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We study the existence of a positive periodic solution for second-order singular semipositone differential equation by a nonlinear
alternative principle of Leray-Schauder. Truncation plays an important role in the analysis of the uniform positive lower bound for
all the solutions of the equation. Recent results in the literature (Chu et al., 2010) are generalized.

1. Introduction

In this paper, we study the existence of positive 𝑇-periodic
solutions for the following singular semipositone differential
equation:

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥, 𝑥


) , (1)

where ℎ, 𝑎 ∈ 𝐶(𝑅/𝑇𝑍, 𝑅) and the nonlinearity𝑓 ∈ 𝐶((𝑅/𝑇𝑍)×
(0, +∞) × 𝑅, 𝑅) satisfies 𝑓(𝑡, 𝑥, 𝑥) ≥ −𝑀 for some𝑀 > 0. In
particular, the nonlinearity may have a repulsive singularity
at 𝑥 = 0, which means that

lim
𝑥→0

+

𝑓 (𝑡, 𝑥, 𝑦) = +∞, uniformly in (𝑡, 𝑦) ∈ 𝑅
2
. (2)

Electrostatic or gravitational forces are the most important
examples of singular interactions.

During the last two decades, the study of the existence
of periodic solutions for singular differential equations has
attracted the attention of many researchers [1–4]. Some
strong force conditions introduced by Gordon [5] are stan-
dard in the related earlier works [6, 7]. Compared with the
case of a strong singularity, the study of the existence of
periodic solutions under the presence of a weak singularity is
more recent [2, 8, 9], but has also attracted many researchers.
Some classical tools have been used to study singular dif-
ferential equations in the literature, including the method of
upper and lower solutions [10], degree theory [11], some fixed
point theorem in cones for completely continuous operators

[12], Schauder’s fixed point theorem [8, 9, 13], and a nonlinear
Leray-Schauder alternative principle [2, 3, 14, 15].

However the singular differential equations, in which
there is the damping term, that is, the nonlinearity is depen-
dent on the derivative, has not attractedmuch attention in the
literature. Several existence results can be found in [14, 16, 17].

The aim of this paper is to further show that the nonlinear
Leray-Schauder alternative principle can be applied to (1) in
the semipositone cases, that is, 𝑓(𝑡, 𝑥, 𝑥) ≥ −𝑀 for some
𝑀 > 0.

The remainder of the paper is organized as follows. In
Section 2, we state some known results. In Section 3, themain
results of this paper are stated and proved. To illustrate our
result, we select the following system:

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = (1 + |𝑥|

𝛾
) (𝑥
−𝛼
+ 𝜇𝑥
𝛽
) + 𝑒 (𝑡) , (3)

where 𝛼 > 1, 𝛽 > 0, 1 > 𝛾 ≥ 0, 𝜇 > 0 is a positive parameter,
𝑒(𝑡) is a 𝑇-periodic function.

In this paper, let us fix some notations to be used in the
following: given 𝜑 ∈ 𝐿

1
[0, 𝑇], we write 𝜑 ≻ 0 if 𝜑 ≥ 0

for almost everywhere 𝑡 ∈ [0, 𝑇] and it is positive in a set
of positive measure. The usual 𝐿𝑝-norm is denoted by ‖ ⋅ ‖

𝑝
.

𝑝
∗ and 𝑝

∗
the essential supremum and infinum of a given

function 𝑝 ∈ 𝐿1[0, 𝑇], if they exist.
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2. Preliminaries

We say that

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 0, (4)

associated to the periodic boundary conditions

𝑥 (0) = 𝑥 (𝑇) , 𝑥


(0) = 𝑥


(𝑇) , (5)

is nonresonant when its unique solutions is the trival one.
When (4)-(5) is nonresonant, as a consequence of Fredholm’s
alternative, the nonhomogeneous equation

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝑙 (𝑡) (6)

admits a unique 𝑇-periodic solution, which can be written as

𝑥 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑙 (𝑠) 𝑑𝑠, (7)

where 𝐺(𝑡, 𝑠) is the Green’s function of problem (4)-(5).
Throughout this paper, we assume that the following standing
hypothesis is satisfied.

(A) The Green function 𝐺(𝑡, 𝑠), associated with (4)-(5), is
positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

In other words, the strict antimaximum principle holds
for (4)-(5).

Definition 1. We say that (4) admits the antimaximum prin-
ciple if (6) has a unique 𝑇-periodic solution for any 𝑙 ∈
C(R/𝑇Z) and the unique 𝑇-periodic solution 𝑥

𝑙
(𝑡) > 0 for

all 𝑡 if 𝑙 ≻ 0.

