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The realistic representation of an irregular geological body is essential to the construction of a particle simulation model. A three-
dimensional (3D) sphere generator for an irregular model (SGIM), which is based on the platform ofMicrosoft Foundation Classes
(MFC) in VC++, is developed to accurately simulate the inherent discontinuities in geological bodies. OpenGL is employed to
visualize the modeling in the SGIM. Three key functions, namely, the basic-model-setup function, the excavating function, and
the cutting function, are implemented. An open-pit slope is simulated using the proposed model. The results demonstrate that an
extremely irregular 3D model of a geological body can be generated using the SGIM and that various types of discontinuities can
be inserted to cut the model. The data structure of the model that is generated by the SGIM is versatile and can be easily modified
to match various numerical calculation tools. This can be helpful in the application of particle simulation methods to large-scale
geoengineering projects.

1. Introduction

Although particle-based methods such as the discrete ele-
ment method (DEM) [1–4] and discontinuous deformation
analysis (DDA) [5, 6] have been used to solve numerous
types of engineering-oriented problems [7–13], the following
fundamental simulation issues should be addressed to ensure
that these methods solve static and quasistatic problems
in a precise and efficient manner [14]. The first simulation
issue involves the acquisition of the particle-scale mechanical
properties of a particle from the measured macroscopic
mechanical properties of rocks. The second simulation issue
is that fictitious time instead of physical time is used in the
particle simulation of a quasistatic problem.The third issue is
that the conventional loading procedure used in the distinct
elementmethod is conceptually inaccurate from a force prop-
agation point of view. After these fundamental problemswere
successfully addressed, a new type of particle-based method,
known as the particle simulation method [14, 15], was pro-
posed and implemented to solve several types of geological

and engineering problems associated with large-scale static,
quasistatic, and dynamic systems [16–23].

The first step in applying particle simulation methods to
solve any practical engineering problem involves the genera-
tion of a particle model of discrete objects, which are packed
in a form that realistically represents the physical model of
the problem. Extensive research has been conducted on this
topic [24–28], in which the shapes of the particles include
disc (under 2D conditions), sphere, ellipsoid, and tetrahedron
shapes. The use of simplified geometric entities to model
discrete objects has been demonstrated to provide acceptable
approximations of complex physical phenomena [25]. Due to
the simple contact detection of spheres, it has been exten-
sively used as a basic element to compute different types of
discretemodels.Thepacking of spherical particles in a certain
domain has become the focus of research in recent years.

The majority of studies on sphere generation algorithms
focus on ways to efficiently generate spheres and pack them
in a container [24, 25, 29–32]. These algorithms are usually
applied in the DEM or DDA.The algorithm described in [31]
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Figure 1: Program structure of the SGIM.

generates small balls that are enlarged until the domain is
completely filled. Under the action of gravity, the balls fall,
roll, and come to rest in a stable and dense state. This sphere-
generation algorithm is used extensively in the popular
particle flow code (PFC) [33]. A shortcoming of ordinary
algorithms is that they are time consuming. To overcome this
disadvantage, an advancing front face (AFF) algorithm for
particle packing was also proposed [32]. The application of a
spherical particle model to simulate a geological body is
challenging because geological bodies frequently contain
extremely irregular surfaces. As the main component of a
geological body, a rock mass is not a homogeneous material
due to numerous discontinuities (joints and faults). The
failure mode of a geological body highly depends on the dis-
tribution of discontinuities; the influence of discontinuities
requires consideration. Research on this aspect has been con-
ducted by Scholtès and Donzé [9] and John et al. [12]. A 3D
numerical model that is based on the discrete element
method, in which preexisting discontinuities are initially
inserted into the particle model, was used to model the pro-
gressive failure of a jointed rockmass.However, because these
models are extremely simple, they inadequately represent a
geological body. Although several similar studies have
attempted to consider discontinuities, they do not consider
the complexity of a geological body, which is a basic require-
ment to successfully obtain realistic particle simulationmod-
els for geoengineering projects.

Few studies focus on the implementation of an irregular
body into spherical particle modeling for complex engi-
neering, especially large-scale geological body models with
extremely irregular surfaces. The majority of existing meth-
ods are predominantly applied to the secondary development
of certain existing programs [7] or commercial software [9,
12], for which development of a complex 3D model to solve
numerous modeling problems in real engineering projects is
challenging.

