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We establish the existence of unbounded solutions for nonlinear fractional boundary value problems on the half-line. By the upper
and lower solution method technique, sufficient conditions for the existence of solutions for the fractional boundary value problems
are established. An example is presented to illustrate our main result.

1. Introduction

Boundary value problems on the half-line arise in the study
of radially symmetric solutions of nonlinear elliptic equations
and various physical phenomena, such as the theory of
drain flows and plasma physics; see [1-10] and the references
therein. In 2006, Lian and Ge in [11] investigated the following
boundary value problem on the half-line for the second-order
differential equation:

X'+ f(tx®),x (1) =0, te(0,+00),

@

x(0)=ax(y),  lim x' (1) =0,

where« € R, a#1, and € (0,00) are given. Based
on Leray-Schauder continuation theorem, some suitable
conditions for the existence of solutions to (1) are established.

On the other hand, fractional calculus is a generalization
of the ordinary differentiation and integration to arbitrary
noninteger order. Fractional calculus is a wonderful tech-
nique to understand memory and hereditary properties of
materials and processes. Some recent contributions to frac-
tional differential equations are present in the monographs
[12-19]. Very recently, Chen and Tang in [20] considered the
following fractional differential boundary value problem on

the half-line:
Dy u(t)=f(tu(®), tel0,00),

u()=u (0)=u"(0) =0, ngu (t) = lim Dg‘:lu (t),
()

where 3 < < 4and Djj is the standard Riemann-Liouville
fractional derivative. By the recent Leggett-Williams norm-
type theorem, the existence of positive solutions is obtained.
In 2011, [21] set up the global existence results of solutions of
initial value problems on the half-axis as follows:

Dg‘+x(t) =f(tx@), te(0,00), 0<ac<l,
(3)

lim ' ™%x (t) = uy,
t— 00

where D& is the standard Riemann-Liouville fractional
derivative. By constructing a special Banach space and
employing fixed point theorems, some sufficient conditions
for the existence of solutions are obtained. In [22], the authors
studied the following boundary value problem of fractional
order on the half-line:

Dy u(t)+a(t) f(tu(t),Dy 'u(t) =0, tel0,00),
u(0) =0, tlin(}ng:lu (t) = ugo»

(4)



where 1 < a < 2, f € C([0,00) x R*R), Dg‘:l and Dgi
are the standard Riemann-Liouville fractional derivatives. By
Schauder’s fixed point theorem on an unbounded domain,
they obtain the existence result for (4). Some papers have
recently been done for fractional boundary value problem on
the half-line or unbounded domain, see [22-31].

Inspired by the above-mentioned works, in this paper, we
study the existence of solutions to the following fractional
differential equations with boundary value problems:

Dy u(t)+a(t) f(tu(t), D5 *u(t),Df 'u (1) =0,

t€(0,00), 2<a<3, (5

u(0) = D§*u (0) = 0, Jim. Dy lu(t) =0,

where a(t) : [0,00) — [0,00), and Dgi is the standard
Riemann-Liouville fractional derivative. By upper and lower
solution method techniques, the sufficient conditions for
solutions to (5) are obtained. Our main findings given in
this paper have some new features. Firstly, the like Nagumo
condition defined by us plays an important role in the
nonlinear term involving the standard Riemann-Liouville
derivatives. Secondly, to the best of our knowledge, no
work has been done concerning fractional boundary value
problems (5) and our method is different from that of [22,
26, 31]. Thirdly, the nonlinear term f may take negative
values, and f(t, x, y, z) depends on z allowed to be quadratic,
referring to our example. The rest of this paper is organized
as follows: in Section 2, we present some preliminaries and
some lemmas that will be used in Section 3. The main result
and proof will be given in Section 3. In addition, an example
is given to demonstrate the application of our main result.

2. Preliminaries

We first present some basic definitions and preliminary
results about fractional calculus; we refer the reader to [17, 18]
for more details.

