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The purpose of this paper is to study the dynamics of a phytoplankton-zooplankton model with toxin delay. By studying the
distribution of the eigenvalues of the associated characteristic equation, the pitchfork bifurcation curve of the system is obtained.
Furthermore, on the pitchfork bifurcation curve, we find that the system can undergo aHopf bifurcation at the positive equilibrium,
and we derive the critical values where Hopf-Pitchfork bifurcation occurs.

1. Introduction

The study of the dynamical interaction of zooplankton and
phytoplankton is an important area of research in marine
ecology. Phytoplanktons are tiny floating plants that live near
the surface of lakes and ocean. They provide food for marine
life, oxygen for human being, and also absorb half of the
carbon dioxide which may be contributing to the global
warming [1]. Zooplanktons are microscopic animals that eat
other phytoplankton. Toxins are produced by phytoplankton
to avoid predation by zooplankton. The toxin producing
phytoplankton not only reduces the grazing pressure on
them but also can control the occurrence of bloom; see
Chattopadhyay et al. [2] and Sarkar and Chattopadhyay [3].
Phytoplankton-zooplankton models have been studied by
many authors [4–9]. In [6], models of nutrient-plankton
interaction with a toxic substance that inhibit either the
growth rate of phytoplankton, zooplankton, or both trophic
levels are proposed and studied. In [7], authors have dealt
with a nutrient-plankton model in an aquatic environment
in the context of phytoplankton bloom. Roy [8] has con-
structed a mathematical model for describing the interaction
between a nontoxic and a toxic phytoplankton under a single
nutrient. Saha and Bandyopadhyay [9] considered a toxin
producing phytoplankton-zooplankton model in which the
toxin liberation by phytoplankton species follows a discrete
time variation. Biological delay systems of one type or

another have been considered by a number of authors [10,
11]. These systems governed by integrodifferential equations
exhibit much more rich dynamics than ordinary differential
systems. For example, Das and Ray [5] investigated the effect
of delay on nutrient cycling in phytoplankton-zooplankton
interactions in the estuarine system. In this paperwe present a
phytoplankton-zooplanktonmodel to investigate its dynamic
behaviors. The model we considered is based on the fol-
lowing plausible toxic-phytoplankton-zooplankton systems
introduced by Chattopadhayay et al. [2]

𝑑𝑃

𝑑𝑡
= 𝑟
1
𝑃(1 −

𝑃

𝐾
) − 𝑎𝑃𝑍,

𝑑𝑍
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= 𝑏𝑍∫

𝑡

−∞

𝐺 (𝑡 − 𝑠) 𝑃 (𝑠) 𝑑𝑠 − 𝑐𝑍 − 𝑑
𝑃 (𝑡 − 𝜏)

𝑒 + 𝑃 (𝑡 − 𝜏)
𝑍,

(1)

where 𝑃(𝑡) and 𝑍(𝑡) are the densities of phytoplankton and
zooplankton, respectively. 𝑟

1
, 𝐾, 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are positive

constants. 𝜏 is toxin delay, 𝐺(𝑠) is the delay kernel and a non-
negative bounded function defined on [0,∞] as follows:

∫

∞

0

𝐺 (𝑠) 𝑑𝑠 = 1, 𝐺 (𝑠) = 𝜎𝑒
−𝜎𝑠

, 𝜎 > 0. (2)

For a set of different species interacting with each other
in ecological community, perhaps the simplest and probably
the most important question from a practical point of view is
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whether all the species in the system survive in the long term.
Therefore, the periodic phenomena of biological system are
often discussed [12–16].

The primary purpose of this paper is to study the effects
of toxin delay on the dynamics of (1). That is to say, we will
take the delay 𝜏 passes through a critical value, the positive
equilibrium loses its stability and bifurcation occurs. By
studying the distribution of the eigenvalues of the associated
characteristic equation, the pitchfork bifurcation curve of the
system is obtained. Furthermore, we derive the critical values
where Hopf-Pitchfork bifurcation occurs.

Thepaper is structured as follows. In Section 2, we discuss
the local stability of the positive solutions and the existence
of Pitchfork bifurcation. In Section 3, the conditions for the
occurrence of Hopf-Pitchfork bifurcation are determined.