Under hypothesis (A), we denote

𝐴 = min
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝐵 = max
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝜄 =
𝐴

𝐵
. (8)

Thus 𝐵 > 𝐴 > 0 and 0 < 𝜄 < 1. We also use𝑤(𝑡) to denote the
unique periodic solution of (6) with 𝑙(𝑡) = 1 under condition
(5), that is, 𝑤(𝑡) = (L1)(𝑡). In particular, 𝑇𝐴 ≤ 𝑤(𝑡) ≤ 𝑇𝐵.

With the help of [18, 19], the authors give a sufficient con-
dition to ensure that (4) admits the antimaximum principle
in [14]. In order to state this result, let us define the functions

𝜎 (ℎ) (𝑡) = exp(∫
𝑡

0

ℎ (𝑠) 𝑑𝑠) ,

𝜎
1
(ℎ) (𝑡) = 𝜎 (ℎ) (𝑇) ∫

𝑡

0

𝜎ℎ (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

𝜎 (ℎ) (𝑠) 𝑑𝑠.

(9)

Lemma 2 (see [14, Corollary 2.6]). Assume that 𝑎 ̸≡ 0 and
the following two inequalities are satisfied:

∫

𝑇

0

𝑎 (𝑠) 𝜎 (ℎ) (𝑠) 𝜎
1
(−ℎ) (𝑠) 𝑑𝑠 ≥ 0,

sup
0≤𝑡≤𝑇

{∫

𝑡+𝑇

𝑡

𝜎 (−ℎ) (𝑠) 𝑑𝑠 ∫

𝑡+𝑇

𝑡

[𝑎 (𝑠)]
+
𝜎 (ℎ) (𝑠) 𝑑𝑠} ≤ 4,

(10)

where [𝑎(𝑠)]
+
= max{𝑎(𝑠), 0}.Then theGreen’s function𝐺(𝑡, 𝑠),

associated with (5), is positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

Next, recall a well-known nonlinear alternative principle
of Leray-Schauder, which can be found in [20] and has been
used by Meehan and O’Regan in [4].

Lemma 3. Assume Ω is an open subset of a convex set 𝐾 in
a normed linear space 𝑋 and 𝑝 ∈ Ω. Let 𝑇 : Ω → 𝐾 be a
compact and continuous map. Then one of the following two
conclusions holds:

(I) 𝑇 has at least one fixed point inΩ.
(II) There exists 𝑥 ∈ 𝜕Ω and 0 < 𝜆 < 1 such that 𝑥 =

𝜆𝑇𝑥 + (1 − 𝜆)𝑝.

In applications below, we take 𝐾 = 𝐶
1

𝑇
= {𝑥 : 𝑥, 𝑥


∈

𝐶(𝑅/𝑇𝑍, 𝑅)} ⊂ 𝑋 with the norm ‖𝑥‖ = max
𝑡∈[0,𝑇]

|𝑥(𝑡)| and
define Ω = {𝑥 ∈ 𝐶

1

𝑇
: ‖𝑥‖ < 𝑟}.

3. Main Results

In this section, we prove a new existence result of (1).

Theorem 4. Suppose that (4) satisfies (A) and

𝑎 (𝑡) ≻ 0. (11)

Furthermore, assume that there exist three constants𝑀,𝑅
0
, 𝑟 >

𝑀𝑤
∗
/𝜄 such that:

(H
1
) 𝐹(𝑡, 𝑥, 𝑦) = 𝑓(𝑡, 𝑥, 𝑦)+𝑀 ≥ 0 for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇]×
(0, 𝑟] × 𝑅.

(H
2
) 𝑓(𝑡, 𝑥, 𝑦) ≥ 𝑔

0
(𝑥) for (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑅

0
] × 𝑅,

where the nonincreasing continuous function
𝑔
0
(𝑥) > 0 satisfies lim

𝑥→0
+𝑔
0
(𝑥) = +∞ and

lim
𝑥→0

+ ∫
𝑅
0

𝑥
𝑔
0
(𝑢)𝑑𝑢 = +∞.

(H
3
) 0 ≤ 𝐹(𝑡, 𝑥, 𝑦) ≤ (𝑔(𝑥) + ℎ(𝑥))(|𝑦|), for all (𝑡, 𝑥, 𝑦) ∈
[0, 𝑇] × (0, 𝑟] × 𝑅, where 𝑔(⋅) > 0 is nonincreasing in
(0, 𝑟] and ℎ(⋅)/𝑔(⋅) ≥ 0, (⋅) ≥ 0 are nondecreasing in
(0, 𝑟].

