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This paper is concerned with the dynamics of the following abstract retarded evolution equation: (𝑑/𝑑𝑡)𝑢(𝑡) + 𝐴𝑢(𝑡) = 𝐹(𝑢(𝑡 −
𝑟
1
), . . . , 𝑢(𝑡 − 𝑟

𝑛
)) + 𝑔(𝑡) in a Hilbert space𝐻, where 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a self-adjoint positive-definite operator with compact

resolvent and 𝐹 : 𝐷(𝐴𝛼)𝑛 → 𝐻 (𝛼 ∈ [0, 1/2]) is a locally Lipschitz continuous mapping. The dissipativity and pullback attractors
are investigated, and the existence of locally almost periodic solutions is established.

1. Introduction

This paper is concerned with the abstract retarded evolution
equation

𝑑

𝑑𝑡
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝐹 (𝑢 (𝑡 − 𝑟

1
) , . . . , 𝑢 (𝑡 − 𝑟

𝑛
)) + 𝑔 (𝑡) (1)

in a Hilbert space 𝐻, where 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a self-
adjoint positive-definite operator with compact resolvent, 𝐹 :
𝐷(𝐴𝛼)

𝑛
→ 𝐻 (𝛼 ∈ [0, 1/2]) is a locally Lipschitz continuous

mapping with at most a linear growth rate, 𝑔 ∈ 𝐶(R; 𝐻) is a
bounded function, and 𝑟

1
, . . . , 𝑟

𝑛
≥ 0 are constant time lags.

The main purpose here is to study the dynamics of the equa-
tion by employing the theory of pullback attractors, Leray-
Schauder fixed-point theorem, and some basic knowledge
on the minimality and recurrence properties in topological
dynamics. This consideration is motivated by an increasing
interest on the dynamical behavior of retarded evolution
equations in recent years.

First, we make a discussion on the dissipativity and
existence of pullback attractors of the equation. In the finite
dimensional case, Caraballo et al. made a systematic study on
such problems for retarded differential equations with and
without uniqueness in [1, 2] and so forth. The situation in
the infinite dimensional case seems to be more complicated.
Although there have been a lot of works in this line for
some types of retarded partial differential equations and the

abstract equations as in (1) (see, e.g., [3–8]), due to some
strict restrictions on the nonlinearities, we find that the
known results in most of the existing works do not apply to
many important PDE examples as the parabolic one given
in Section 5 whose nonlinearity involves the gradient ∇𝑢 of
the unknown function. In this present work, we will try to
establish some new results in more regular spaces under
weaker assumptions. In particular, instead of assuming that
the corresponding nonlinearities belong to𝐶(𝐻𝑛; 𝐻) as in the
literature, we will assume that 𝐹 is a mapping from𝐷(𝐴𝛼)𝑛 to
𝐻 for some𝛼 ∈ [0, 1/2]. It is worth noticing that this allows us
to deal with retarded PDEs with more general nonlinearities
(see Section 5). Since we are working in a space with more
regularities than those in the literature, one has to overcome
many extra difficulties in deriving the decay estimates and
asymptotic compactness of the solutions.

Then, we are interested in the existence of locally almost
periodic solutions. It is well known that an evolution equation
with almost periodic external force may fail to have almost
periodic solutions (in the Bohr’s sense), even in the case
where the equation is of a dissipative type. In this paper, we
consider a local version of the concept of almost periodicity
which will be referred to as the local almost periodicity. We
show that the local almost periodicity of a function ℎ is
equivalent to the minimality of its hull H(ℎ) under the
Bebutov’s dynamical system (with respect to the compact-
open topology). With this knowledge, we then prove that if
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𝑔 is locally almost periodic, then (1) has at least one locally
almost periodic solution.

This paper is organized as follows. In Section 2 we
make some preliminary work. In Section 3 we discuss the
dissipativity and establish the existence of pullback attractors.
In Section 4 we prove the existence of locally almost peri-
odic solutions. Section 5 consists of an example of retarded
parabolic equation whose nonlinearity involves the gradient
of the unknown function.

2. Preliminaries

2.1. Analytic Semigroups. Let 𝐻 be a Hilbert space with the
inner product (⋅, ⋅) and norm | ⋅ |. Let

𝐴 : 𝐷 (𝐴) ⊂ 𝐻 󳨀→ 𝐻 (2)
be a self-adjoint positive-definite operator with compact
resolvent, and let

0 < 𝜆
1
≤ 𝜆

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑘
󳨀→ ∞ (𝑘 󳨀→ ∞) (3)

be the eigenvalues of 𝐴 (counting with multiplicity) with the
corresponding eigenvectors {𝜔

𝑖
}
∞

𝑖=1
which form a canonical

basis of𝐻.
For 𝛼 ∈ R, define the powers 𝐴𝛼 as follows:

𝐴
𝛼
𝑢 =

∞

∑
𝑖=1

𝜆
𝛼

𝑖
𝑐
𝑖
𝜔
𝑖
, ∀𝑢 :=

∞

∑
𝑖=1

𝑐
𝑖
𝜔
𝑖
∈ 𝐻. (4)

Set

𝐻
𝛼
:= 𝐷 (𝐴

𝛼
) := {𝑢 ∈ 𝐻 |

∞

∑
𝑖=1

𝜆
2𝛼

𝑖
𝑐
2

𝑖
< ∞} . (5)

Then,𝐻
𝛼
is aHilbert space.The inner product (⋅, ⋅)

𝛼
andnorm

| ⋅ |
𝛼
of𝐻

𝛼
are defined, respectively, as

(𝑢, V)
𝛼
= (𝐴

𝛼
𝑢, 𝐴

𝛼V) , |𝑢|𝛼 = (𝑢, 𝑢)
1/2

𝛼
,

∀𝑢, V ∈ 𝐻
𝛼
.

(6)

It is well known that, for any −∞ < 𝛼 < 𝛽 < ∞, the
embedding𝐻

𝛽
⊂ 𝐻

𝛼
is compact; moreover, it holds that

|V|2
𝛼
≤ 𝜆

2(𝛼−𝛽)

1
|V|2
𝛽
, ∀V ∈ 𝐻

𝛽
. (7)

Denote by 𝐸(𝑡) the analytic semigroup generated by 𝐴 in
𝐻. The following proposition will play an important role in
deriving the decay estimates and can be found in many text
books (see, e.g., [9]).