2. Stability and Pitchfork Bifurcation

In this section, we focus on investigating the local stability
and the existence of Pitchfork bifurcation of the positive
equilibrium of system (1). It is easy to see that system (1) has
a unique positive equilibrium 𝐸

∗
(𝑃
∗
, 𝑍
∗
), where

𝑃
∗
=

𝑐 + 𝑑 − 𝑏𝑒 + √(𝑐 + 𝑑 − 𝑏𝑒)
2
+ 4𝑏𝑐𝑒

2𝑏
,

𝑍
∗
=

𝑟

𝑎
(1 −

𝑃
∗

𝐾
) > 0,

(3)

where (𝐻
1
) : 𝐾 > 𝑃

∗.
Let

𝑊(𝑡) = ∫

𝑡

−∞

𝜎𝑒
−𝜎(𝑡−𝑠)

𝑃 (𝑠) 𝑑𝑠. (4)

By the linear chain trick technique, then system (1) can be
transformed into the following system:

𝑑𝑃

𝑑𝑡
= 𝑟
1
𝑃(1 −

𝑃

𝐾
) − 𝑎𝑃𝑍,
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= 𝑏𝑍𝑊 − 𝑐𝑍 − 𝑑

𝑃 (𝑡 − 𝜏)

𝑒 + 𝑃 (𝑡 − 𝜏)
𝑍,

𝑑𝑊

𝑑𝑡
= 𝜎𝑃 (𝑡) − 𝜎𝑊 (𝑡) .

(5)

It is easy to check that system (5) has an unique positive
equilibrium 𝐸(𝑃

∗
, 𝑍
∗
,𝑊
∗
) with 𝑃

∗
= 𝑊
∗ provided that the

condition (𝐻
1
) holds.

Let 𝑃 = 𝑢+𝑢
∗,𝑍 = V+ V∗, and𝑊 = 𝑤+𝑊

∗; then system
(5) can be transformed into the following system:
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𝑍
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+ ∑
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𝑢
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(6)

where
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(7)

Then linearizing system (6) at 𝐸∗(𝑃∗, 𝑍∗,𝑊∗) is

𝑢̇ (𝑡) = −
𝑟
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𝑤 (𝑡) ,

𝑤̇ (𝑡) = 𝜎𝑢 (𝑡) − 𝜎𝑤 (𝑡) .

(8)

It is easy to see that the associated characteristic equation of
system (11) at the positive equilibrium has the following form
and thus the characteristic equation of system (5) is given by

𝐹 (𝜆) = 𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
− [𝑞
1
𝜆 + 𝑞
0
] 𝑒
−𝜆𝜏

= 0, (9)

where

𝑝
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𝑟𝑃
∗

𝐾
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=

𝑟𝑃
∗
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𝐾
, 𝑝

0
= 𝑎𝑏𝑃

∗
𝑍
∗
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𝑞
1
=

𝑎𝑑𝑒𝑃
∗
𝑍
∗

(𝑒 + 𝑃∗)
2
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0
=
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∗
𝑍
∗
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2

.

(10)

Obviously, 𝑝
2
> 0, 𝑝

1
> 0, 𝑝

0
> 0, 𝑞

1
> 0, and 𝑞

0
> 0.

From (9), the following lemma is obvious.

Lemma 1. If the condition 𝐻
2
: 𝑝
0
= 𝑞
0
holds, then 𝜆 = 0 is

always a root of (9) for all 𝜏 ≥ 0.

Let 𝑑
0
= (𝑏/𝑒)(𝑒+𝑃

∗
)
2, 𝑑
1
= 𝑝
1
(𝑒+𝑃
∗
)
2
/(1−𝜏𝜎)𝑎𝑒𝑃

∗
𝑍
∗,
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2
= (𝑒+𝑃

∗
)
2
[𝜏
2
𝑎𝑏𝑃
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𝑍
∗
𝜎−2(𝜎+(𝑟𝑃

∗
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∗
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we have the following results.

Lemma 2. Suppose that the condition (𝐻
2
) is satisfied.

(i) If 𝑑 = 𝑑
0

̸= 𝑑
1
, then (9) has a single zero root.

(ii) If 𝑑 = 𝑑
1

̸= 𝑑
2
, then (9) has a double zero root.

Proof. Clearly, 𝜆 = 0 is a root to (9) if and only if 𝑝
0
= 𝑞
0
,

whichmeans𝑑 = 𝑑
0
. Substituting𝑑 = 𝑑

0
into𝐹(𝜆) and taking

the derivative with respect to 𝜆, we obtain

𝐹
󸀠
(𝜆)

󵄨󵄨󵄨󵄨󵄨𝑑=𝑑0
= 3𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
− [𝑞
1
(1 − 𝜏𝜆) − 𝜏𝑞

0
] 𝑒
−𝜆𝜏

.