Definition 1 (see [18]). The integral

oy LSO
SO g L TESE

where « > 0, is called the Riemann-Liouville fractional
integral of order & and I'(«) is the Euler gamma function

defined by I'(«) = IOOO t* e tdt, a > 0.

t>0, (6)

Definition 2 (see [17]). A function f(x) given in the interval
[0, 00), the expression

o a 1 d "
Dy, f#8) = r(n-a)<dt>

where n = [a] + 1, [«] denotes the integer part of number «,
is called the Riemann-Liouville fractional derivative of
order a.

Jt SO s @)

0 (t _S)[X—n+1 ’
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Lemma 3 (see [17]). Let « > 0 and u(t) € C(0,00))
L(0, 00). Then the fractional differential equation

D u(t)=0 (8)
has
u(t) =t ot 4+ ot ¢ €R
i=0,1,2,3,....,.n, n=[a]+1 ©
as a unique solution.
Lemma 4 (see [17]). Assume that u(t) € C(0,00)[)

L(0,00) with a fractional derivative of order « > 0 that
belongs to C(0, 00) (] L(0, 00); then

I&D&u ) =u(t)+ct* "+t P+ 4t (10)

n

forsome ¢; € R,i=0,1,2,3,...,n,n=[a] + 1.

Denote by C[0, 00) the space of all continuous real func-
tions defined on [0, 00) and L;,.(0, c0) the space of all real
functions which are Lebesgue integrable on every bounded
subinterval of (0, 00). Denote

E= <]xeC[0,oo): supM<oo,

ot<oo (1 + )%

(1)

sup |Dg‘_2x (t)' < 0o, lim D§ ' x (t) exists
0<t<co t—oo

with the norm x| =
where

-2 -1
max{llxl, ID§2xl_, D5 xl_},

x (t)

lxll, = sup |—=—
N e

te[0,00)

>

P37, = su 0570 2)

-1
R

(o)

sup 'Dg:lx (t)|.

te[0,00)

By standard arguments, it is easy to prove that (E, || - ||) is a
Banach space.

Proposition 5 (see [32]). Assume that f is in C(0,00)[)
L;,.(0,00) with a fractional derivative of order 0 < o < 1 that
belongs to C[0, 00) [ L}, [0, 00). Then

I*D*f (x) = f(x) + cx™, (13)
for some ¢ € R. When the function f is in C[0, 00), then ¢ = 0.

Definition 6. A function y € E[)L;,.(0,00) is called a lower
solution of (5) if

Dy y()+a() f(6y®), D %y 1), D5 'y (1) 20,
t€(0,00), (14)
y(0) <0, D?y(0)<0, Jim D'y () <o.
+ — 00 +

Similarly, we can define an upper solution f € E[]Lj,
(0, 00) of (5) by reversing the above inequalities.
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Remark 7. It
Dy ?y (t) < Dy °B(t), te[0,00), (15)

and y(0) < 0, B(0) > 0, then we have p(t) < (t) forall t €
[0, 00).

We consider the following two cases.

Case 1. Consider & = 3. The inequality (15) reduces to y'(t) <
ﬁ'(t). Then

r Y (s)ds < Jt B (s)ds, te(000);  (16)
0 0
that is,

y(®) -y (0) < B(t)-p(0),

From the boundary condition y(0) < 0 and 5(0) > 0 we
obtain y(0) < (0), and

y(@) < B()+y(0)-B0)<B(1),
Thus, y(t) < () for t € [0, 00).

te(0,00).  (17)

te€(0,00). (18)

Case 2. Consider 2 < « < 3.If (15) holds, then
I7°Dg %y (1) < I DG ?B(t), te0,00).  (19)

Noting that 0 < -2 < 1 and y, 8 € C[0, c0), from the above
inequality and Proposition 5, we have that y(t) < () for t €
[0, 00).

For example, consider y(t) = t*72, B(t) 2t%72,
Obviously, Dg‘:zy(t) = I(a + 1), Dgf/.;(t) = 2I(x + 1).
Thus y(0) = (0) = 0 and

DSy (1) < DS2B(1), t€[0,00). (20)
We also get y(t) < 5(t) for each t € [0, 00).