Proposition 1. The following estimates hold true.
(1) Assume that

‖𝐸 (𝑡)‖ ≤ 𝑒
−𝜆
1
𝑡
, ∀𝑡 ≥ 0. (8)

(2) For any 0 < 𝛼 ≤ 1, there exist constants𝑀
𝛼
> 0 and

𝑎 > 0 such that
󵄩󵄩󵄩󵄩𝐴
𝛼
𝐸 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝛼𝑡
−𝛼
𝑒
−𝑎𝑡
, ∀𝑡 > 0. (9)

(3) For any 0 < 𝛼 ≤ 1, there exists a constant 𝐾
𝛼
> 0 such

that
|(𝐸 (𝑡) − 𝐼) 𝑢| ≤ 𝐾𝛼𝑡

𝛼
|𝑢|𝛼, ∀𝑡 ≥ 0, 𝑢 ∈ 𝐻

𝛼
. (10)

2.2. Solutions of the Equation and Its Cauchy Problem. We
first give the definition of solutions to (1).

Definition 2. A function 𝑢 ∈ 𝐶((𝑎 − 𝑟, 𝑏);𝐻
𝛼
) is said to be a

solution of (1) on (𝑎, 𝑏), if

(1) 𝑢(𝑡) ∈ 𝐻
1
= 𝐷(𝐴) for a.e. 𝑡 ∈ (𝑎, 𝑏),

(2) 𝑢 ∈ 𝐶1(𝐽;𝐻) and solves the equation at a.e. 𝑡 ∈ (𝑎, 𝑏).

A solution on R will be called an entire solution.

Denote by C the space 𝐶([−𝑟, 0];𝐻
𝛼
), which is endowed

with the norm ‖ ⋅ ‖C defined as
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩C = max

𝑠∈[−𝑟,0]

󵄨󵄨󵄨󵄨𝜑 (𝑠)
󵄨󵄨󵄨󵄨𝛼, ∀𝜑 ∈ C. (11)

Let 𝑢 ∈ 𝐶([−𝑟, 𝑇);𝐻
𝛼
). For each 𝑡 ∈ [0, 𝑇), we will denote

by 𝑢
𝑡
the function inC:

𝑢
𝑡
(𝑠) = 𝑢 (𝑡 + 𝑠) , ∀𝑠 ∈ [−𝑟, 0] . (12)

For convenience in statement, the function 𝑢
𝑡
will be referred

to as the lifting of 𝑢 inC.
Given 𝜑 ∈ C, consider the Cauchy problem:

𝑑

𝑑𝑡
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝐹 (𝑢 (𝑡 − 𝑟

1
) , . . . , 𝑢 (𝑡 − 𝑟

𝑛
))

+ 𝑔 (𝑡) , 𝑡 > 0,

𝑢
0
= 𝜑.

(13)

Definition 3. A function 𝑢 ∈ 𝐶([−𝑟, 𝑇);𝐻
𝛼
) is said to be a

solution of the Cauchy problem (13), if 𝑢 is a solution of the
equation on (0, 𝑇), and, moreover, it fulfills the initial-value
condition 𝑢

0
= 𝜑.

Remark 4. A solution 𝑢 of the Cauchy problem (13) necessar-
ily satisfies the integral equation:

𝑢 (𝑡) = 𝐸 (𝑡) 𝜑 (0)

+ ∫
𝑡

0

𝐸 (𝑡 − 𝑠) (𝐹 (𝑢 (𝑠 − 𝑟
1
) , . . . , 𝑢 (𝑠 − 𝑟

𝑛
)) + 𝑔 (𝑠)) 𝑑𝑠.

(14)

Concerning the existence of solutions for the Cauchy
problem, we have the following.

Theorem 5. Suppose that 𝐹 : 𝐻𝑛
𝛼
→ 𝐻 (0 ≤ 𝛼 < 1) is a

locally Lipschitz continuous mapping, and 𝑔 ∈ 𝐶(R; 𝐻).
Then, for any𝜑 ∈ C, the problem (13) has a unique solution

𝑢(𝑡) = 𝑢(𝑡; 𝜑) on a maximal interval [−𝑟, 𝑇
𝜑
).

Proof. The proof is quite standard and can be obtained by
combining that ofTheorem 3.1 in [10], Lemma 47.1 in [9], and
Theorem 42.12 in [9]. Here, we give a sketch for completeness
and the reader’s convenience.

We may assume that 𝑟
1
= 0. Let 𝜎 = min

2≤𝑘≤𝑛
𝑟
𝑘
(> 0).

Define 𝐺
0
: [0, 𝜎] × 𝐻

𝛼
→ 𝐻 by

𝐺
0
(𝑡, V) = 𝐹 (V, 𝜑 (𝑡 − 𝑟

2
) , . . . , 𝜑 (𝑡 − 𝑟

𝑛
)) + 𝑔 (𝑡) , (15)
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and consider the following initial-value problem:

𝑑

𝑑𝑡
V (𝑡) + 𝐴V (𝑡) = 𝐺

0
(𝑡, V (𝑡)) , 𝑡 ∈ [0, 𝜎] ,

V (0) = 𝜑 (0) .

(16)

By the assumptions on 𝐹we know that𝐺
0
: [0, 𝜎]×𝐻

𝛼
→ 𝐻

is a continuousmappingwhich is locally Lipschitz in V. It then
follows by [9, Lemma 47.1] that the problemhas a uniquemild
solution:

V
1
∈ 𝐶 ([0, 𝜎

1
] ;𝐻

𝛼
) ∩ 𝐿

2

loc (0, 𝜎1; 𝐻1) (17)

for some 𝜎
1
≤ 𝜎. Define

𝑢
1
(𝑡) = {

V
1
(𝑡) , 𝑡 ∈ [0, 𝜎

1
] ,

𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] .
(18)

Then, 𝑢 = 𝑢
1
is a mild solution of the delay system (13) on

[−𝑟, 𝜎
1
].

Further we can define amapping𝐺
1
: [𝜎

1
, 𝜎
1
+𝜎]×𝐻

𝛼
→

𝐻 by replacing 𝜑 in (15) with 𝑢
1
and consider the initial value

problem:

𝑑

𝑑𝑡
V (𝑡) + 𝐴V (𝑡) = 𝐺

1
(𝑡, V (𝑡)) , 𝑡 ∈ [𝜎

1
, 𝜎
1
+ 𝜎] ,

V (𝜎
1
) = 𝑢

1
(𝜎
1
) .

(19)

Similar to the above one deduces that this problem has a
unique mild solution V

2
∈ 𝐶([𝜎

1
, 𝜎
2
];𝐻

𝛼
) ∩ 𝐿2loc(𝜎1, 𝜎2; 𝐻1).

Set

𝑢
2
(𝑡) = {

V
2
(𝑡) , 𝑡 ∈ [𝜎

1
, 𝜎
2
] ,

𝑢
1
(𝑡) , 𝑡 ∈ [−𝑟, 𝜎

1
] .

(20)

One easily verifies that 𝑢
2
is a mild solution of the delay

equation (13) on [−𝑟, 𝜎
2
].

Repeating the above procedure, one can finally obtain a
unique mild solution 𝑢 ∈ 𝐶([−𝑟, 𝑇);𝐻

𝛼
) ∩ 𝐿2loc(0, 𝑇;𝐻1) on

some interval [−𝑟, 𝑇).
We can also establish a corresponding extension theorem.