To overcome these difficulties, the platform of Microsoft
Foundation Classes (MFC) in VC++ is used to develop a pro-
gram, which is referred to as a 3D sphere generator for irreg-
ular models (SGIM) in this paper. Step-by-step visualization
modeling operations can be implemented using this program.
Different types of discontinuities can be inserted to cut the
model to obtain a more realistic rock mass, which is sig-
nificant to the application of particle simulation methods
in numerical simulation of large-scale geoengineering prob-
lems.

2. Program Structure

Thestructure of the SGIM is illustrated in Figure 1.Themodel
parameters are inputted from a keyboard and mouse and
subsequently translated into the basic model, the excavat-
ing faces and the discontinuities by the basic-model-setup
function, the excavating-faces-generating function, and the
discontinuities-generating function, respectively. The basic
model is excavated by excavating faces via the excavating
function and is cut by discontinuities via the cutting function.
Thus, the basic-model-setup, excavating, and cutting func-
tions are key elements in the program. A model with spher-
ical particles, which can perform numerical calculations, is
obtained. By utilizing theOpenGL-drawing function, various
components of themodel are displayed on a computer screen.
By employing themodel-showing parameter-operation func-
tion, the model can be moved, rotated, and displayed in
different scales and in animation mode. All or part of the
components can be hidden or displayed translucently.

3. Algorithms of the Three Key Functions

3.1. Basic-Model-Setup Function. The first function, which is
referred to as the basic-model-setup function, facilitates the
development of the basic model. It comprises a cuboid with
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edges parallel to the coordinate axes. In the current version
of the SGIM, the equal spheres packing method is applied.
All balls in the model contain the same radii and are packed
by row, column, and layer. Note that selection of the particle
size is a fundamental problem inmodelingwith spherical par-
ticles. An arrangement of spheres with equivalent sizes may
result in a lattice effect on themechanical behavior of the par-
ticle assembly. For this reason, the random packing method
is usually recommended. However, implementation of this
method is time consuming for a large-scale geological body.
In the proposed model, a small particle size was adopted,
which can reduce the lattice effect.The optimal size was based
on a trial-and-error method. The number of rows, columns,
and layers is obtained as

𝐼 =
𝑧
2
− 𝑧
1

2𝑟
,

𝐽 =
𝑦
2
− 𝑦
1

2𝑟
,
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2
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,

(𝐼, 𝐽, and𝐾 rounding to integers) ,

(1)

where 𝐼, 𝐽, and𝐾 are the number of rows, columns, and layers,
respectively; 𝑥

2
−𝑥
1
,𝑦
2
−𝑦
1
, and 𝑧

2
−𝑧
1
comprise the intervals

that define the model in the Cartesian coordinates 𝑥, 𝑦, and
𝑧, respectively; and 𝑟 is the radius of the sphere.

The center coordinates of a sphere are defined as

𝑥 = 𝑥
1
+ 𝑟 (2𝑘 − 1) ,

𝑦 = 𝑦
1
+ 𝑟 (2𝑗 − 1) ,
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(2)

where 𝑥, 𝑦, and 𝑧 are the three components of the center
coordinates of the sphere, and 𝑖, 𝑗, and 𝑘 are the layer, the row
and the column, respectively, in which the sphere is located
(𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽; and 𝑘 = 1, 2, . . . , 𝐾).

3.2. Excavating Function. The second function is used to
excavate the basic model. Excavating faces are composed of
a series of interconnected triangular facets. These facets are
obtained by inputting the coordinates of the points located
along the edges of the excavating faces. The principle of an
excavating function is to delete the spheres of the basic model
if their centers are located in excavating spaces.

As shown in Figure 2, three noncollinear points 𝐿
0
,𝑀
0
,

and 𝑁
0
compose a triangular facet (denoted by Δ𝐿

0
𝑀
0
𝑁
0
).

Δ𝐿
0
𝑀
0
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0
denotes the intersection of two spaces: space 𝐼 and

space 𝐼𝐼. Space 𝐼 (blue color) is defined as the region located
inside the regular infinite-length prism in which the distance
toΔ𝐿

0
𝑀
0
𝑁
0
is smaller than 𝑟. Space 𝐼𝐼 (pink color) is defined

as the region situated inside the vertical prism and above
Δ𝐿
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0
. The excavating space associated with Δ𝐿

0
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(denoted by Ω) is defined as Ω = 𝐼 ∪ 𝐼𝐼. The condition that
enables the center of one sphere to be located in excavating
space Ω is calculated by the following seven steps.
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Figure 2: Excavating space of a triangular facet.