(11)

Then we can get

𝐹
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨𝑑=𝑑0
= 𝑝
1
− [𝑞
1
− 𝜏𝑞
0
] . (12)

For any 𝜏 > 0, by solving (12), we can obtain 𝑑 = 𝑑
1
. If 𝑑 =

𝑑
0

̸= 𝑑
1
, 𝐹󸀠(0) ̸= 0which means that 𝜆 = 0 is a single zero root

to (9), and hence the conclusion of (i) follows.
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From (11), it follows that

𝐹
󸀠󸀠
(𝜆)

󵄨󵄨󵄨󵄨󵄨𝑑=𝑑1
= 6𝜆 + 2𝑝

2
− [𝑞
1
(−2𝜏 + 𝜏

2
𝜆) + 𝜏

2
𝑞
0
] 𝑒
−𝜆𝜏

.

(13)

Then we get

𝐹
󸀠󸀠
(0)

󵄨󵄨󵄨󵄨󵄨𝑑=𝑑1
= 2𝑝
2
− [𝜏
2
𝑞
0
− 2𝑞
1
𝜏] . (14)

For any 𝜏 > 0, by solving (14), we can obtain 𝑑 = 𝑑
2
. If

𝑑 = 𝑑
1

̸= 𝑑
2
, 𝐹󸀠󸀠(0) ̸= 0 which means that 𝜆 = 0 is a double

zero root to (9), and hence the conclusion of (ii) follows.This
completes the proof.

From Lemma 2, we have the following result.

Theorem 3. Suppose that (𝐻
2
) holds if 𝑑 = 𝑑

0
̸= 𝑑
1
, then,

the system (5) undergoes a Pitchfork bifurcation at the positive
equilibrium.

3. Hopf-Pitchfork Bifurcation

In the following, we consider the case that (9) not only has a
zero root, but also has a pair of purely imaginary roots ±𝑖𝜔

(𝜔 > 0), when 𝑑 = 𝑑
0

̸= 𝑑
1
holds.

Substituting 𝜆 = 𝑖𝜔 (𝜔 > 0) and 𝑑 = 𝑑
0
into (9) and

separating the real and imaginary parts, one can get

−𝜔
3
+ 𝑝
1
𝜔 − 𝑞
1
𝜔 cos (𝜔𝜏) + 𝑞

0
sin (𝜔𝜏) = 0,

−𝑝
2
𝜔
2
+ 𝑝
0
− 𝑞
1
𝜔 sin (𝜔𝜏) − 𝑞

0
cos (𝜔𝜏) = 0.

(15)

It is easy to see from (15) that

𝜔
6
+ 𝐷
2
𝜔
4
+ 𝐷
1
𝜔
2
+ 𝐷
0
= 0, (16)

where

𝐷
2
= 𝑝
2

2
− 2𝑝
1
, 𝐷

1
= 𝑝
2

1
− 2𝑝
0
𝑝
2
− 𝑞
2

1
,

𝐷
0
= 𝑝
2

0
− 𝑞
2

0
.

(17)

Let 𝑧 = 𝜔
2. Then (16) can be written as

ℎ (𝑧) = 𝑧
3
+ 𝐷
2
𝑧
2
+ 𝐷
1
𝑧 + 𝐷

0
. (18)

In terms of the coefficient in ℎ(𝑧) define Δ by Δ = 𝐷
2

2
− 3𝐷
1
.

It is easy to know from the characters of cubic algebraic
equation that ℎ(𝑧) is a strictly monotonically increasing
function ifΔ ≤ 0. IfΔ > 0 and 𝑧

∗
= (√Δ−𝐷

2
)/3 < 0 orΔ > 0,

𝑧
∗

= (√Δ − 𝐷
2
)/3 > 0 but ℎ(𝑧∗) > 0, then ℎ(𝑧) has always

no positive root. Therefore, under these conditions, (9) has
no purely imaginary roots for any 𝜏 > 0 and this also implies
that the positive equilibrium 𝐸(𝑃

∗
, 𝑍
∗
,𝑊
∗
) of system (1) is

absolutely stable. Thus, we can obtain easily the following
result on the stability of positive equilibrium 𝐸(𝑃

∗
, 𝑍
∗
,𝑊
∗
)

of system (1).