This can be done as follows. First, suppose that |𝑢(𝑡)|
𝛼
is

bounded as 𝑡 → 𝑇 < ∞. Then, we see that the function

𝑡 󳨃󳨀→ ℎ (𝑡) := 𝐹 (𝑢 (𝑡 − 𝑟
1
) , . . . , 𝑢 (𝑡 − 𝑟

𝑛
)) + 𝑔 (𝑡) (21)

is bounded in𝐻 as 𝑡 → 𝑇.Therefore, by the basic knowledge
on linear equations, it follows that 𝑢(𝑡) is continuous in𝐻

𝛼
at

𝑡 = 𝑇. Further, by repeating some argument as above, one can
obtain an extension of 𝑢 on some larger interval [−𝑟, 𝑇 + 𝛿).
With this fundamental result in hand,we immediately deduce
that there exists a maximal interval [−𝑟, 𝑇

𝜑
) such that the

unique solution 𝑢 of the problem is defined.
This completes the proof of the theorem.

2.3. Dynamical Systems. Now we recall some basic defini-
tions and facts in the theory of nonautonomous dynamical
systems on complete metric spaces.

Let𝑋 be a completemetric space with themetric 𝑑. Given
any subsets 𝐴, and 𝐵 of 𝑋, define the Hausdorff semidis-
tance 𝑑

𝐻
(𝐴, 𝐵) of 𝐴 and 𝐵 as

𝑑
𝐻
(𝐴, 𝐵) = sup

𝑥∈𝐴

𝑑 (𝑥, 𝐵) , (22)

where 𝑑(𝑥, 𝐵) = min
𝑦∈𝐵
𝑑(𝑥, 𝑦).

For any 𝑥 ∈ 𝑋 and 𝑅 > 0, we will use 𝐵
𝑋
(𝑥, 𝑅) to denote

the ball in𝑋 centered at 𝑥 with radius 𝑅.
A dynamical system 𝑆 on 𝑋 is a continuous mapping

from R × 𝑋 to𝑋 fulfilling the following group properties:

𝑆 (0, 𝑥) = 𝑥, 𝑆 (𝑡 + 𝑠, 𝑥) = 𝑆 (𝑠, 𝑆 (𝑡, 𝑥)) (23)

for all 𝑡, 𝑠 ∈ R and 𝑥 ∈ 𝑋. For notational simplicity we will
rewrite 𝑆(𝑡, 𝑥) as 𝑆

𝑡
𝑥.

Let there be given a dynamical system 𝑆 on 𝑋. A subset
𝑀 ⊂ 𝑋 is said to be invariant (with respect to 𝑆) if

𝑆
𝑡
𝑀 = 𝑀, ∀𝑡 ∈ R. (24)

A compact invariant set 𝑀 is said to be minimal if it
contains no proper compact invariant subset.

A point 𝑥 ∈ 𝑋 is said to be almost recurrent [11] if, for
any 𝜀 > 0, there exists an 𝑙 > 0 such that one can find on any
segment of length 𝑙 a number 𝜏 such that 𝑑(𝑆

𝜏
𝑥, 𝑥) < 𝜀.

Denote byX the space 𝐶
𝑏
(R; 𝑋) which consists of all the

bounded continuous functions from R to 𝑋. X is usually
equipped with the metric 󰜚 which yields the compact-open
topology:

󰜚 (𝑢, V) =
∞

∑
𝑛=1

1

2𝑛

max
|𝑡|≤𝑛

𝑑 (𝑢 (𝑡) , V (𝑡))

1 +max
|𝑡|≤𝑛

𝑑 (𝑢 (𝑡) , V (𝑡))
,

∀𝑢, V ∈ X.

(25)

For convenience in statement, we will refer to 󰜚 as the com-
pact-open metric.

Let 𝜃 = 𝜃
𝑡
be the translation operator onX defined by

𝜃
𝑡
𝑢 = 𝑢 (𝑡 + ⋅) , 𝑢 ∈ X. (26)

Then, 𝜃 is a dynamical system onX, which is usually known
as the Bebutov’s dynamical system [12].

For a function 𝑢 ∈ X, the hullHX(𝑢) of 𝑢 inX is defined
as the closure of the set {𝜃

𝑡
𝑢 | 𝑡 ∈ R} inX; namely,

HX (𝑢) = {𝜃𝑡𝑢 | 𝑡 ∈ R}. (27)

2.4. Pullback Attractors of Cocycles

Definition 6. Let𝑋 and Σ be two complete metric spaces, and
let there be given a dynamical system 𝜃 on Σ.

A continuous mapping Φ : R+ × Σ × 𝑋 → 𝑋 is said to
be a cocycle on𝑋 with the base space Σ and driving system 𝜃

if it satisfies the following conditions:

(1) Φ(0, ℎ, 𝑥) = 𝑥 for any (ℎ, 𝑥) ∈ Σ × 𝑋;
(2) Φ(𝑡+𝑠, ℎ, 𝑥) = Φ(𝑡, 𝜃

𝑠
ℎ,Φ(𝑠, ℎ, 𝑥)) for any 𝑡, 𝑠 ≥ 0 and

(ℎ, 𝑥) ∈ Σ × 𝑋.
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For the sake of simplicity, we will rewrite Φ(𝑡, ℎ, 𝑥) as
Φ(𝑡, ℎ)𝑥.

Definition 7. A familyA = {𝐴(ℎ)}
ℎ∈Σ

of nonempty compact
sets of 𝑋 is called the global pullback attractor of the cocycle
Φ if, for each ℎ, 𝐴(ℎ) is the minimal compact set that enjoys
the following pullback attracting property.

For any bounded subset 𝐵 of𝑋,

lim
𝑡→+∞

𝑑
𝐻
(Φ (𝑡, 𝜃

−𝑡
ℎ) 𝐵, 𝐴 (ℎ)) = 0. (28)

The following existence result on pullback attractors is
well known and can be found in [13–15] and so forth.

Theorem 8. LetΦ be a cocycle on𝑋with the base space Σ and
driving system 𝜃. Suppose that there exists a nonempty compact
subset𝐾 of𝑋 such that, for any bounded subset 𝐵 of 𝑋,

Φ (𝑡, ℎ) 𝐵 ⊂ 𝐾 (29)

for 𝑡 > 0 sufficiently large.
Then, Φ has a unique (global) pullback attractor A =

{𝐴(ℎ)}
ℎ∈Σ

:

𝐴 (ℎ) = ⋂
𝜏≥0

⋃
𝑡>𝜏

Φ(𝑡, 𝜃
−𝑡
ℎ)𝐾. (30)

3. Dissipativity of (1)
In this section, we give a decay estimate and prove the
existence of pullback attractors for the Cauchy problem of the
equation under appropriate conditions.

From now on we will always assume that 𝐹 is a locally
Lipschitz continuous mapping from 𝐷(𝐴

𝛼)
𝑛
→ 𝐻 for some

0 ≤ 𝛼 ≤ 1/2, unless otherwise stated.
Let 𝑔 ∈ 𝐶

𝑏
(R; 𝐻) be a bounded function. Denote

𝑔
0
= sup
𝑡∈R

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨 . (31)

3.1. Decay Estimate. Themain result in this subsection is con-
tained in the following lemma.

Lemma9. Suppose that𝐹 satisfies the linear growth condition.

