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We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples
are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations
within the local fractional derivatives.

1. Introduction

Fractional calculus theory [1–3] has been applied to a wide
class of complex problems encompassing physics, biology,
mechanics, and interdisciplinary areas [4–9]. Various meth-
ods, for example, the Adomian decomposition method [10],
the Rach-Adomian-Meyers modified decompositionmethod
[11], the variational iteration method [12, 13], the homotopy
perturbation method [13, 14], the fractal Laplace and Fourier
transforms [15], the homotopy analysismethod [16], the heat-
balance integral method [17–19], the fractional variational
iterationmethod [20–22], the fractional subequationmethod
[23, 24], and the generalized Exp-functionmethod [25], have
been utilized to solve fractional differential equations [3, 15].

The characteristics of fractal materials have local and
fractal behaviors well described by nondifferential functions.
However, the classic fractional calculus is not valid for
differential equation onCantor sets due to its no-local nature.
In contrast, the local fractional calculus is one of the best
candidates for dealing with such problems [26–44].The local
fractional calculus theory has played crucial applications in
several fields, such as theoretical physics, transport problems
in fractalmedia described by nondifferential functions.There
are some versions of the local fractional calculus where

different approaches in definition of the local fractional
derivative exist, among them the local fractional derivative
of Kolwankar et al. [32–38], the fractal derivative of Chen et
al. [39, 40], the fractal derivative of Parvate et al. [41, 42], the
modifiedRiemann-Liouville of Jumarie [43, 44], and versions
described in [45–52].

In order to deal with local fractional ordinary and partial
differential equations, there are somedeveloped technologies,
for example, the local fractional variational iteration method
[45, 46], the local fractional Fourier series method [47,
48], the Cantor-type cylindrical-coordinate method [49],
the Yang-Fourier transform [50, 51], and the Yang-Laplace
transform [52].

The local fractional derivative is defined as follows [26–
31, 45–52]:

𝑓(𝛼) (𝑥0) =
𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥=𝑥
0

= lim
𝑥→𝑥

0

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 , (1)

where Δ𝛼(𝑓(𝑥)−𝑓(𝑥0)) ≅ Γ(1+𝛼)Δ(𝑓(𝑥)−𝑓(𝑥0)), and 𝑓(𝑥)
is satisfied with the condition [26, 47]

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)
󵄨󵄨󵄨󵄨 ≤ 𝜏𝛼

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨
𝛼 (2)
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so that [26–31]
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)

󵄨󵄨󵄨󵄨 < 𝜀𝛼 (3)

with 𝑈 : |𝑥 − 𝑥0| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅.
The main idea of this paper is to present the local

fractional series expansion method for effective solutions
of wave and diffusion equations on Cantor sets involving
local fractional derivatives. The paper has been organized
as follows. Section 2 gives a local fractional series expansion
method. Some illustrative examples are shown in Section 3.
The conclusions are presented in Section 4.

2. Analysis of the Method

Let us consider the local fractional differential equation

𝑢𝑛𝛼𝑡 = 𝐿𝛼𝑢, (4)

where 𝐿 is a linear local operator with respect to 𝑥, 𝑛 ∈ {1, 2}.
In accordance with the results in [28, 47], there are

multiterm separated functions of independent variables 𝑡 and
𝑥, namely,

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑇𝑖 (𝑡) 𝑋𝑖 (𝑥) , (5)

where 𝑇𝑖(𝑡) and 𝑋𝑖(𝑥) are local fractional continuous func-
tions.

Moreover, there is a nondifferential series term

𝑇𝑖 (𝑡) = 𝑝𝑖
𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
, (6)

where 𝑝𝑖 is a coefficient.
In view of (6), we may present the solution in the form

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑝𝑖
𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥) . (7)

Then, following (7), we have

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥) . (8)

Hence,

𝑢𝑛𝛼𝑡 =
∞

∑
𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡𝑖𝛼𝑋𝑖+1 (𝑥) =

∞

∑
𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡𝑖𝛼𝑋𝑖+𝑛 (𝑥) ,

𝐿𝛼𝑢 = 𝐿𝛼 [
∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥)] =

∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
(𝐿𝛼𝑋𝑖) (𝑥) .