(H
4
)

𝑟

𝑔 (𝜄𝑟 − 𝑀𝑤∗) (1 + ℎ (𝑟) /𝑔 (𝑟))  ((𝑟 + 𝑀) 𝐿)
> 𝑤
∗
, (12)

where

𝐿 =

2 ∫
𝑇

0
𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑑𝑡

min
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡)
. (13)

Then (1) has at least one positive periodic solution 𝑢(𝑡)
with 0 < ‖𝑢 +𝑀𝑤‖ ≤ 𝑟.

Proof. For convinence, let us write 𝑍(𝑡) = 𝑥(𝑡) − 𝑀𝑤(𝑡),
𝑍
𝑛
(𝑡) = 𝑥

𝑛
(𝑡) − 𝑀𝑤(𝑡), where 𝑤(𝑡) = (L1)(𝑡). Let

𝐴
ℎ
= min
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡) , 𝐵
ℎ
= max
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡) , 𝜄
ℎ
=
𝐵
ℎ

𝐴
ℎ

,

(14)

𝑀
ℎ
= (𝑟 +𝑀) 𝐿 ⋅ max

0≤𝑡≤𝑇

|ℎ (𝑡)| . (15)
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First we show that

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝐹 (𝑡, 𝑍 (𝑡) , 𝑍



(𝑡)) (16)

has a solution 𝑥 satisfying (5), 0 < ‖𝑥‖ ≤ 𝑟 and 𝑍(𝑡) > 0 for
𝑡 ∈ [0, 𝑇]. If this is true, it is easy to see that 𝑍(𝑡) will be a
positive solution of (1)–(5) with 0 < ‖𝑍 +𝑀𝑤‖ ≤ 𝑟.

Choose 𝑛
0
∈ {1, 2, . . .} such that 1/𝑛

0
< 𝑟, and then let

𝑁
0
= {𝑛
0
, 𝑛
0
+ 1 + ⋅ ⋅ ⋅}.

Consider the family of equations

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝜆𝐹

𝑛
(𝑡, 𝑍 (𝑡) , 𝑍



(𝑡)) +
𝑎 (𝑡)

𝑛
, (17)

where 𝜆 ∈ [0, 1], 𝑛 ∈ 𝑁
0
, 𝑥 ∈ 𝐵

𝑟
= {𝑥 : ‖𝑥‖ < 𝑟} and

𝐹
𝑛
(𝑡, 𝑥, 𝑦) = 𝐹(𝑡,max{1/𝑛, 𝑥}, 𝑦).
A𝑇-periodic solution of (17) is just a fixed of the operator

equation

𝑥 = 𝜆𝑇
𝑛
(𝑥) + (1 − 𝜆) 𝑝, (18)

where 𝑝 = 1/𝑛 and 𝑇
𝑛
is a completely continuous operator

defined by

(𝑇
𝑛
𝑥) (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹
𝑛
(𝑠, 𝑍 (𝑠) , 𝑍



(𝑠)) 𝑑𝑠 +
1

𝑛
, (19)

where we have used the fact

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑑𝑠 ≡ 1. (20)

We claim that for any 𝑇-periodic solution 𝑥
𝑛
(𝑡) of (17)

satisfies


𝑥


𝑛


≤ 𝐿𝑟. (21)

Note that the solution 𝑥
𝑛
(𝑡) of (17) is also satisfies the

following equivalent equation

(𝜎 (ℎ) (𝑡) 𝑥


𝑛
)


+ 𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥
𝑛

= 𝜎 (ℎ) (𝑡) (𝜆𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛
) .

(22)

Integrating (22) from 0 to 𝑇, we obtain

∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥
𝑛
(𝑡) 𝑑𝑡

= ∫

𝑇

0

𝜎 (ℎ) (𝑡) (𝜆𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛
) 𝑑𝑡.

(23)

By the periodic boundary conditions, we have 𝑥(𝑡
0
) = 0

for some 𝑡
0
∈ [0, 𝑇]. Therefore,


𝜎 (ℎ) (𝑡) 𝑥



𝑛
(𝑡)


=



∫

𝑡

𝑡
0

(𝜎 (ℎ) (𝑠) 𝑥


𝑛
(𝑠))


𝑑𝑠



=



∫

𝑡

𝑡
0

𝜎 (ℎ) (𝑠) (𝜆𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) +

𝑎 (𝑠)

𝑛
− 𝑎 (𝑠) 𝑥

𝑛
(𝑠))



𝑑𝑠

≤



∫

𝑇

0

𝜎 (ℎ) (𝑠) (𝜆𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) +

𝑎 (𝑠)

𝑛
+ 𝑎 (𝑠) 𝑥

𝑛
(𝑠))



𝑑𝑠

= 2∫

𝑇

0

𝜎 (ℎ) (𝑠) 𝑎 (𝑠) 𝑥
𝑛
(𝑠) 𝑑𝑠

≤ 2𝑟∫

𝑇

0

𝜎 (ℎ) (𝑠) 𝑎 (𝑠) 𝑑𝑠,

(24)

where we have used the assumption (11) and ‖𝑥
𝑛
‖ < 𝑟.