(H1) There exist 𝛽
𝑖
> 0 (1 ≤ 𝑖 ≤ 𝑛) with ∑𝑛

𝑖=1
𝛽
𝑖
< 𝜆1−𝛼

1
and

𝑘
1
> 0 such that

󵄨󵄨󵄨󵄨𝐹 (V1, . . . , V𝑛)
󵄨󵄨󵄨󵄨 ≤

𝑛

∑
𝑖=1

𝛽
𝑖

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨𝛼 + 𝑘1,

∀ (V
1
, . . . , V

𝑛
) ∈ 𝐻

𝑛

𝛼
.

(32)

Then, there exist positive constants 𝛿, 𝐶
1
, and 𝐶

2
depending

only on the parameters in (H1) and 𝑔
0
such that, for any

solution 𝑢(𝑡) = 𝑢(𝑡; 𝜑) of (13), one has

|𝑢 (𝑡)|
2

𝛼
≤ 𝐶

1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

C
𝑒
−𝛿𝑡
+ 𝐶

2
, ∀𝑡 ≥ 0. (33)

Proof. We fix a 𝛿 > 0 small enough so that

𝑐
0
:= 𝜆

1−𝛼

1
−

𝑛

∑
𝑖=1

𝑒
𝛿𝑟
𝑖
/2
𝛽
𝑖
−
𝜆𝛼
1
+ 𝜆−𝛼

1

2
𝛿 > 0. (34)

For simplicity, denote 𝑙
𝑖
= 𝜆−𝛼

1
𝑒𝛿𝑟𝑖/2 (𝑖 = 1, . . . , 𝑛). Taking the

inner product of (1) with 𝐴2𝛼𝑢 in𝐻, one finds that
1

2

𝑑

𝑑𝑡
|𝑢 (𝑡)|

2

𝛼
+ |𝑢 (𝑡)|

2

(1/2)+𝛼

= (𝐹 (𝑢 (𝑡 − 𝑟
1
) , . . . , 𝑢 (𝑡 − 𝑟

𝑛
)) + 𝑔 (𝑡) , 𝐴

2𝛼
𝑢 (𝑡))

≤
󵄨󵄨󵄨󵄨𝐹 (𝑢 (𝑡 − 𝑟1) , . . . , 𝑢 (𝑡 − 𝑟𝑛)) + 𝑔 (𝑡)

󵄨󵄨󵄨󵄨 ⋅ |𝑢 (𝑡)|2𝛼.

(35)

By using (H1) and the Young inequality, we obtain that
𝑑

𝑑𝑡
|𝑢 (𝑡)|

2

𝛼
+ 2|𝑢 (𝑡)|

2

(1/2)+𝛼

≤

𝑛

∑
𝑖=1

𝛽
𝑖

𝑙
𝑖

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝑟𝑖)
󵄨󵄨󵄨󵄨
2

𝛼
+ (

𝑛

∑
𝑖=1

𝑙
𝑖
𝛽
𝑖
) |𝑢(𝑡)|

2

2𝛼
+ 𝛿|𝑢|

2

2𝛼
+
𝑘2

𝛿
,

(36)

where 𝑘 = 𝑘
1
+ 𝑔

0
. We infer from (7) that

|𝑢 (𝑡)|
2

2𝛼
≤ 𝜆

2𝛼−1

1
|𝑢 (𝑡)|

2

(1/2)+𝛼
,

|𝑢 (𝑡)|
2

𝛼
≤ 𝜆

−1

1
|𝑢 (𝑡)|

2

(1/2)+𝛼
.

(37)

Further by (36) one easily deduces that

𝑑

𝑑𝑡
|𝑢 (𝑡)|

2

𝛼
+ 𝑐
1|𝑢 (𝑡)|

2

𝛼
≤

𝑛

∑
𝑖=1

𝛽
𝑖

𝑙
𝑖

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝑟𝑖)
󵄨󵄨󵄨󵄨
2

𝛼
+
𝑘2

𝛿
, (38)

where 𝑐
1
= 2𝜆

1
− ∑

𝑛

𝑖=1
𝛽
𝑖
𝑙
𝑖
𝜆2𝛼
1
− 𝛿𝜆2𝛼

1
.

We rewrite (38) as
𝑑

𝑑𝑡
|𝑢 (𝑡)|

2

𝛼
+ 𝛿|𝑢 (𝑡)|

2

𝛼

≤ − (𝑐
1
− 𝛿) |𝑢 (𝑡)|

2

𝛼
+

𝑛

∑
𝑖=1

𝛽
𝑖

𝑙
𝑖

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝑟𝑖)
󵄨󵄨󵄨󵄨
2

𝛼
+
𝑘2

𝛿
.

(39)

Multiplying (39) with 𝑒𝛿𝑡 and integrating from 0 to 𝑡, it yields

|𝑢 (𝑡)|
2

𝛼
≤ 𝑒

−𝛿𝑡󵄨󵄨󵄨󵄨𝜑 (0)
󵄨󵄨󵄨󵄨
2

𝛼

− (𝑐
1
− 𝛿)∫

𝑡

0

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠

+

𝑛

∑
𝑖=1

𝛽
𝑖

𝑙
𝑖

∫
𝑡

0

󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝑟𝑖)
󵄨󵄨󵄨󵄨
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠 +
𝑘2

𝛿2
.

(40)

We observe that

∫
𝑡

0

󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝑟𝑖)
󵄨󵄨󵄨󵄨
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠 = ∫
𝑡−𝑟
𝑖

−𝑟
𝑖

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠−𝑟

𝑖
)
𝑑𝑠

≤ 𝑒
𝛿𝑟
𝑖 ∫
𝑡

0

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠

+ 𝑒
𝛿𝑟
𝑖 ∫
0

−𝑟
𝑖

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠.

(41)
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Therefore, by (40), it holds that

|𝑢 (𝑡)|
2

𝛼
≤ 𝑒

−𝛿𝑡󵄨󵄨󵄨󵄨𝜑 (0)
󵄨󵄨󵄨󵄨
2

𝛼
− 𝑐
2
∫
𝑡

0

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠

+

𝑛

∑
𝑖=1

𝛽
𝑖

𝑙
𝑖

𝑒
𝛿𝑟
𝑖 ∫
0

−𝑟
𝑖

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠 +
𝑘2

𝛿2

≤ 𝑒
−𝛿𝑡󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
2

𝛼

+

𝑛

∑
𝑖=1

𝛽
𝑖

𝑙
𝑖

𝑒
𝛿𝑟
𝑖 ∫
0

−𝑟
𝑖

|𝑢 (𝑠)|
2

𝛼
𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠 +
𝑘2

𝛿2
,

(42)

where 𝑐
2
= 2𝜆𝛼

1
𝑐
0
, from which one immediately concludes

that

|𝑢 (𝑡)|
2

𝛼
≤ (1 +

𝑛

∑
𝑖=1

1

𝛿
𝛽
𝑖
𝜆
𝛼

1
𝑒
𝛿𝑟
𝑖
/2
)
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

C
𝑒
−𝛿𝑡
+
𝐾2

𝛿2
. (43)

This completes the proof of the lemma.