Definition 8. Let y, 8 € E[)L},(0,00) be lower and upper
solutions to (5) and suppose that (15) holds. A continuous
function f : [0,00) X R® — R is said to satisty the like
Nagumo condition with respect to the pair of functions y, f3,
if there exist a nonnegative function ¢ € CJ[0,00) and a
positive one h € C[0, 00) such that

|f (%, .2)| < g (@) h(l2]), (1)
forall0 < t < o0, p(t) < x < (1), Dg:zy(t) <y <
D{*B(t),z € R, and

® s
J() mdS—OO. (22)

We list some assumptions related to a(t),¢(t), and f as
follows.

(H,) Consider

JOO max {s, 1} a (s)ds < oo,

N (23)
J max {s, 1} a (s) ¢ (s)ds < oo.

0

(H,) Let f : [0,00) x R’> — R be a continuous
function satisfying the like Nagumo condition with
respect to the pair of functions y, f3, such that

flty®,y2)< f(txyz)< f(LBE),y.2),

for (t,x,y,z) € [0,00) x [y (t), B ()] x R,

Lemma 9. Let 0 € C(0,00) () L(0,00), then the fractional
boundary value problem

Dgiu ®+o(t) =0,

(24)

te€(0,00), 2<a <3,

(25)
u(0) = Dg*u(0) = 0, Jlim Di™u (1) = 0
has a unique solution u(t) = IOOO G(t,s)o(s)ds, where
a-1 _ _ el <5<
Gt s) = 1 toc_1 t-9)"", 0<s<t<oo, (26)
I(x) |77, 0<t<s<oo.

Proof. By Lemma 4, the solution of (25) has the following
form:

_ _; ! _ a—1
u(t) = I' () L (t—-9)""0o(s)ds o

a1 a—2 a-3
+qt” ot THGEt .

By boundary value condition ©(0) = 0, one has ¢; = 0. Thus,
we have by (27) that

Dy *u(t) = =Dy °Ig o (£) + ¢, Dy 1% + ¢, Dg 217
t
= —J t-s)a(s)ds+ql (@)t +T(a—-1).
0
(28)

Substituting the condition Dg:zu(O) = 0 into (28), we obtain
¢, = 0. Together with limt_,ong‘Ilu(t) =0, we get

G = ﬁ LOO o (s) ds. (29)
Hence, we have
u(t) = —ﬁ Lt (t - 9% Lo (s)ds + 150;041) LOO o (s)ds
_ _ﬁ Lt (t - )" o (s) ds
+ ﬁ Lt t*lo (s)ds + ﬁ LOO "o (s)ds o
- ﬁ Lt [ = (t-9)" o (s)ds
+ ﬁ fo t* "o (s)ds

= JOO G(t,s)o(s)ds.

0



Lemma 10. The function G(t,s) defined by (26) satisfies the
following properties:
(1) G(t, s) is a continuous function and G(t,s) = 0 for
[0, 00) % [0, c0);
(2) G(t, s) < t“/T(e), for (t,s) € [0,00) x [0,00).

The proof is easy, so we omit it here.
Set C; := {y € C[0,00) : lim, _, ., y(t)exists}. For y € C,,
define [ y|l := sup;c(g,c0)l¥(t)]. Then C; is a Banach space.

Lemma 11 (see [33]). Let M C C;. Then M is relatively
compact if the following conditions hold:
(a) M is bounded in Cj;
(b) the functions belonging to M are locally equicontinu-
ous on [0, 00);

(c) the functions from M are equiconvergent; that is
given € > 0, there corresponds T(e) > 0 such that
|x(t) — x(c0)| < €, and x € M.

By Lemma 11, similar to the proof of Theorem 2.3 in [34],
we can easily have the following lemma.