(1) The equation of the plane 𝐿
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can be written as
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where
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and ⃗𝑛
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(3) The equations of the planes that correspond to the
three sides of the prism 𝐿
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using the method described in step (1) as follows:
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Note that, when𝐶
0
= 0,Δ𝐿

0
𝑀
0
𝑁
0
is a vertical plane, and

space 𝐼𝐼 becomes a face. Thus, 𝐶
0
̸= 0 is a prerequisite for the

calculation of space 𝐼𝐼.
The excavating space of one triangular facet can be calcu-

lated with these seven steps. The total excavating spaces are
the union of the excavating spaces of all triangular facets.

3.3. Cutting Function. The cutting function, which is
employed to cut the basic model with discontinuities, is
based on certain assumptions. Several studies indicate that
nearly equivalent lengths of discontinuities exist in the strike
direction and the dip direction. As a result, the hypothesis
that the discontinuity in 3D space can be described as a
thin disc is often adopted [34, 35]. In this study, this same
hypothesis is employed, and the discontinuities are divided
into two types: the first type is zero-thickness discontinuity,
and the second type is non-zero-thickness discontinuity. The
objective is to obtain a realistic rock mass by cutting intact
rock mass with discontinuities. The spheres located in the
domain in which discontinuities cut through the rock mass
aremarked in the SGIMwith specific colors, such as red, blue,
and green. For a discontinuity with thickness, the spheres
are shown in red if the distances from their centers to the
discontinuity are smaller than half of the thickness, whereas
the spheres adhering to the two sides of the discontinuity are
shown in green and blue for zero-thickness discontinuities.
When the spherical particle model is used for numerical
calculation in the DEM or DDA, the bond strength between
two spheres is dependent on the colors of the spheres. No
bond forms if the spheres are green blue or if at least one of the
spheres is red. The influence of discontinuities on the model
is reflected in the mechanical calculations.

Figure 3 provides a spatial representation of a discontinu-
ity using a disc plane. As seen in Figure 3, discontinuities with
radius𝑅, thickness 𝑑, coordinates of center𝑀(𝑥

1
, 𝑦
1
, 𝑧
1
), and

normal vector ⃗𝑆 = {𝐴, 𝐵, 𝐶} exist. The condition that one
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Figure 3: A disc plane that represents discontinuity in 3D space.

sphere is marked with red, green, or blue is calculated by the
following steps, where the center of the sphere is assumed
𝑂(𝑥
0
, 𝑦
0
, 𝑧
0
).

(1) The center of the sphere must be located inside the
infinite-length cylinder with one of its normal sec-
tions as the discontinuity.This is guaranteed by (13) as
follows:

󵄨󵄨󵄨󵄨󵄨󵄨

󳨀󳨀󳨀→
𝑀𝑂 × ⃗𝑆

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
⃗𝑆
󵄨󵄨󵄨󵄨󵄨

≤ 𝑅. (13)

(2) When 𝑑 ̸= 0, the sphere is marked with red if
󵄨󵄨󵄨󵄨𝐴 (𝑥1 − 𝑥0) + 𝐵 (𝑦1 − 𝑦0) + 𝐶 (𝑧1 − 𝑧0)

󵄨󵄨󵄨󵄨

√𝐴2 + 𝐵2 + 𝐶2
≤
𝑑

2
. (14)

(3) When 𝑑 = 0, the sphere is marked with green if
󵄨󵄨󵄨󵄨𝐴 (𝑥1 − 𝑥0) + 𝐵 (𝑦1 − 𝑦0) + 𝐶 (𝑧1 − 𝑧0)

󵄨󵄨󵄨󵄨

√𝐴2 + 𝐵2 + 𝐶2
≤ 2𝑟,

𝐴 (𝑥
1
− 𝑥
0
) + 𝐵 (𝑦

1
− 𝑦
0
) + 𝐶 (𝑧

1
− 𝑧
0
) ≥ 0.