(9)

In view of (9), we have

∞

∑
𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡𝑖𝛼𝑋𝑖+𝑛 (𝑥) =

∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
(𝐿𝛼𝑋𝑖) (𝑥) . (10)

Hence, from (10) we can obtain a recursion; namely,

𝑋𝑖+𝑛 (𝑥) = (𝐿𝛼𝑋𝑖) (𝑥) , (11)

with 𝑛 = 1; we arrive at the following relation:

𝑋𝑖+1 (𝑥) = (𝐿𝛼𝑋𝑖) (𝑥) , (12)

with 𝑛 = 2; we may rewrite (11) as

𝑋𝑖+2 (𝑥) = (𝐿𝛼𝑋𝑖) (𝑥) . (13)

By the recursion formulas, we can obtain the solution of (4)
as

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥) . (14)

The convergent condition is

lim
𝑛→∞

[
𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥)] = 0. (15)

This approach is termed the local fractional series expansion
method (LFSEM)

3. Applications to Wave and Diffusion
Equations on Cantor Sets

In this section, four examples for wave and diffusion equa-
tions on Cantor sets will demonstrate the efficiency of
LFSEM.

Example 1. Let us consider the diffusion equation on Cantor
set

𝑢𝛼𝑡 (𝑥, 𝑡) − 𝑢2𝛼𝑥 (𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1 (16)

with the initial condition

𝑢 (𝑥, 0) =
𝑥𝛼

Γ (1 + 𝛼)
. (17)

Following (12), we have recursive formula

𝑋𝑖+1 (x) =
𝜕2𝛼𝑋𝑖 (𝑥)

𝜕𝑥2𝛼
,

𝑋0 (𝑥) =
𝑥𝛼

Γ (1 + 𝛼)
.

(18)

Hence, we get

𝑋0 (𝑥) =
𝑥𝛼

Γ (1 + 𝛼)
,

𝑋1 (𝑥) = 0,

𝑋2 (𝑥) = 0,

...

(19)

and so on.
Therefore, through (19) we get the solution

𝑢 (𝑥, 𝑡) =
𝑥𝛼

Γ (1 + 𝛼)
. (20)
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Example 2. Let us consider the diffusion equation on Cantor
set

𝑢𝛼𝑡 (𝑥, 𝑡) −
𝑥2𝛼

Γ (1 + 2𝛼)
⋅ 𝑢2𝛼𝑥 (𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1 (21)

with the initial condition

𝑢 (𝑥, 0) =
𝑥2𝛼

Γ (1 + 2𝛼)
. (22)

Following (12), we get

𝑋𝑖+1 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)

𝜕2𝛼𝑋i (𝑥)

𝜕𝑥2𝛼
,

𝑋0 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)
.

(23)

By using the recursive formula (23), we get consequently

𝑋0 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)
,

𝑋1 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)
,

𝑋2 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)
,

...

(24)

As a direct result of these recursive calculations, we arrive at

𝑢 (𝑥, 𝑡) =
𝑥2𝛼

Γ (1 + 2𝛼)

∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
=

𝑥2𝛼

Γ (1 + 2𝛼)
𝐸𝛼 (𝑡
𝛼) .

(25)

Example 3. Let us consider the following wave equation on
Cantor sets:

𝑢2𝛼𝑡 (𝑥, 𝑡) −
𝑥2𝛼

Γ (1 + 2𝛼)
⋅ 𝑢2𝛼𝑥 (𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1 (26)

with the initial condition

𝑢 (𝑥, 0) =
𝑥𝛼

Γ (1 + 𝛼)
. (27)

In view of (14), we obtain

𝑋i+2 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)

𝜕2𝛼𝑋𝑖 (𝑥)

𝜕𝑥2𝛼
,

𝑋0 (𝑥) = 𝑢 (𝑥, 0) =
𝑥𝛼

Γ (1 + 𝛼)
,

𝑋𝑖+2 (𝑥) =
𝑥2𝛼

Γ (1 + 2𝛼)

𝜕2𝛼𝑋𝑖 (𝑥)

𝜕x2𝛼
,

𝑋1 (𝑥) = 𝑢(𝛼)𝑥 (𝑥, 0) = 1.