Lemma 12. Let M C E. Then M is relatively compact if the
following conditions hold:

(1) M is bounded in E;

(2) the functions belonging to {y : y = x/(1 + Nl x e
M}h{z : z = Dg‘:zx(t),x € M}, and {w :
Dg‘"lx(t), x € Mj, are locally equicontinuous on
[0, 00);

(3) the functions from {y : y = x/(1 + )", x € M},
{z:2z= Dg‘:zx(t),x e M}, and{w : w = Dg‘:lx(t),
x € M} are equiconvergent at 0o.

w =

Define the auxiliary functions

y(®), x<y(),
wt,x)=4x@), yt)<x<p(t),
B®), x>p(),

(31)
Di?y (1), y< Dy (),

y (@), Di?y () < y < DE2B(0),
DE?B(), y> Dy B().
Consider the following boundary value problem:

Dy u(t)+a(t) f* (tu(), Dg‘:zu (t),Dy 'u (1) =0,

w (ty) =

te€(0,00), 2<ac<3

u(0) = DS *u(0) = 0, tlim DS 'u(t) =0,
+ — 00 ot
(32)
where

f(txy.2) = f(tw, (%), w, (,y),2)

w, (t,y) -y
1+ |w, (t,y) -yl

(33)
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For each u € E, it follows from (21), (23), and (33) that

JOO a(s) f* (s, u(s), Dg‘:zu (s), Dg:lu (s)) ds
0

< Jma(s) [(/) (s)h(|D8‘:lu(s)|) + 1] ds
’ (34)

< JOO a(s) (Hyp (s) + 1)ds
0

< JOO max {s, 1} a (s) (Hy (s) + 1) ds < oo,
0

where H, = maxoggunguuwh(t)- From (34) and Lemma 9,

we know that u is a solution of (32) if and only if u solves the
operator equation Tu = u, and T is defined by

Tu ()
= J-OO Gt s)a(s) f* (s, u(s), Dgizu (s), Dgflu (s)) ds,
0 + +

uekE, tel0,00).

(35)

Lemma 13. Suppose that (H,)-(H,) hold; then T : E — E
(the operator defined in (35)) is completely continuous.

Proof. Consider the following.

Step1. T : E — Eiswell defined. For u € E, it follows from
(34) that

J'oo sa(s) (Hyp (s) +1)ds
. (36)
< j max {s, 1} a (s) (Hy¢ (s) + 1) ds < oo,
0
which implies
Jim ta (1) (Hygp (t) +1) = 0. (37)

We also have

JOO a(s) (Hyp(s) +1)ds < JOO sa(s) (Hyp (s) + 1) ds,
t>1.
(38)
Combining (36) with (38), one has
Jim. Joo a(s) (Hyp(s) +1)ds = 0. (39)

If we apply Lebesgue dominated convergence theorem with
(37) and (39), then

[Tu (t)]
t—co(] 4 )%

r" G(t,s)

o (1+0)~!

(40)
a(s) (Hy¢p(s) +1)ds =0,

< lim
t— 00
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which yields

lim Lt)_l =0 (41)
t—oo(1 + 1)

that is,

ITu (®)]

42
o<t<co (1 + t)‘kl (42)
By virtue of (34), we have

sup |Dg+_2Tu (t)|

0<t<oo

= sup D3 fo G(t,s)a(s) f* (s, u(s), Dy "u(s),

0<t<oo

D u (s)) ds

= sup
0<t<oo

Jt sa(s) f* (s, u(s), DS u(s), D u (s)) ds
0

+ Joota (s) f* (s,u(s),Dg‘fzu(s) ,

D u (s)) ds

< sup Jt sa(s) (Hyp (s) + 1) ds

0<t<oco JO

+ Joota (s) (Hyp (s) + 1) ds
t

< JOO sa(s) (Hyp (s) + 1)ds
0

< Jm max {s, 1} a (s) (Hy (s) + 1) ds < co.
0
(43)
It follows from (39) that
UOO a(s) f* (s, u(s), Dg:2u (s), Dg:lu (s)) ds
t (44)

< Jooa(s)(H0¢(s)+1)ds—>0, t — 0o0.
t

Therefore, we have

lim D' Tu (t)
t— 00 +

= lim ro a(9) £ (5u(9), DS 2u (), DS u (s)) ds
=0.
(45)

Thus, we conclude that Tu € E.