Therefore,

(min
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡))

𝑥


𝑛
(𝑡)

≤ 2𝑟 ∫

𝑇

0

𝜎 (ℎ) (𝑠) 𝑎 (𝑠) 𝑑𝑠, (25)

which implies that (21) holds. In particular, let 𝜆𝐹
𝑛
(𝑡, 𝑍(𝑡),

𝑍

(𝑡)) + 𝑎(𝑡)/𝑛 = 1 in (17), we have


𝑤


(𝑡)

≤ 𝐿. (26)

Choose 𝑛
1
∈ 𝑁
0
such that 1/𝑛

1
≤ 𝑅
1
, and then let 𝑁

1
=

{𝑛
1
, 𝑛
1
+ 1, . . .}. The following lemma holds.

Lemma 5. There exists an integer 𝑛
2
> 𝑛
1
large enough such

that, for all 𝑛 ∈ 𝑁
2
= {𝑛
2
, 𝑛
2
+ 1, . . .},

𝑍
𝑛
(𝑡) = 𝑥

𝑛
(𝑡) − 𝑀𝑤 (𝑡) ≥

1

𝑛
. (27)

Proof. The lower bound in (27) is established by using the
strong force condition of 𝑓(𝑡, 𝑥, 𝑦). By condition (H

2
), there

exists 𝑅
1
∈ (0, 𝑅

0
) and a continuous function 𝑔

0
(𝑥) such that

𝐹 (𝑡, 𝑥, 𝑦) − 𝑎 (𝑡) 𝑥 ≥ 𝑔
0
(𝑥) > max {𝑀 +𝑀, 𝜄

ℎ
𝑟‖𝑎‖
1
}

(28)
for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑅

1
] ×𝑅, where 𝑔

0
(𝑥) satisfies also

the strong force condition like in (H
2
).

For 𝑛 ∈ 𝑁
1
, let 𝛼
𝑛
= min

0≤𝑡≤𝑇
𝑍
𝑛
(𝑡), 𝛽
𝑛
= max

0≤𝑡≤𝑇
𝑍
𝑛
(𝑡).

If 𝛼
𝑛
≥ 𝑅
1
, due to 𝑛 ∈ 𝑁

1
, (27) holds.

If 𝛼
𝑛
< 𝑅
1
, we claim that, for all 𝑛 ∈ 𝑁

1
,

𝛽
𝑛
> 𝑅
1
. (29)

Otherwise, suppose that 𝛽
𝑛
≤ 𝑅
1
for some 𝑛 ∈ 𝑁

1
. Then it is

easy to verify
𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) > 𝜄

ℎ
𝑟‖𝑎‖
1
. (30)

In fact, if 1/𝑛 ≤ 𝑍
𝑛
(𝑡) ≤ 𝑅

1
, we obtain from (28)

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) = 𝐹 (𝑡, 𝑍

𝑛
(𝑡) , 𝑍



𝑛
(𝑡))

≥ 𝑎 (𝑡) 𝑍
𝑛
(𝑡) + 𝑔

0
(𝑍
𝑛
(𝑡))

≥ 𝑔
0
(𝑍
𝑛
(𝑡))

> 𝜄
ℎ
𝑟‖𝑎‖
1
.

(31)
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and, if 𝑍
𝑛
(𝑡) ≤ 1/𝑛, we have

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) = 𝐹(𝑡,

1

𝑛
, 𝑍


𝑛
(𝑡)) ≥

𝑎 (𝑡)

𝑛
+ 𝑔
0
(
1

𝑛
)

≥ 𝑔
0
(
1

𝑛
) > 𝜄
ℎ
𝑟‖𝑎‖
1
.