Theorem 4. Assume that (𝐻
1
) holds and Δ ≤ 0 or Δ > 0

and 𝑧
∗

= (√Δ − 𝐷
2
)/3 < 0 or Δ > 0, 𝑧∗ > 0 and ℎ(𝑧

∗
) >

0. Then the positive equilibrium 𝐸(𝑃
∗
, 𝑍
∗
,𝑊
∗
) of system (5)

is absolutely stable; namely; 𝐸(𝑃∗, 𝑍∗,𝑊∗) is asymptotically
stable for any delay 𝜏 ≥ 0.

In what follows, we assume that the coefficients in ℎ(𝑧)

satisfy the condition

(𝐻
3
) Δ = 𝐷

2

2
− 3𝐷
1
> 0, 𝑧∗ = (√Δ − 𝐷

2
)/3 > 0, ℎ(𝑧∗) < 0.

Then, according to Lemma 2.2 in [17], we know that (16) has
at least a positive root 𝜔

0
; that is, the characteristic equation

(9) has a pair of purely imaginary roots ±𝑖𝜔
0
. Eliminating

sin(𝜔𝜏) in (15), we can get that the corresponding 𝜏
𝑘
> 0 such

that (9) has a pair of purely imaginary roots ±𝑖𝜔
0
, 𝜏
𝑘
> 0 are

given by

𝜏
𝑘
=

1

𝜔
0

arccos[
−𝑞
1
𝜔
4

0
+ (𝑝
1
𝑞
1
− 𝑝
2
𝑞
0
) 𝜔
2

0
+ 𝑝
0
𝑞
0

𝑞2
1
𝜔2
0
+ 𝑞2
0

]

+
2𝑘𝜋

𝜔
0

, (𝑘 = 0, 1, 2, . . .) .

(19)

Let 𝜆(𝜏) = V(𝜏) + 𝑖𝜔(𝜏) be the roots of (9) such that when
𝜏 = 𝜏
𝑘
satisfying V(𝜏

𝑘
) = 0 and 𝜔(𝜏

𝑘
) = 𝜔
0
. We can claim that

sgn [
𝑑 (Re 𝜆)

𝑑𝜏
]

𝜏=𝜏𝑘

= sgn {ℎ
󸀠
(𝜔
2

0
)} . (20)

In fact, differentiating two sides of (9) with respect to 𝜏, we
get

(
𝑑𝜆

𝑑𝜏
)

−1

= −
(3𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) − 𝑞
1
𝑒
−𝜆𝜏

+ (𝑞
1
𝜆 + 𝑞
0
) 𝜏𝑒
−𝜆𝜏

(𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒−𝜆𝜏

= −
(3𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) 𝑒
𝜆𝜏

(𝑞
1
𝜆 + 𝑞
0
) 𝜆

+
𝑞
1

(𝑞
1
𝜆 + 𝑞
0
) 𝜆

−
𝜏

𝜆
.

(21)

Then

sgn [
𝑑 (Re 𝜆)

𝑑𝜏
]

𝜏=𝜏𝑘

= sgn[Re(𝑑𝜆

𝑑𝜏
)

−1

]

𝜆=𝑖𝜔0

= sgn[Re(−
(3𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) 𝑒
𝜆𝜏

(𝑞
1
𝜆 + 𝑞
0
) 𝜆

+
𝑞
1

(𝑞
1
𝜆 + 𝑞
0
) 𝜆

−
𝜏

𝜆
)]

𝜆=𝑖𝜔0

= sgn Re[−
(𝑝
1
− 3𝜔
2

0
+ 2𝑝
2
𝜔
0
𝑖) [cos (𝜔

0
𝜏
𝑘
) + 𝑖 sin (𝜔

0
𝜏
𝑘
)]

(𝑞
1
𝜔
0
𝑖 + 𝑞
0
) 𝜔
0
𝑖

+
𝑞
1

(𝑞
1
𝜔
0
𝑖 + 𝑞
0
) 𝜔
0
𝑖
]
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= sgn 1

Λ
{[(𝑝
1
− 3𝜔
2

0
) cos (𝜔

0
𝜏
𝑘
) − 2𝑝

2
𝜔
0
sin (𝜔

0
𝜏
𝑘
)]

× (𝑞
1
𝜔
2

0
)

− [(𝑝
1
− 3𝜔
2

0
) sin (𝜔

0
𝜏
𝑘
) + 2𝑝

2
𝜔
0
cos (𝜔

0
𝜏
𝑘
)]