3.2. Existence of Pullback Attractor. Denote byX
𝛼
the space

𝐶
𝑏
(R; 𝐻

𝛼
) which is equipped with the compact-open metric

󰜚. Let 𝜃 = 𝜃
𝑡
be the translation operator onX

𝛼
.

Set Σ = HX
0

(𝑔), where 𝑔 ∈ X
0
:= 𝐶

𝑏
(R; 𝐻) is the

function in (1). For each (ℎ, 𝜑) ∈ Σ ×C, consider the Cauchy
problem:

𝑑

𝑑𝑡
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝐹 (𝑢 (𝑡 − 𝑟

1
) , . . . , 𝑢 (𝑡 − 𝑟

𝑛
)) + ℎ (𝑡) ,

𝑡 > 0,

𝑢
0
= 𝜑.

(44)

By Theorem 5 we know that, under the hypotheses of
Lemma 9, (44) has a unique global solution 𝑢(𝑡) = 𝑢(𝑡; ℎ, 𝜑).
Moreover, using some standard argument, it can be easily
shown that 𝑢(𝑡; ℎ, 𝜑) is continuous in (𝑡, ℎ, 𝜑).

Define a continuousmappingR+×Σ×C → C as follows:

Φ (𝑡, ℎ) 𝜑 = 𝑢
𝑡
, ∀ (𝑡, ℎ, 𝜑) ∈ R

+
× Σ ×C, (45)

where𝑢
𝑡
is the lifting of the solution𝑢(𝑡) = 𝑢(𝑡; ℎ, 𝜑)of (44) in

C.Then,Φ is a cocycle onCwith the base spaceΣ and driving
system 𝜃.

Lemma 10. Assume the hypotheses in Lemma 9. Then, there
exists a bounded uniformly (with respect to ℎ ∈ Σ) absorbing
setU ⊂ C for the system Φ.

Proof. It is clear that the estimate in (33) holds true for
solutions of the system (44).

Let 𝜌2
𝛼
= 1 + 𝐶

2
, where 𝐶

2
is the positive number in (33).

Given any bounded set 𝐷 in C, by (33) we deduce that there
exists a 𝑡

0
= 𝑡
0
(𝐷) > 𝑟 > 0 such that
󵄨󵄨󵄨󵄨𝑢 (𝑡; ℎ, 𝜑)

󵄨󵄨󵄨󵄨𝛼 ≤ 𝜌𝛼, ∀𝑡 > 𝑡
0 (46)

for all 𝜑 ∈ 𝐷 and ℎ ∈ Σ. It follows that U = 𝐵C(0, 𝜌𝛼) is a
uniformly absorbing set as we desired.

Remark 11. By using the smoothing property of the operator
𝐴, it can be easily shown that the set

{𝑢 (𝑡; ℎ, 𝜑) | 𝑡 > 𝑡
0
, 𝜑 ∈ 𝐷, ℎ ∈ Σ} (47)

is contained in a compact subset of𝐻
𝛼
.

Now we state and prove the existence result on pullback
attractors.

Theorem 12. Assume the hypotheses in Lemma 9.ThenΦ has
a unique global pullback attractorA = {𝐴(ℎ)}

ℎ∈Σ
.

Proof. By virtue of Theorem 8, it suffices to show that Φ has
a compact uniformly (with respect ℎ ∈ Σ) absorbing set.

Let

𝑀 = ⋃
ℎ∈Σ

( ⋃
𝑡≥𝑡
0(U)+𝑟

Φ (𝑡, ℎ)U) ,

𝑁 = ⋃
ℎ∈Σ

( ⋃
𝑡≥𝑡
0(U)+2𝑟+1

Φ (𝑡, ℎ)U) ,

(48)

where 𝑡
0
:= 𝑡

0
(U) is chosen such that (46) holds forU. Then,

we infer from Lemma 10 that

𝑁 ⊂ 𝑀 ⊂ U := 𝐵C (0, 𝜌𝛼) ; (49)

moreover, 𝑁 is a uniformly (with respect ℎ ∈ Σ) absorbing
set inC.

To complete the proof of the theorem, there remains to
check that𝑁 is relatively compact inC. For this purpose, by
Remark 11 and the classical Ascoli-Arzela theorem, one only
needs to verify that𝑁 consists of a family of equicontinuous
functions.

For any 𝜓 ∈ 𝑁, by definition it can be easily seen that
there exist ℎ ∈ Σ and 𝜑 ∈ 𝑀 such that

𝜓 = Φ (𝑟 + 1, ℎ) 𝜑 = 𝑢
𝑟+1
, (50)

where 𝑢
𝑡
is the lifting of the solution 𝑢(𝑡) = 𝑢(𝑡; ℎ, 𝜑) of (44).

Note that if 𝑠 ∈ [−𝑟, 0], then 𝑟 + 1 + 𝑠 ∈ [1, 𝑟 + 1]. Therefore,
to prove the equicontinuity of𝑁, we need to check that there
exist 𝐿, 𝛾 > 0 independent of ℎ ∈ Σ and 𝜑 ∈ 𝑀 such that

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡

󸀠
) − 𝑢 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝛼
≤ 𝐿
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠
− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝛾

, 1 ≤ 𝑡 ≤ 𝑡
󸀠
≤ 𝑟 + 1. (51)

For convenience, we rewrite 𝑡󸀠 as 𝑡 + 𝛿. Then, by (14) we
have

|𝑢 (𝑡 + 𝛿) − 𝑢 (𝑡)|𝛼 ≤ 𝐽1 + 𝐽2 + 𝐽3, (52)

where
𝐽
1
=
󵄨󵄨󵄨󵄨(𝐸 (𝛿) − 𝐼) (𝐸 (𝑡) 𝜑 (0))

󵄨󵄨󵄨󵄨𝛼,

𝐽
2
= ∫

𝑡

0

|(𝐸 (𝛿) − 𝐼) 𝐸 (𝑡 − 𝑠) 𝐺 (𝑠)|𝛼𝑑𝑠,

𝐽
3
= ∫

𝑡+𝛿

𝑡

|𝐸 (𝑡 + 𝛿 − 𝑠) 𝐺 (𝑠)|𝛼𝑑𝑠,

𝐺 (𝑠) = 𝐹 (𝑢 (𝑠 − 𝑟
1
) , . . . , 𝑢 (𝑠 − 𝑟

𝑛
)) + ℎ (𝑠) .