(32)

Integrating (22) (with 𝜆 = 1) from 0 to 𝑇, we deduce that

0 = ∫

𝑇

0

{(𝜎 (ℎ) (𝑡) 𝑥


𝑛
)


+ 𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥
𝑛

−𝜎 (ℎ) (𝑡) (𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛
)} 𝑑𝑡

= ∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥
𝑛
𝑑𝑡

− ∫

𝑇

0

𝜎 (ℎ) (𝑡) 𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) 𝑑𝑡

− ∫

𝑇

0

𝜎 (ℎ) (𝑡)
𝑎 (𝑡)

𝑛
𝑑𝑡

< ∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥
𝑛
𝑑𝑡

− ∫

𝑇

0

𝜎 (ℎ) (𝑡) 𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) 𝑑𝑡

< 0,

(33)

where estimation (30) and the fact ‖𝑥
𝑛
‖ < 𝑟 are used. This is

a contradiction. Hence (29) holds.
Due to 𝛼

𝑛
< 𝑅
1
, that is, 𝛼

𝑛
= min

0≤𝑡≤𝑇
[𝑥
𝑛
(𝑡) − 𝑀𝑤(𝑡)] =

𝑥
𝑛
(𝑎
𝑛
) − 𝑀𝑤(𝑎

𝑛
) < 𝑅

1
for some 𝑎

𝑛
∈ [0, 𝑇]. By (29), there

exists 𝑐
𝑛
∈ [0, 𝑇] (without loss of generality, we assume 𝑎

𝑛
<

𝑐
𝑛
.) such that 𝑥

𝑛
(𝑐
𝑛
) = 𝑀𝑤(𝑐

𝑛
) + 𝑅
1
and 𝑥

𝑛
(𝑡) ≤ 𝑀𝑤(𝑡) + 𝑅

1

for 𝑎
𝑛
≤ 𝑡 ≤ 𝑐

𝑛
.

It can be checked that

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) > 𝑎 (𝑡) 𝑍

𝑛
(𝑡) + 𝑀 +𝑀

ℎ
, (34)

where𝑀
ℎ
is defined by (15).

In fact, if 𝑡 ∈ [𝑎
𝑛
, 𝑐
𝑛
] is such that 1/𝑛 ≤ 𝑍

𝑛
(𝑡) ≤ 𝑅

1
, we

have

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡))

= 𝐹 (𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡))

≥ 𝑎 (𝑡) 𝑍
𝑛
(𝑡) + 𝑔

0
(𝑥) > max {𝑀 +𝑀, 𝜄

ℎ
𝑟‖𝛼‖
1
}

≥ 𝑎 (𝑡) 𝑍
𝑛
(𝑡) + 𝑀 +𝑀.

(35)

and, if 𝑡 ∈ [𝑎
𝑛
, 𝑐
𝑛
] is such that 𝑍

𝑛
(𝑡) ≤ 1/𝑛, we have

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) = 𝐹 (𝑡,

1

𝑛
, 𝑍


𝑛
(𝑡))

≥
𝑎 (𝑡)

𝑛
+ 𝑔
0
(
1

𝑛
) >

𝑎 (𝑡)

𝑛
+𝑀 +𝑀

ℎ

≥ 𝑎 (𝑡) 𝑍
𝑛
(𝑡) + 𝑀 +𝑀

ℎ
.

(36)

So (34) holds.
Using (17) (with 𝜆 = 1) for 𝑥

𝑛
(𝑡) and the estimation (34),

we have, for 𝑡 ∈ [𝑎
𝑛
, 𝑐
𝑛
]

𝑍


𝑛
(𝑡) = − ℎ (𝑡) 𝑍



𝑛
(𝑡) − 𝑎 (𝑡) 𝑍

𝑛
(𝑡)

− 𝑀 + 𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛

> − ℎ (𝑡) 𝑍


𝑛
(𝑡) − 𝑎 (𝑡) 𝑍

𝑛
(𝑡)

− 𝑀 + 𝑎 (𝑡) 𝑍
𝑛
(𝑡) + 𝑀 +𝑀

ℎ
+
𝑎 (𝑡)

𝑛

≥ −𝑀
ℎ
− 𝑎 (𝑡) 𝑍

𝑛
(𝑡) − 𝑀

+ 𝑎 (𝑡) 𝑍
𝑛
(𝑡) + 𝑀 +𝑀

ℎ
+
𝑎 (𝑡)

𝑛

≥
𝑎 (𝑡)

𝑛
≥ 0.

(37)

As 𝑍
𝑛
(𝑎
𝑛
) = 0, 𝑍

𝑛
(𝑡) > 0 for all 𝑡 ∈ [𝑎

𝑛
, 𝑐
𝑛
], so 𝑍

𝑛
(𝑡) is strictly

increasing on [𝑎
𝑛
, 𝑐
𝑛
].Weuse 𝜉

𝑛
to denote the inverse function

of 𝑍
𝑛
restricted to [𝑎

𝑛
, 𝑐
𝑛
].