Step 2. T : E — Eis continuous. For any convergent
sequence u, — u in E, we find

u,(t) —u(®)), Dg_zun — Dg_zu,

. . (46)
Dg: u, — Dg: u, asun— 00, t €[0,00).

From continuity of f*, we obtain

|f* (s, u, (s), D u, (s), DY: ', (s))
—f" (s,u(s),Dgfzu (s),Dg:lu(s))' — 0, (47)

n— oo, foranyt € [0,00).

Since u,, — u, we have supnel\,HDg‘_luHOO < 00. Set
+

H, = max
0<t<max{ID§; " oo, supen 1D oo}

RO 4

which follows that

JOOO sa(s) |f* (s, u, (s), D& *u, (s), DS u,, (s))
-f* (s, u(s), Dgfzu (s) ,Dg‘flu (s))| ds (49)

<2 JOO sa(s) (Hp¢ (s) + l)ds < 00.

0

Thus, applying the Lebesgue dominated convergence theo-
rem and then using (49), we have

|Tw, — Tul,
|Tw, (t) - Tu (t)]
= u —_—_—m——
ost<co (1L + 1)1
) © G(ts)
" oo Jo (1+ t)‘“a(s)
x (f* (s, u, (s), DS *u, (s), DS u, (s))
-f* (s,u(s) , D5 u(s) ,Dgflu(s)))
< Lj-ooa(S) |f* (s u, (s),D%u, (s), D% u (s))
~ T(a) Jo e T
-f* (s,u(s),Dg‘fzu(s) ,Dg:lu(s))|
— 0,

(50)



as n — 00. On the other hand, we have

o—2 o—2
|1, - D371

sup |Dg‘+—2Tun (t) - D§*Tu (t)|

0<t<oo
t
J sa(s)

0

sup
0<t<oo

< (f* (s:u, (), D§u, (5), DG, (5))

-f" (s,u (s), D5 u(s), Dy 'u (s))) ds
+ ro ta(s)

< (f* (s, u, (), D§ 2w, (), DGy, (5))

-f (5’“(5),Dg+_2u(s),

D u (s))) ds

t
= [fy oo
X |f* (s, u, (s), DS *u, (s), D' u,, (s)) ds
-f* (s, u(s), DS u(s), Dy 'u (s))| ds
+ J't sa(s)
X | f* (51, (), D u,, (s), Dy, (5))

- f" (s,u(s),Dgfzu(s),

D u (s))| ds]

= J:O sa(s)

x |f* (s, u, (s), DS 2w, (s), D3 ', (s))
-f* (s,u(s) , D u (s),Dgflu(s))|ds — 0,

n— 0.
(51)

From (49), it is clear that

LOO a(s)|f* (su,(s), Dy u, (s), DG u, (5))

-f* (s,u(s) , D u (s),Dgflu(s))' < +00.
(52)
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Moreover, by (52), we have

-1 o—1
DY 'Tu, — DS T ”
” o, u, o, u oo

sup |Df " Tu,, () - Df ' Tu (t)|

0<t<oo

Sop LOO a(s) (f* (5,1, (5), DY, (5), DS, (5))

0<t<oo

~f* (s,u (s), D5 u(s), D3 u (s))) I

N

fr (s, u, (s), DS *u, (s), D ' u, (s))

< JOOO a(s)

-f* (s,u(s),Dgfzu(s) ,Dgflu(s))| — 0,

n — oo.
(53)

Therefore, combining (50), (51), and (53), we get [[Tu, —
Tul| — 0,asn — oo; thenweclaimthatT : E — E is
continuous.