(53)
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Since ‖𝜑‖C ≤ 𝜌𝛼, by Lemma 9 we see that

|𝑢 (𝑠)|
2

𝛼
≤ (𝐶

1
+ 1) 𝜌

2

𝛼
, ∀𝑠 ≥ −𝑟. (54)

Hence one has

|𝐺 (𝑠)| ≤

𝑛

∑
𝑖=1

𝛽
𝑖

󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝑟𝑖)
󵄨󵄨󵄨󵄨𝛼 + 𝑘1 + |ℎ (𝑠)|

≤ (

𝑛

∑
𝑖=1

𝛽
𝑖
)√𝐶

1
+ 1𝜌

𝛼
+ 𝐾

1
+ 𝑔

0
:= 𝐶

𝛼

(55)

for all 𝑠 ≥ 0, where 𝑔
0
= sup

𝑠∈R|𝑔(𝑠)|. We fix a 0 < 𝛾 < 1/2.
Then, by using (9) and (10) we deduce, recalling that 𝑡 ≥ 1,

𝐽
1
≤
󵄨󵄨󵄨󵄨(𝐸 (𝛿) − 𝐼) (𝐴

𝛼
𝐸 (𝑡) 𝜑 (0))

󵄨󵄨󵄨󵄨

≤ 𝐾
𝛾
𝛿
𝛾 󵄨󵄨󵄨󵄨𝐴

𝛾+𝛼
𝐸 (𝑡) 𝜑 (0)

󵄨󵄨󵄨󵄨

≤ 𝐾
𝛾
𝛿
𝛾
𝑀
𝛾
𝑡
−𝛾
𝑒
−𝑎𝑡󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨𝛼

≤ 𝐾
𝛾
𝛿
𝛾
𝑀
𝛾
𝑡
−𝛾
𝑒
−𝑎𝑡
𝜌
𝛼

≤ 𝐶
3
𝛿
𝛾
,

𝐽
2
≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨(𝐸 (𝛿) − 𝐼) 𝐴
𝛼
𝐸 (𝑡 − 𝑠) 𝐺 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫
𝑡

0

𝐾
𝛾
𝛿
𝛾 󵄨󵄨󵄨󵄨𝐴

𝛾+𝛼
𝐸 (𝑡 − 𝑠) 𝐺 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐾
𝛾
𝛿
𝛾
𝑀
𝛼+𝛾
𝐶
𝛼
∫
𝑡

0

(𝑡 − 𝑠)
−(𝛾+𝛼)

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠

≤ 𝐶
4
𝛿
𝛾
,

𝐽
3
≤ ∫

𝑡+𝛿

𝑡

󵄨󵄨󵄨󵄨𝐴
𝛼
𝐸 (𝑡 + 𝛿 − 𝑠) 𝐺 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐶
𝛼
∫
𝑡+𝛿

𝑡

𝑀
𝛼
(𝑡 + 𝛿 − 𝑠)

−𝛼
𝑒
−𝑎(𝑡+𝛿−𝑠)

𝑑𝑠

≤ 𝐶
𝛼
𝑀
𝛼
∫
𝛿

0

(𝛿 − 𝑠)
−𝛼
𝑒
−𝑎(𝛿−𝑠)

𝑑𝑠

≤ 𝐶
󸀠

5
𝛿
1−𝛼

≤ 𝐶
5
𝛿
𝛾
.

(56)

Now by (52) one concludes that
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡

󸀠
) − 𝑢 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝛼
= |𝑢 (𝑡 + 𝛿) − 𝑢 (𝑡)|𝛼

≤ (𝐶
3
+ 𝐶

4
+ 𝐶

5
) 𝛿
𝛾

= 𝐿
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠
− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝛾

.

(57)

Note that both 𝐿 and 𝛾 are independent of ℎ ∈ Σ and 𝜑 ∈
𝑀.

4. Locally Almost Periodic Solutions

In general we know that a systemwith almost periodic forcing
term may have no almost periodic solutions even if the

system is dissipative. Here, we consider a local version of the
concept of almost periodicity in the sense of Bohr. Namely,
we introduce a concept of local almost periodicity and prove
the existence of locally almost periodic solutions for (1).

We first make a general discussion on locally almost
periodic functions.

4.1. Locally Almost Periodic Functions. Let 𝑋 be a complete
metric space with metric 𝑑, and letX be the space 𝐶

𝑏
(R; 𝑋)

which is always equipped with the compact-open metric 󰜚.
Denote by 𝜃 the translation operator onX.

Definition 13. A function 𝑢 ∈ X is said to be locally almost
periodic if, for any 𝜀, 𝑇 > 0, there exists an 𝑙 > 0 such that,
for every 𝑠 ∈ R, one can find on any segment of length 𝑙 a
number 𝜏 = 𝜏(𝑠) such that

max
|𝑡|≤𝑇

𝑑 (𝜃
𝑠
𝑢 (𝑡) , 𝜃

𝜏
𝑢 (𝑡)) < 𝜀. (58)

One easily verifies the validity of the following easy
proposition, which actually gives another equivalent defini-
tion for locally almost periodic functions.

Proposition 14. 𝑢 ∈ X is locally almost periodic If, for every
𝜀 > 0, there exists an 𝑙 > 0 such that, for every 𝑠 ∈ R, one can
find on any segment of length 𝑙 a number 𝜏 = 𝜏(𝑠) such that

󰜚 (𝜃
𝑠
𝑢, 𝜃

𝜏
𝑢) < 𝜀. (59)

Proposition 15. If 𝑢 is a locally almost periodic function, then
the following affirmations hold:

(1) 𝑢 is uniformly continuous on R;
(2) 𝑈 := {𝑢(𝑡) | 𝑡 ∈ R} is compact in𝑋.

Proof. (1) Let 𝜀 > 0 be given arbitrarily.We need to prove that
there exists a 0 < 𝛿 < 1 such that

𝑑 (𝑢 (𝑠
1
) , 𝑢 (𝑠

2
)) < 𝜀 (60)

for all 𝑠
1
, 𝑠
2
∈ R with |𝑠

1
− 𝑠
2
| < 𝛿.