Suppose that (27) does not hold, that is, for some 𝑛 ∈ 𝑁
1
,

𝑍
𝑛
(𝑡) < 1/𝑛 < 𝑅

1
. Then there would exist 𝑏

𝑛
∈ (𝑎
𝑛
, 𝑐
𝑛
) such

that 𝑍
𝑛
(𝑏
𝑛
) = 1/𝑛 and

𝑍
𝑛
(𝑡) ≤

1

𝑛
for 𝑎
𝑛
≤ 𝑡 ≤ 𝑏

𝑛
,

1

𝑛
≤ 𝑍
𝑛
(𝑡) ≤ 𝑅

1
for 𝑏
𝑛
≤ 𝑡 ≤ 𝑐

𝑛
.

(38)

Multiplying (17) (with 𝜆 = 1) by 𝑍
𝑛
(𝑡) and integrating from

𝑏
𝑛
to 𝑐
𝑛
, we obtain

∫

𝑅
1

1/𝑛

𝐹 (𝜉
𝑛
(𝑍) , 𝑍, 𝑍


) 𝑑𝑍

= ∫

𝑐
𝑛

𝑏
𝑛

𝐹 (𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐
𝑛

𝑏
𝑛

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐
𝑛

𝑏
𝑛

(𝑥


𝑛
(𝑡) + ℎ (𝑡) 𝑥



𝑛
(𝑡) + 𝑎 (𝑡) 𝑥

𝑛
(𝑡) −

𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡
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= ∫

𝑐
𝑛

𝑏
𝑛

𝑥


𝑛
(𝑡) (𝑥


𝑛
(𝑡) − 𝑀𝑤



(𝑡)) 𝑑𝑡 + ∫

𝑐
𝑛

𝑏
𝑛

ℎ (𝑡) 𝑥


𝑛
(𝑡) 𝑍


𝑛
(𝑡) 𝑑𝑡

+ ∫

𝑐
𝑛

𝑏
𝑛

(𝑎 (𝑡) 𝑥
𝑛
(𝑡) −

𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡.

(39)

By the facts ‖𝑥
𝑛
‖ < 𝑟, ‖𝑥

𝑛
‖ ≤ 𝐿𝑟, ‖𝑤‖ ≤ 𝑟 and the

definition of 𝑍
𝑛
(𝑡), we can obtain |𝑍

𝑛
(𝑡)| ≤ 𝑟 + 𝑇𝐵, |𝑍



𝑛
(𝑡)| ≤

(𝑟+𝑀)𝐿, together with ‖𝑥
𝑛
‖ < 𝑟, implies that the second term

and the third term are bounded. The first term is

([𝑥


𝑛
(𝑐
𝑛
)]
2

− [𝑥


𝑛
(𝑏
𝑛
)]
2

)

2

−𝑀(𝑥


𝑛
(𝑐
𝑛
) 𝑤

(𝑐
𝑛
) − 𝑥


𝑛
(𝑏
𝑛
) 𝑤

(𝑏
𝑛
))

+𝑀∫

𝑐
𝑛

𝑏
𝑛

𝑥


𝑛
(𝑡) 𝑤


(𝑡) 𝑑𝑡,

(40)

which is also bounded.As a consequence, there exists a𝐵
1
> 0

such that

∫

𝑅
1

1/𝑛

𝐹 (𝜉
𝑛
(𝑍) , 𝑍, 𝑍


) 𝑑𝑍 ≤ 𝐵

1
. (41)

On the other hand, by (H
2
), we can choose 𝑛

2
∈ 𝑁
1
large

enough such that

∫

𝑅
1

1/𝑛

𝐹 (𝜉
𝑛
(𝑍) , 𝑍, 𝑍


) 𝑑𝑍 ≥ ∫

𝑅
1

1/𝑛

𝑔
0
(𝑍) 𝑑𝑍 > 𝐵

1
(42)

for all 𝑛 ∈ 𝑁
2
= {𝑛
2
, 𝑛
2
+ 1, . . .}. So (27) holds.

Furthermore, we can prove 𝑍
𝑛
(𝑡) has a uniform positive

lower bound 𝛿.

Lemma 6. There exist a constant 𝛿 > 0 such that, for all 𝑛 ∈
𝑁
2
,

𝑍
𝑛
(𝑡) ≥ 𝛿. (43)