Step 3. T : E — E is compact. Let A be any bounded subset
of E; then, for u € A, set

H, = sup h(t) < oo,

OstguDg‘;l loo uEA (54)

in a similar manner as (50), (51), and (53); we have by (21) and
(23) that

[Tully
[T
05t<oo(1 + t)“_l
®© Gl(ts)
" 0<t<oo JO 1+ l‘)%1 a(s)
X 'f* (s,u (s),Dgfzu (s) ,Dg‘flu (s))| ds
1 (o]
= I'(x) Jo a(s)
x|f* (su(s), Dy u(s), D tu(s) )| ds
< 00,

”Dg:zTu"OO < LOO sa(s)

x|f* (s,u (s), D5 u(s), Dy 'u (s))' ds

< JOOO sa(s) (Hq(p (s) + 1) ds < 00,
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< joo a(s) .f* (5, u(s) ,Dgfzu (s), Dgflu (s))' ds
0

< roa(s) (H ¢ () +1)ds < oo,
0
(55)

which implies that [Tu| < o0. Hence, TA is uniformly
bounded. Meanwhile, for any B > 0, for t,,t, € [0,B], we
have

Tu(t,)
(1+6,)""

_ JOO< G(t,s)  Gltps) )
o \(1+6)"" (1+8)""

Tu(t,)
(1+6,)*"

xXa (S) f* (5, u (S) 5 Dg‘:zu (S) s Dg:lu (5)) ‘ (56)

0
SJ
0

xa(s)(Hg(s)+1)ds — 0, t; —t,

G(ty,s) ~ G (t5,5)
(1+6)" (1+)"!

We also have
|Dg‘:2Tu (t) - D§*Tu (t2)|

Jtl sa(s) f* (s, u(s), Dg:zu (s),D5'u (s)) ds
0 +

+ J'oo tia(s) f* (s, u(s), Dg‘:zu (s), Dg:lu (s)) ds

121

_ J ) f° (s,u(), D% 2u(s), DE ' (s)) ds
0

- JOO ta(s) f* (s, u(s), Dg:zu (s), Dg‘:lu (s)) ds

2}

<

Jtz sa(s) f* (s, u(s), Dg:zu (s), Dg:lu (s)) ds

t

t
+ |t Jt a(s) f* (s,u(s),Dg:zu(s),Dg:lu(s))ds

1

+

(t, - 1)) J a(s) f* (s,u(s),Dg‘:zu(s) ,

[

Dﬁ:lu (s)) ds

< J: sa(s) (Hq(/) (s+ 1)) ds

7
t2
v [ (Hg ) ds
t
+]t, -t J a(s) (Hq</> (s+ 1)) ds,
t
(57)
which approaches 0, as t; — t,. Furthermore, we have
|Dg‘:1Tu (t,) - Dy 'Tu (tz)'
g -2 -1
= L a(s) f* (s,u(S),Dg+ u(s) ,D& u(s))ds (58)

< Jtz a(s) (quS (s) + 1) ds,

tl
which approaches 0, as t;, — t,. Hence, we get that T'A is
equicontinuous. From (41), we have
Tu (t) B Tu (t)
A +1)* o1 4+1)*!

(59)
Tu (t)

=l — 0, ast— oo.
(1+1)

Since

ro ta(s) f* (su(s), Dy u(s), Dy 'u (s))

< fo ta(s) (Hyd (s) + 1) ds
< LOO sa(s) (Hy¢p(s) +1)ds — 0, t — oo,
Jim. Dg‘:zTu (t)
= lim Uot sa(s) f* (s,u(s), Dy u(s), Dy 'u(s)) ds
o[ £ (5w .05,

Dg‘:lu (s)) ds]

_ JOO sa(s) f* (su(s), DI 2u(s), DE'u(s)) ds.
0
(60)

Thus, we have

Dy Tu (t) - Jim. Dy *Tu (t)|
_ o0 * o—2 oa—1
= U ta(s) f (s,u(s),D0 u(s), D, u(s))ds
+ + +

_ JOO sa(s) f* (s:u(), DS 2u(s), DS u (s)) ds
t

>

(61)




which approaches 0,as t — ©00. We also have by (45) that

DS Tu(t) - lim D' Tu (t)’
= D5, Tu o) (62)
= J a(s) f* (s, u(s), Dg‘:lu (s), D5 u (s)) ds,
t +

which approaches 0 ast — ©00. Thus, TA is equiconver-
gent at co. Then TA is relatively compact. Therefore, T' :
E — E iscompletely continuous. The proof is complete. [