× 𝑞
0
𝜔
0
− 𝑞
2

1
𝜔
2

0
}

= sgn 1

Λ
{(3𝜔
2

0
− 𝑝
1
) 𝜔
0
[𝑞
1
𝜔
0
cos (𝜔

0
𝜏
𝑘
) − 𝑞
0
sin (𝜔

0
𝜏
𝑘
)]

− 2𝑝
2
𝜔
2

0
[𝑞
1
𝜔
0
sin (𝜔

0
𝜏
𝑘
) + 𝑞
0
cos (𝜔

0
𝜏
𝑘
)] − 𝑞

2

1
𝜔
2

0
}

= sgn 1

Λ
[3𝜔
6

0
+ 2 (𝑝

2

2
− 𝑝
1
) 𝜔
4

0
+ (𝑝
2

1
− 2𝑝
0
𝑝
2
− 𝑞
2

1
) 𝜔
2

0
]

= sgn
𝜔
2

0

Λ
[3𝜔
4

0
+ 2𝐷
2
𝜔
2

0
+ 𝐷
1
]

= sgn
𝜔
2

0

Λ
{ℎ
󸀠
(𝜔
2

0
)} = sgn {ℎ

󸀠
(𝜔
2

0
)} ,

(22)

where Λ = 𝑞
2

1
𝜔
4

0
+ 𝑞
2

0
𝜔
2

0
. It follows from the hypothesis

(𝐻
3
) that ℎ󸀠(𝜔2

0
) ̸= 0 and therefore the transversality condition

holds.

Lemma5. All the roots of (9), except a zero root, have negative
real parts when 𝑝

1
> 𝑞
1
; (i) of Lemma 2 and 𝜏 ∈ [0, 𝜏

0
) hold.

Proof. Consider

𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
− 𝑞
1
) 𝜆 + 𝑝

0
− 𝑞
0
= 𝜆 (𝜆

2
+ 𝑝
2
𝜆 + 𝑝
1
− 𝑞
1
) .

(23)

It is easy to get that the roots of (23) are 𝜆
1
= 0 and 𝜆

2,3
=

(−𝑝
2
±√𝑝2
2
− 4(𝑝
1
− 𝑞
1
))/2. If𝑝

1
−𝑞
1
> 0, all the roots of (23),

except a zero root, have negative real parts. We complete the
proof.

Summarizing the previous discussions, we have the fol-
lowing result.

Theorem 6. Suppose that the conditions (𝐻
1
), (𝐻
2
), and (𝐻

3
)

are satisfied.

(i) If 𝑑 = 𝑑
0

̸= 𝑑
1
and 𝜏 ∈ [0, 𝜏

0
), then the system (1)

undergoes a Pitchfork bifurcation at positive equilib-
rium 𝐸

∗.

(ii) If 𝑑 = 𝑑
0

̸= 𝑑
1
and 𝜏 = 𝜏

0
, then system (1) can undergo

aHopf-Pitchfork bifurcation at the positive equilibrium
𝐸
∗.

4. Conclusions

In this section, we present some particular cases of system (1)
as follows:

𝑑𝑃

𝑑𝑡
= 𝑟
1
𝑃(1 −

𝑃

𝐾
) − 𝑎𝑃𝑍,

𝑑𝑍

𝑑𝑡
= 𝑏𝑍𝑃 − 𝑐𝑍 − 𝑑

𝑃 (𝑡 − 𝜏)

𝑒 + 𝑃 (𝑡 − 𝜏)
𝑍.

(24)

From [2], we know that the system (24) undergoes a Hopf
bifurcation at the positive equilibrium. In this paper, we
get the condition that (9) has a zero root and also get the
conditions that (9) has double zero roots. Furthermore, we
obtain the conditions that (9) has a single zero root and a
pair of purely imaginary roots. Under this condition, system
(1) undergoes a Hopf-Pitchfork bifurcation at the positive
equilibrium. Especially, when 𝜏 = 0, system (24) reduces to

𝑑𝑃

𝑑𝑡
= 𝑟
1
𝑃(1 −

𝑃

𝐾
) − 𝑎𝑃𝑍,

𝑑𝑍

𝑑𝑡
= 𝑏𝑍𝑃 − 𝑐𝑍 − 𝑑

𝑃 (𝑡)

𝑒 + 𝑃 (𝑡)
𝑍.

(25)

We can conclude that the positive equilibrium𝐸(𝑃
∗
, 𝑍
∗
,𝑊
∗
)

is locally asymptotically stable in the absence of toxin delay.
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