Proof. Multiplying (17) (with 𝜆 = 1) by 𝑍
𝑛
(𝑡) and integrating

from 𝑎
𝑛
to 𝑐
𝑛
, we obtain

∫

𝑅
1

𝛼
𝑛

𝐹 (𝜉
𝑛
(𝑍) , 𝑍, 𝑍


) 𝑑𝑍

= ∫

𝑐
𝑛

𝑎
𝑛

𝐹 (𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐
𝑛

𝑎
𝑛

𝐹
𝑛
(𝑡, 𝑍
𝑛
(𝑡) , 𝑍



𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐
𝑛

𝑎
𝑛

(𝑥


𝑛
(𝑡) + ℎ (𝑡) 𝑥



𝑛
(𝑡) + 𝑎 (𝑡) 𝑥

𝑛
(𝑡) −

𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐
𝑛

𝑎
𝑛

𝑥


𝑛
(𝑡) (𝑥


𝑛
(𝑡) − 𝑀𝑤



(𝑡)) 𝑑𝑡 + ∫

𝑐
𝑛

𝑎
𝑛

ℎ (𝑡) 𝑥


𝑛
(𝑡) 𝑍


𝑛
(𝑡) 𝑑𝑡

+ ∫

𝑐
𝑛

𝑎
𝑛

(𝑎 (𝑡) 𝑥
𝑛
(𝑡) −

𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡.

(44)

In the same way as in the proof of (41), one way readily
prove that the right-hand side of the above equality is
bounded. On the other hand, if 𝑛 ∈ 𝑁

2
, by (H

2
),

∫

𝑅
1

𝛼
𝑛

𝐹 (𝜉
𝑛
(𝑍) , 𝑍, 𝑍


) 𝑑𝑍

≥ ∫

𝑅
1

𝛼
𝑛

𝑔
0
(𝑍) 𝑑𝑍 +𝑀(𝑅

1
− 𝛼
𝑛
) → +∞

(45)

if 𝛼
𝑛
→ 0
+
. Thus we know that there exists a constant 𝛿 > 0

such that 𝛼
𝑛
≥ 𝛿. Hence (43) holds.

Next, we will prove (17) has periodic solution 𝑥
𝑛
(𝑡).

For 𝜄𝑟 > 0, we can choose 𝑛
3
∈ 𝑁
2
such that 1/𝑛

3
< 𝜄𝑟,

which together with (H
4
) imply

𝑤
∗
𝑔 (𝜄𝑟 − 𝑀𝑤

∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿) +

1

𝑛
3

< 𝑟. (46)

Let𝑁
3
= {𝑛
3
, 𝑛
3
+ 1, . . .}. For 𝑛 ∈ 𝑁

3
, consider (17).

Next we claim that any fixed point 𝑥
𝑛
of (18) for any 𝜆 ∈

[0, 1] must satisfy ‖𝑥
𝑛
‖ ̸= 𝑟. So, by using the Leray-Schauder

alternative principle, (17) (with 𝜆 = 1) has a periodic solution
𝑥
𝑛
(𝑡). Otherwise, assume that 𝑥

𝑛
is a fixed point 𝑥

𝑛
of (18) for

some 𝜆 ∈ [0, 1] such that ‖𝑥
𝑛
‖ = 𝑟. Note that

𝑥
𝑛
(𝑡) −

1

𝑛
= 𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠

≥ 𝜆𝐴∫

𝑇

0

𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠

= 𝜄𝐵𝜆∫

𝑇

0

𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠

≥ 𝜄max
𝑡∈[0,𝑇]

{𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠}

= 𝜄


𝑥
𝑛
−
1

𝑛


.

(47)

For 𝑛 ∈ 𝑁
3
, we have

𝑥
𝑛
(𝑡) ≥ 𝜄


𝑥
𝑛
−
1

𝑛


+
1

𝑛
≥ 𝜄 (

𝑥𝑛
 −

1

𝑛
) +

1

𝑛
≥ 𝜄𝑟. (48)

By (27) and assumption (H
3
), for all 𝑡 ∈ [0, 𝑇] and 𝑛 ∈ 𝑁

3
,

we have

𝑥
𝑛
(𝑡)

= 𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹
𝑛
(𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠 +

1

𝑛

= 𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠 +

1

𝑛
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≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑍
𝑛
(𝑠) , 𝑍



𝑛
(𝑠)) 𝑑𝑠 +

1

𝑛

≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) (𝑔 (𝑍
𝑛
(𝑠)) + ℎ (𝑍

𝑛
(𝑠)))  (


𝑍


𝑛
(𝑠)

) 𝑑𝑠

+
1

𝑛

≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑍
𝑛
(𝑠)) (1 +

ℎ (𝑍
𝑛
(𝑠))

𝑔 (𝑍
𝑛
(𝑠))

)  (

𝑍


𝑛
(𝑠)

) 𝑑𝑠

+
1

𝑛

≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑔 (𝜄𝑟 − 𝑀𝑤
∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿) 𝑑𝑠

+
1

𝑛

≤ 𝑔 (𝜄𝑟 − 𝑀𝑤
∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿)𝑤

∗
+
1

𝑛
3

.