3. Main Result
We are in the position to state the main existence result.

Theorem 14. Let y, 3 € E(]L.(0,00) be lower and upper
solutions to (5), and suppose that (15) holds. Moreover,
(H,)-(H,) hold. Then fractional boundary value problem (5)
has at least one solution u(t) € E [ Ly,.(0,00) satisfying

Yy <u®)<p®),
D%y (t) < Dy Pu () < Dy (), (63)
'Dg:lu(t)' <N, Vtel[0,00),
where N is a constant dependent only on vy, 3, and ¢.

Proof. By Lemma 13, we know that T : E — E is completely
continuous. By the Schauder fixed point theorem, we can
easily obtain that T has at least one fixed point u € E. Thus,
u is a solution of (32). Next, we will show that u satisfies the
inequalities

y(®) su(t) < p(),

(64)
Dy 7y (1) < Df u(t) < DG B (), t €[0,00),

which implies that u is a solution of (5). First of all, we will
show that D ~*u() < Dy 2f(t), for all € [0, 00).
If not, then

sup (Dg:zu t) - Dg‘f,/s (t)) > 0. (65)

0<t<oo

Note that lim, _, 00(Dg:lu(t) - Dg‘:l B(t)) < 0; then there are
two cases.

Case 1. There exists a t, € [0, 00) such that

Dg:zu (to) - Dg:zﬁ (to)

66
= sup (D§u(t)-D§ 2B (b)) > 0. (66)
te[0,00) N -
Then Dg‘:lu(to) = Dg‘:lﬁ(to) and
Dg u(t,) < Dg B(to)- (67)
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On the other hand, in view of (32), (33), and (H,), we have

Dg]" (to)

= —a(ty) l:f (t())wo (to, 1), w, (to’Dg:Z”) ’Dg:lu)

wy (to, D *u) - D5 u (t,)
' 1+ |w1 (to, Dg‘:zu) - D u (t0)|

= —a(t,) [f(to,wo (tgou),

w, (to> Dg:zﬁ (to)) > Dﬁflﬁ (to)) (68)

N Dg:zﬂ (to) - ngzu (to)
L+ 'Dg:zﬁ (to) - Dg‘:zu (to)'

> -al(ty) f (to’ B(ty) Dg:zﬁ (to) Dg:lﬁ (to))

Dg?” (to) - DS‘:Zﬁ (to)
1+ |D8‘:2u (to) - Dg:zﬁ (t0)|

>-a(t,) f (t07ﬁ(to)’Dg:zﬂ(to)’Dg:lﬁ(to))
2 Dg:lﬁ(to)’

which contradicts (67).

Case 2. Consider Dg‘:zu(o) - Dg:z B(0) = lim, _, o (Dg‘:zu(t) -
DE2B(t) = Supsejo ) (Dy"u(t) = D 2B(£)) > 0. By the
boundary condition, we have the contradiction Dg‘:zu(O) -
Dg‘:z B(0) < 0. Consequently, Dg:zu(t) < Dg‘:z B(t) holds for
allt € [0, 00). By using the similar method, we also can prove
that Dg:zy(t) < Dg:zu(t) for all ¢t € [0, 00). By Remark 7, we
have

+a(ty)

y(#) <u(t) < B(t), foranyt € [0,00). (69)

If o > 0, we choose

D§B(t) - D3y (0)
r > maxy Ssup >
te[0,00) t

(70)

D§?B(0) - DE Py (1) }
sup >

te[o,00) t

and N > r such that

N S oa—2 . o—2
L mdszm(ozigo DEB®) - inf D3y (@) ), ()

where m = supte[o)m)a(t)qﬁ(t). From (23), it is clear that
jooo a(s)p(s)ds < co. Hence, m < co.
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Finally, we will check that IDgzlu(t)I < Nfort €
[0, 00). If IDg‘:lu(t)I < r, for every t € [0,00), then
IDg:lu(t)I < N.If Dg‘:lu(t) > r, forall t € [0,00), then for
any R > o; using (70), we obtain

