𝐿, 𝑎𝑈]

𝜂 (x, u) = ( sin𝑥1 − sin 𝑢1
cos 𝑢
1

,
sin𝑥
2
− sin 𝑢

2

cos 𝑢
2

)

𝑇

, (75)

where x = (𝑥
1
, 𝑥
2
)
𝑇 and u = (𝑢

1
, 𝑢
2
)
𝑇.

It is easy to see that the problem satisfies the assumptions
of Theorem 18. Then,

(1, − cos𝑥
2
)
𝑇
+ 𝜇
1
(cos𝑥

1
, −4 cos𝑥

2
)
𝑇

+ 𝜇
2
(2 cos𝑥

1
+ 1, 7 cos𝑥

2
)
𝑇
+ 𝜇
3(2, 2)

𝑇

+ 𝜇
4
(8𝑥
1
, 8𝑥
2
)
𝑇
+ 𝜇
5
(− cos𝑥

1
, 0)
𝑇

+ 𝜇
6
(0, − cos𝑥

2
)
𝑇
= (0, 0)

𝑇
.

(76)

After some algebraic calculations, we obtain that x∗ =
(0, sin−1(6/7))𝑇 and u∗ = (0, 1/7, 0, 0, 10/7, 0)𝑇.Therefore, x∗
is a solution.
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