(49)

Therefore,

𝑟 = ‖𝑥‖ ≤ 𝑔 (𝜄𝑟 − 𝑀𝑤
∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿)𝑤

∗
+
1

𝑛
3

.

(50)

This is a contradiction to the choice of 𝑛
3
and the claim is

proved.
The fact ‖𝑥

𝑛
‖ < 𝑟 and ‖𝑥

𝑛
(𝑡)‖ < 𝐿𝑟 show that {𝑥

𝑛
}
𝑛∈𝑁
3

is
a bounded and equicontinuous family on [0, 𝑇]. NowArzela-
Ascoli Theorem guarantees that {𝑥

𝑛
}
𝑛∈𝑁
3

has a subsequence
{𝑥
𝑛
𝑘

}
𝑘∈N, converging uniformly on [0, 𝑇] to a function 𝑥 ∈

𝐶[0, 𝑇]. From the fact ‖𝑥
𝑛
‖ < 𝑟 and 𝑥

𝑛
(𝑡) > 𝛿, 𝑥 satisfies

𝛿 ≤ 𝑥(𝑡) ≤ 𝑟 for all 𝑡. Moreover, {𝑥
𝑛
𝑘

} satisfies the integral
equation

𝑥
𝑛
𝑘

(𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑍
𝑛
𝑘

(𝑠) , 𝑍


𝑛
𝑘

(𝑠)) 𝑑𝑠 +
1

𝑛
𝑘

. (51)

Letting 𝑘 → ∞, we arrive at

𝑥 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠) − 𝑀𝑤 (𝑠) , 𝑥


(𝑠) − 𝑀𝑤


(𝑠)) 𝑑𝑠,

(52)

where the uniform continuity of 𝐹(𝑡, 𝑥, 𝑦) on [0, 𝑇] × [𝛿, 𝑟] ×
[−(𝑟 + 𝑀)𝐿, (𝑟 + 𝑀)𝐿] is used. Therefore, 𝑥 is a positive
periodic solution of (16) and 𝑍(𝑡) = 𝑥(𝑡) − 𝑀𝑤(𝑡) ≥ 𝛿. Thus
we complete the prove of Theorem 4.

Corollary 7. Let the nonlinearity in (1) be

𝑓 (𝑡, 𝑥, 𝑦) = (1 +
𝑦


𝛾

) (𝑥
−𝛼
+ 𝜇𝑥
𝛽
) + 𝑒 (𝑡) , (53)

where 𝛼 > 1, 𝛽 > 0, 1 > 𝛾 ≥ 0, 𝜇 > 0 is a positive parameter,
𝑒(𝑡) is a 𝑇-periodic function.

(i) If 𝛽 + 𝛾 < 1, then (1) has at least one positive periodic
solution for each 𝜇 > 0.

(ii) If 𝛽 + 𝛾 ≥ 1, then (1) has at least one positive periodic
solution for each 0 < 𝜇 < 𝜇

1
, where 𝜇

1
is some positive

constant.

Proof. We will apply Theorem 4 with 𝑀 = max
0≤𝑡≤𝑇

|𝑒(𝑡)|

and 𝑔(𝑥) = 𝑥
−𝛼
, ℎ(𝑥) = 𝜇𝑥

𝛽
+ 2𝑀, (𝑦) = 1 + |𝑦|

𝛾. Then
condition (H

1
)–(H
3
) are satisfied and existence condition

(H
4
) becomes

𝜇 <
𝑟(𝜄𝑟 − 𝑀𝑤

∗
)
𝛼

− 𝑤
∗
(1 + (𝑟 +𝑀)

𝛾
𝐿
𝛾
) (1 + 2𝑀𝑟

𝛼
)

𝑤∗ (1 + (𝑟 +𝑀)
𝛾
𝐿𝛾) 𝑟𝛼+𝛽

.

(54)

So (1) has at least one positive periodic solution for

0 < 𝜇 < 𝜇
1

= sup
𝑟>𝑀𝑤

∗
/𝜄

(𝑟(𝜄𝑟 − 𝑀𝑤
∗
)
𝛼

− 𝑤
∗
(1 + (𝑟 +𝑀)

𝛾
𝐿
𝛾
)

× (1 + 2𝑀𝑟
𝛼
) )

× (𝑤
∗
(1 + (𝑟 +𝑀)

𝛾
𝐿
𝛾
)𝑟
𝛼+𝛽
)
−1

.

(55)

Note that 𝜇
1
= ∞ if 𝛽 + 𝛾 < 1 and 𝜇

1
< ∞ if 𝛽 + 𝛾 ≥ 1. We

have the desired results.
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