(28)

Hence, using the relations (29), the recursive calculations
yield

𝑋0 (𝑥) =
𝑥𝛼

Γ (1 + 𝛼)
,

𝑋1 (𝑥) = 1,

(29)

𝑋2 (𝑥) = 0,

𝑋3 (𝑥) = 0,

𝑋4 (𝑥) = 0,

...

(30)

and so on.
Finally, we obtain

𝑢 (𝑥, 𝑡) =
𝑥𝛼

Γ (1 + 𝛼)
+

𝑡2𝛼

Γ (1 + 2𝛼)
. (31)

Example 4. Let us consider the wave equation on Cantor sets
[26, 30]

𝑢2𝛼𝑡 (𝑥, 𝑡) − cu2𝛼𝑥 (𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1, (32)

where c is a constant.
The initial condition is

𝑢 (𝑥, 0) = 𝐸𝛼 (𝑥
𝛼) . (33)

By using (14) we have

𝑋𝑖+2 (𝑥) = 𝑐
𝜕2𝛼𝑋𝑖 (𝑥)

𝜕𝑥2𝛼
,

𝑋0 (𝑥) = 𝑢 (𝑥, 0) = 𝐸𝛼 (𝑥
𝛼) ,

𝑋𝑖+2 (𝑥) = 𝑐
𝜕2𝛼𝑋𝑖 (𝑥)

𝜕𝑥2𝛼
,

𝑋0 (𝑥) = 𝑢(𝛼)𝑥 (𝑥, 0) = 𝐸𝛼 (𝑥
𝛼) .

(34)

Then, through the iterative relations (35), we have

𝑋0 (𝑥) = 𝐸𝛼 (𝑥
𝛼) ,

𝑋1 (𝑥) = 𝐸𝛼 (𝑥
𝛼) ,

(35)

𝑋2 (𝑥) = 𝑐𝐸𝛼 (𝑥
𝛼) ,

𝑋3 (𝑥) = 𝑐𝐸𝛼 (𝑥
𝛼) ,

𝑋4 (𝑥) = 𝑐2𝐸𝛼 (𝑥
𝛼) ,

...

(36)
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Therefore, we obtain

𝑢 (𝑥, 𝑡) = 𝐸𝛼 (𝑥
𝛼)
∞

∑
𝑖=0

𝑐𝑖
𝑡2𝑖𝛼

Γ (1 + 2𝑖𝛼)

+ 𝐸𝛼 (𝑥
𝛼)
∞

∑
𝑖=0

𝑐𝑖
𝑡(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)

= 𝐸𝛼 (𝑥
𝛼) [cosh𝛼 (𝑐𝑡

𝛼) + sin𝛼 (𝑐𝑡
𝛼)] ,

(37)

where

cosh𝛼 (𝑡
𝛼) =
∞

∑
𝑖=0

𝑡2𝑖𝛼

Γ (1 + 2𝑖𝛼)
,

sinh𝛼 (𝑡
𝛼) =
∞

∑
𝑖=0

𝑡(2𝑖+1)𝛼

Γ (1 + (2𝑖 + 1) 𝛼)
.

(38)

For more details concerning (38), we refer to [26–28].

4. Conclusions

In this work, the local fractional series expansion method
is demonstrated as an effective method for solutions of a
wide class of problems. Analytical solutions of the wave and
diffusion equations on Cantor sets involving local fractional
derivatives are successfully developed by recurrence relations
resulting in convergent series solutions. In this context, the
suggested method is a potential tool for development of
approximate solutions of local fractional differential equa-
tions with fractal initial value conditions, which, of course,
draws new problems beyond the scope of the present work.
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