D§u (0)

Di*B(R) - D5y (0)  Diu(R) -
R - R
IOR (d/ds) (Dg‘:zu (s)) ds

- R

(72)
'[OR Dg:lu (s)ds
D e—
DB (R) - Dy (0)

>r2 R b

which is a contradiction. If Dg_lu(t) < -r, for every t €

[0, 00), we can also have a similar contradiction. There exists
ty € [0,00) such that |D *u(t)l < r. Thus, there exists
[t;,t,] € [0,00) such that IDS‘:lu(tl)l =7, IDg‘:lu(t)I >
r, t € (t,t,]. Otherwise, IDg‘:lu(tz)I =, |Dg:1u(t)| >
r, t € [t;,t,). Without loss of generality, we assume that
DS 'u(t) = r, D§'u(t) > r,t € (t,t,]. Therefore, by a
convenient change of variable and using (21) and (71), we get

0, u(ty) s
J ——ds
Dgu(t) ()
ty
-1

[ a0 (60,05 . 5 w0)

t

D“—lu (t)

%  po d
(Dal (t)) 0+u(t) t

D{'u(t)
X ———————dt
h(Dg:lu(t))
ty (73)
sj a(t)¢ () Dy u(t)dt

1

IN

2]
m J D lu(t)dt
t O

m(D u( tz)—Dg‘:zu(tl))

0,

( sup D“ 2B(t) - 1nf )Dg‘:zy (t))

te[0,00)

: L h(s)

which implies that Dg‘:lu(tz) < N, since t, can be arbitrarily
as long as Dg‘:lu(t) > r; we have Dg‘:lu(t) > r, for
any t € [0,00), which follows that Dg‘:lu(t) < N. By

a similar analysis, we can also obtain that if Dg‘:lu(tl) = -7,
Dg:lu(t) < -1, t € (t),1,], then Dg‘:lu(t) > —N, t € [0,00).
Therefore,

Dy u(t) =-a(t) f* (tut) ,Dgfu (t),Dy 'u )
(74)
=—a(t) f(tu(t), Dy *u(t), Dy u(t));

that is, u is a solution of (5), which completes the proof. [

Example 15. Consider the boundary value problem of the
fractional differential equation on the half-line

DYPu () + e (£ +u (1) (r <§> - DY (t))

x (1 + arctan (Dgfu (t))z) =0, te(0,00), (73

u(0) = Dy"u (0) = D; u(00) =0
In this case, « = 8/3,a(t) = e, ft,x,y,2) = #* +
x*)(I(5/3) = ¥)(1 + arctan(z?)). Obviously, y(t) = —t*/> and

B(t) = t*/* are a pair of lower and upper solutions of (75).
Furthermore, we have y, 8 € E, y(t) < B(t), for t € [0, 00).
It is clear that f is continuous on [0, c0) X R*.If0 <t < oo,
—1*? < x < ¥ -T(5/3) < y < TI'(5/3), we have

|f (t.x,3,2)] < ¢ (®) R (l2D), (76)
where ¢(t) = 4T(5/3)(1 +*) and h(z) = 1 + z%; we have
0 o) s
Jo mdS:L 1+ s? Trab= (77)

and f satisfies the like Nagumo condition with respect to
—t*3 213 Furthermore, we have

[oe)
se *ds < 0o,

Oomax{s,l}a(s)ds: 1e_sds+
| Jy et

0 1

JOO max {s, 1} a(s) ¢ (s)ds
0

= 41"(;) Jl (1 +52)e75ds

0

+41"<§) Jlms(l + sz)e’sds < 00.

Thus, we conclude by Theorem 14 that there exists at least one
solution u(t) to boundary value problem (75) such that

(78)

B <u@) <t

(79)
5 o—2 5

(3) D@ <r(3). tep.00).
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