By local almost periodicity of 𝑢, there exists an 𝑙 > 0 such
that, for any 𝑠 ∈ R, there exists a 𝜏 = 𝜏(𝑠) ∈ [0, 𝑙] such that

𝑑 (𝑢 (𝑠 + 𝑡) , 𝑢 (𝜏 + 𝑡)) <
𝜀

3
, ∀𝑡 ∈ [−1, 1] . (61)

Since 𝑢 is uniformly continuous on the interval [−1, 1], one
can find a positive number 𝛿 < 1 such that

𝑑 (𝑢 (𝑠) , 𝑢 (𝑡)) <
𝜀

3
, ∀𝑠, 𝑡 ∈ [−1, 𝑙 + 1] , |𝑠 − 𝑡| < 𝛿. (62)

We show that 𝛿 satisfies (60).
Indeed, for any 𝑠

1
, 𝑠
2
∈ Rwith |𝑠

1
−𝑠
2
| < 𝛿, we can pick an

𝑠 ∈ R such that 𝑠
1
, 𝑠
2
∈ [𝑠 − 1, 𝑠 + 1]. We may write 𝑠

1
and 𝑠

2

as

𝑠
1
= 𝑠 + 𝑡

1
, 𝑠

2
= 𝑠 + 𝑡

2
. (63)

Then, by (61), there exists a 𝜏 ∈ [0, 𝑙] such that

𝑑 (𝑢 (𝑠 + 𝑡
𝑖
) , 𝑢 (𝜏 + 𝑡

𝑖
)) <

𝜀

3
, 𝑖 = 1, 2. (64)
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Now we have that

𝑑 (𝑢 (𝑠
1
) , 𝑢 (𝑠

2
)) = 𝑑 (𝑢 (𝑠 + 𝑡

1
) , 𝑢 (𝑠 + 𝑡

2
))

≤ 𝑑 (𝑢 (𝑠 + 𝑡
1
) , 𝑢 (𝜏 + 𝑡

1
))

+ 𝑑 (𝑢 (𝑠 + 𝑡
2
) , 𝑢 (𝜏 + 𝑡

2
))

+ 𝑑 (𝑢 (𝜏 + 𝑡
1
) , 𝑢 (𝜏 + 𝑡

2
))

≤
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀.

(65)

(2) To prove the compactness of 𝑈, we employ the
Kuratowski’s measure 𝛽 of noncompactness on 𝑋 which is
defined as follows: for any 𝐾 ⊂ 𝑋,

𝛽 (𝐾) = { inf 𝛿 > 0 | there exist a finite number of

balls𝐵
1
, . . . , 𝐵

𝑛
in 𝑋 with radius

𝛿 such that 𝐾 ⊂ ⋃
1≤𝑖≤𝑛

𝐵
𝑖
} .

(66)

It is well known that𝐾 is precompact if and only if 𝛽(𝐾) = 0.
In what follows we show that𝛽(𝑈) = 0, thus provingwhat

we desired.
Let 𝜀 > 0 be given arbitrarily. Then, by local almost peri-

odicity of 𝑢, there exists an 𝑙 > 0 such that, for any 𝑠 ∈ R, one
can find on any segment of length 𝑙 a number 𝜏 = 𝜏(𝑠) such
that

max
|𝑡|≤1

𝑑 (𝜃
𝑠
𝑢 (𝑡) , 𝜃

𝜏
𝑢 (𝑡)) < 𝜀. (67)

In particular, we see that, for any 𝑠 ∈ R, there exists a 𝜏 ∈ 𝐼 :=
[0, 𝑙] such that

𝑑 (𝑢 (𝑠) , 𝑢 (𝜏)) < 𝜀. (68)

It then follows that

𝑈 ⊂ {𝑥 ∈ 𝑋 | 𝑑 (𝑥, 𝑢 (𝐼)) < 𝜀} , (69)

where 𝑢(𝐼) = {𝑢(𝑡) | 𝑡 ∈ 𝐼}. Since 𝑢(𝐼) is compact, one easily
deduces by (69) that 𝛽(𝑈) ≤ 2𝜀. Hence, 𝛽(𝑈) = 0. The proof
is complete.

The following result shows that the local almost period-
icity of a function is actually equivalent to the minimality of
the hull of the function under the Bebutov’s dynamical system
and is of crucial importance in proving the existence of locally
almost periodic solutions.

Theorem 16. A function 𝑢 ∈ X is locally almost periodic if
and only if HX(𝑢) is minimal under the Bebutov’s dynamical
system.

Proof. “⇐” Assume that HX(𝑢) is minimal. Then, by the
basic knowledge in the theory of dynamical systems (see, e.g.,

[11, 16]), we know that every V ∈ HX(𝑢) is almost recurren;
that is, for any 𝜀 > 0, there exists an 𝑙 > 0 such that one can
find on any segment of length 𝑙 a number 𝜏 such that

󰜚 (V, 𝜃
𝜏
V) < 𝜀. (70)

By a simple argument via contradiction, one can easily show
that the length 𝑙 of the segments can be independent of V (see
also the work of Birkhoff [16]). Thanks to Proposition 14, one
immediately concludes by (70) and the independence of 𝑙 on
V that 𝑢 is locally almost periodic.

“⇒” Conversely, if 𝑢 is locally almost periodic, then by
Proposition 15 𝑢 is uniformly continuous on R with {𝑢(𝑡) |
𝑡 ∈ R} being precompact in 𝑋. Therefore, by the classical
Ascoli-Arzela theorem, one deduces that, for any sequence
𝜏
𝑛
∈ R, the sequence 𝜃

𝜏
𝑛

𝑢 has a subsequence 𝜃
𝜏
𝑛
𝑘

𝑢 that con-
verges uniformly on any compact interval 𝐼 to a function V ∈
X. Hence, we have

lim
𝑘→∞

󰜚 (𝜃
𝜏
𝑛
𝑘

𝑢, V) = 0. (71)

This implies that the hullHX(𝑢) is compact.
On the other hand, by the local almost periodicity of 𝑢

and Proposition 14, we see that 𝑢 is an almost recurrent point
of the system 𝜃. Since HX(𝑢) is compact, by adopting some
argument as in [16], it can be easily shown that HX(𝑢) is
minimal. We omit the details.

4.2. Existence of Locally Almost Periodic Solutions. Now we
consider the existence of locally almost periodic solutions for
(1). The main result is contained in the following theorem.

Theorem 17. Suppose that 𝐹 satisfies (H1). Then, if 𝑔 is locally
almost periodic, (1) has at least one locally almost periodic
solution.

Proof. Denote byX
𝛼
the space 𝐶

𝑏
(R; 𝐻

𝛼
) which is equipped

with the compact-open metric 󰜚. Denote by 𝜃 the translation
operator onX

𝛼
.

Let Φ be the cocycle on the phase space C := 𝐶([−𝑟, 0];

𝐻
𝛼
) generated by (44) (see (45) for the definition). Define the

skew-product flow 𝜋 : 𝑅+ × Σ ×C → Σ ×C as follows:

𝜋 (𝑡, ℎ, 𝜑) := (𝜃
𝑡
ℎ,Φ (𝑡, ℎ) 𝜑) , ∀ (ℎ, 𝜑) ∈ Σ ×C, 𝑡 ≥ 0.

(72)

Then, as in the proof of Theorem 12, one can easily show that
𝜋 has a global attractorA inΣ×Cwhich is themaximal com-
pact invariant set that attracts each bounded subset of Σ ×C.
Further, by a recurrence theoremdue to Birkhoff andBebutov
(see, e.g., [12]), A contains a compact minimal invariant set
M of the system 𝜋.

Fix a (ℎ
0
, 𝜑
0
) ∈ M. Then, by the invariance property of

M, there exists a trajectory 𝛾 of 𝜋 which is defined on the
whole line R and contained in M such that 𝛾(0) = (ℎ

0
, 𝜑
0
).