(15)

(4) When 𝑑 = 0, the sphere is marked with blue if
󵄨󵄨󵄨󵄨𝐴 (𝑥1 − 𝑥0) + 𝐵 (𝑦1 − 𝑦0) + 𝐶 (𝑧1 − 𝑧0)

󵄨󵄨󵄨󵄨

√𝐴2 + 𝐵2 + 𝐶2
≤ 2𝑟,

𝐴 (𝑥
1
− 𝑥
0
) + 𝐵 (𝑦

1
− 𝑦
0
) + 𝐶 (𝑧

1
− 𝑧
0
) < 0.

(16)

4. Modeling Example

The simulated geological body and its discontinuities are
illustrated in this example. This model tries to visualize the
body in three dimensions using the proposed algorithm.The
spherical particle calculation model of an open-pit slope in

Figure 4: The basic model.

the Zijinshan gold-copper mine, which is the largest gold
mine of the Zijin Mining Group in China, was constructed.
The assumption that the geological body contains two sets of
joints and a fault was applied.The dip and strike directions of
these discontinuities are arbitrary in this study.

4.1. Setup of the BasicModel. Figure 4 illustrates a basicmodel
with a sphere of radius 𝑟 = 0.5 that is located inside the three
coordinate intervals 𝑥 = −150 to 150, 𝑦 = −125 to 125, and
𝑧 = 0 to 140.

4.2. Excavating the Basic Model. The basic model, which is
excavated by adding excavating faces, is shown in Figure 5.
An irregularmodel of a geological bodywithman-made open
work in a hills landform is obtained. Figure 5(a) includes the
site picture, and Figure 5(b) includes the spherical particle
model. The model is similar to the site picture.

4.3. Insertion of Discontinuities. Two groups of discontinu-
ities with zero thickness and one group of discontinuity with
a thickness of 4.0 are inserted into the model, as shown in
Figure 6. The reason for using zero-thickness groups is to
simulate two perpendicular sets of rock mass joints, whereas
the reason for considering the group with thickness is to
model the fault. The colored spheres that are produced by
insertion of the discontinuities are presented in Figure 7. In
this figure, the transversal discontinuity (fault) is represented
by red spheres, and the joints are represented by green and
blue spheres.

4.4. The Final Spherical Particle Model. The final spherical
particle model is shown in Figure 8. This model represents
a realistic geological body with different types of disconti-
nuities, which can be used for numerical calculations in the
DEM or DDA.The discontinuities with thickness are suitable
for modeling large-scale faults in a geological body, whereas
zero-thickness discontinuities can be used to model random
joints in a jointed rock mass. In addition, for the purpose of
effectively and efficiently simulating the infinite extension of
a geological system, dynamic and transient infinite elements
[36] can be added to the outer boundaries of thismodel in the
future research.

5. Conclusions and Discussion

The SGIM exhibits the following advantages: the SGIM does
not rely on existing software, and the data structure of the
model generated by the SGIMcan be easilymodified tomatch
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(a) The site picture (b) The spherical particle calculation model

Figure 5: The model after excavating.

Figure 6: Model after insertion of discontinuities.

Figure 7: Resulting spheres with different colors that adhere to dis-
continuities.

numerical simulation tools, such as PFC3D. By utilizing the
SGIM, spheres can be generated for extremely irregular 3D
models to reasonably consider discontinuities in complex
engineering problems.

Because the focus of this study is to develop a sphere gen-
erator for the 3D model for irregular geological bodies, some
aspects are not considered in the present version of the SGIM
and should be addressed in future studies. First, random
packing of equal and unequal spheres should be adopted.
In certain numerical simulation tools, such as PFC3D, ideal
numerical simulation results can be obtained when the
ratio of particle diameters is located within a certain range.
Second, an algorithm to calculate the inner excavating space
is required. Numerous excavating spaces frequently exist
inside a geological body in practical engineering problems.
However, the excavating function applied in this study is only
suitable for excavation on the upper surface of the model.
Third, the joint in a geological body is usually described as
a thin disc. However, certain large-scale faults with complex
shapes may exist in a geological body. A curved surface may
be more suitable for this situation. Because some distribution
laws of joints exist for a jointed rockmass, individually input-
ting all discontinuities is time consuming and impractical.
Therefore, the incorporation of alternate ways to describe

Figure 8: Spherical particle model for numerical calculation.

discontinuities, such as the Monte Carlo method, is required
to simulate the network of discontinuities.
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