Let 𝛾(𝑡) = (𝜃
𝑡
ℎ
0
, V
𝑡
). Define a function V as

V (𝑡) = V
𝑡
(0) , 𝑡 ∈ R. (73)

Then, one easily sees that V is an entire solution of the
equation in (44) with ℎ therein replaced by ℎ

0
. We also infer
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from the proof of Theorem 12 that V is uniformly continuous
onR with {V(𝑡) | 𝑡 ∈ R} being contained in a compact subset
of 𝐻

𝛼
. Therefore by the classical Ascoli-Arzela theorem, the

hullHX
𝛼

(V) inX
𝛼
is compact.

Let I := HX
0
×X
𝑎

(ℎ
0
, V). Note that if (ℎ, 𝑤) ∈ I, then it

solves the following equation:

𝑑

𝑑𝑡
𝑤 (𝑡) + 𝐴𝑤 (𝑡) = 𝐹 (𝑤 (𝑡 − 𝑟

1
) , . . . , 𝑤 (𝑡 − 𝑟

𝑛
))

+ ℎ (𝑡) , 𝑡 ∈ 𝑅.

(74)

Observe that

𝑃I =HX
0

(ℎ
0
) = Σ, 𝑄I =HX

𝛼
(V) , (75)

where 𝑃 and𝑄 are projection operators fromX
0
×X

𝑎
toX

0

andX
𝛼
, respectively. Since both Σ andHX

𝛼

(V) are compact,
we deduce thatI is compact.

Now we show that I is minimal. Suppose the contrary.
Then, it would contain a proper compact invariant subsetK.
Let

K = {ℎ, 𝑤
0
| (ℎ, 𝑤) ∈K} , (76)

where 𝑤
0
∈ C is the restriction of 𝑤 on [−𝑟, 0],

𝑤
0
(𝑠) = 𝑤 (𝑠) , 𝑠 ∈ [−𝑟, 0] . (77)

It is trivial to check that K is a proper compact invariant
subset ofM, which contradicts to the minimality ofM.

By the first equation in (75), we see that there exists a
𝑢 ∈ X

𝛼
such that (𝑔, 𝑢) ∈ I. Further, by the minimality ofI,

one finds that HX
0
×X
𝑎

(𝑔, 𝑢) = I. Hence HX
0
×X
𝑎

(𝑔, 𝑢) is
minimal. It then follows immediately by Theorem 16 that 𝑢
is a locally almost periodic function. By (69), we see that 𝑢 is
precisely an entire solution of (1).

5. An Example

We now give an example to demonstrate how the abstract
results in previous sections can be applied to nonautonomous
parabolic equations with delays.

Let 𝐿 be a differential operator on a bounded domainΩ ⊂
R𝑁:

𝐿𝑢 := −

𝑁

∑
𝑖,𝑗=1

𝜕

𝜕𝑥
𝑖

(𝑎
𝑖𝑗
(𝑥)

𝜕𝑢

𝜕𝑥
𝑗

) + 𝑎
0
(𝑥) 𝑢, (78)

where 𝑎
𝑖𝑗
, 𝑎
0
∈ 𝐿∞(Ω) and 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁. We

assume that there exists a constant ] > 0 such that, for a.e.
𝑥 ∈ Ω,

𝑁

∑
𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≥ ]󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨
2

, ∀𝜉 = (𝜉
1
, . . . , 𝜉

𝑁
) ∈ R

𝑁 (79)

and that

𝑎
0
(𝑥) ≥ 0, a.e. 𝑥 ∈ Ω. (80)

Hence, 𝐿 is uniformly elliptic onΩ.

Let 𝑓: R𝑁+1 → R be a locally Lipschitz continuous
function. Consider the retarded parabolic equation onΩ:

𝜕𝑢

𝜕𝑡
+ 𝐿𝑢 = 𝑓 (𝑢 (𝑥, 𝑡 − 𝑟

1
) , ∇𝑢 (𝑥, 𝑡 − 𝑟

2
)) + 𝑔 (𝑥, 𝑡) (81)

associated with the homogeneous Dirichlet boundary condi-
tion:

𝑢|𝜕Ω = 0, (82)

where 𝑟
1
, 𝑟
2
> 0 denote time lags.

Let𝐻 = 𝐿2(Ω), 𝑉 = 𝐻1
0
(Ω). Define a symmetric bilinear

form 𝐵(𝑢, V) on 𝑉 as follows:

𝐵 (𝑢, V) = ∫
Ω

(𝑎
𝑖𝑗
(𝑥)

𝜕𝑢

𝜕𝑥
𝑗

𝜕V

𝜕𝑥
𝑗

+ 𝑎
0
(𝑥) 𝑢V)𝑑𝑥, 𝑢, V ∈ 𝑉.

(83)

It is clear that 𝐵(𝑢, V) is bounded and coercive. Thanks to
the Lax-Milgram theorem, 𝐵(𝑢, V) generates a self-adjoint
positive-definite operator 𝐴 on 𝐻 with compact resolvent.
Note that

𝑉 = 𝐷(𝐴
1/2
) := 𝐻

1/2
. (84)

We assume that 𝑓 satisfies the following linear growth
condition.

(F1) There exist positive constants 𝑏
0
, . . . , 𝑏

𝑁
and 𝑘, such

that

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤

𝑁

∑
𝑖=0

𝑏
𝑖

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨 + 𝑘, ∀𝑧 = (𝑧

0
, . . . , 𝑧

𝑁
) ∈ R

𝑁+1
. (85)

Then, one easily sees that the mapping 𝐹 : 𝑉2 → 𝐻 defined
by

𝐹 (𝑢, V) = 𝑓 (𝑢, ∇V) , 𝑢, V ∈ 𝑉, (86)

makes sense and is locally Lipschitz. Setting 𝑔(𝑡) = 𝑔(⋅, 𝑡), the
problem (81)-(82) can be reformulated as an abstract equation
in𝐻 as follows:

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 = 𝐹 (𝑢 (𝑡 − 𝑟

1
) , 𝑢 (𝑡 − 𝑟

2
)) + 𝑔 (𝑡) . (87)

Now we are in a situation of (1).
Since 𝑓 satisfies (F1), then one can easily verify that the

mapping 𝐹 satisfies (H1) in the previous sections, and hence
the abstract results obtained therein apply. In particular, we
have the following.

Theorem 18. Assume that 𝑓 satisfies the linear growth condi-
tion (F1) with the positive constants 𝑏

𝑖
’s therein satisfying

𝑏
0
𝜆
−1/2

1
+

𝑁

∑
𝑖=1

𝑏
𝑖
< 𝜆

1/2

1
, (88)

where 𝜆
1
is the first eigenvalue of 𝐴. Let 𝑔 ∈ 𝐶

𝑏
(R; 𝐻) be a

locally almost periodic (resp., periodic) function.
Then, (87) has at least one locally almost periodic (resp.,

periodic) solution.
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