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We study the spectrum structure of discrete second-order Neumann boundary value problems (NBVPs) with sign-changing
weight. We apply the properties of characteristic determinant of the NBVPs to show that the spectrum consists of real and simple
eigenvalues; the number of positive eigenvalues is equal to the number of positive elements in the weight function, and the number
of negative eigenvalues is equal to the number of negative elements in the weight function. We also show that the eigenfunction
corresponding to the 𝑗th positive/negative eigenvalue changes its sign exactly 𝑗 − 1 times.

1. Introduction

Let 𝑛 > 2 be an integer, T = {1, 2, . . . , 𝑛}. Let us consider the
discrete second-order linear Neumann eigenvalue problem

Δ [𝑝 (𝑡 − 1) Δ𝑢 (𝑡 − 1)] + 𝜆𝑚 (𝑡) 𝑢 (𝑡) = 0,

𝑡 ∈ T ,
(1)

𝑢 (0) = 𝑢 (1) , 𝑢 (𝑛) = 𝑢 (𝑛 + 1) , (2)

where T = {1, 2, . . . , 𝑛}, 𝑝 : {0, 1, . . . , 𝑛} → [0,∞) and 𝑚 :
T → R satsifies

(A0) 𝑝(𝑗) > 0, 𝑗 ∈ {1, . . . , 𝑛 − 1}, 𝑝(0) = 𝑝(𝑛) = 0;

(A1) 𝑚(𝑡) ̸= 0 on T and 𝑚 changes its sign on T , that is,
there exists a proper subset T

+
⊂ T , such that

𝑚(𝑡) > 0, 𝑡 ∈ T
+
; 𝑚 (𝑡) < 0, 𝑡 ∈ T \ T

+
. (3)

Let 𝑛+ be the number of elements in T
+
and let 𝑛− be the

number of elements in T \ T
+
. Then

𝑛
+

+ 𝑛
−

= 𝑛. (4)

When the weight function 𝑚(𝑡) is of one sign, Atkinson
[1] and Jirari [2] studied the eigenvalue of the second-order
problem

Δ [𝑝 (𝑡 − 1) Δ𝑦 (𝑡 − 1)] − 𝑞 (𝑡) 𝑦 (𝑡) + 𝜆𝑚 (𝑡) 𝑦 (𝑡) = 0,

𝑡 ∈ T ,

(5)

𝑦 (0) − 𝛼𝑦 (1) = 𝑦 (𝑛 + 1) − 𝛽𝑦 (𝑛) = 0, (6)

and obtained that (5), (6) have 𝑛 real eigenvalues, which can
be ordered as 𝜆

1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑛
. Here 𝑞(𝑡) ≥ 0 and 𝛼, 𝛽 ∈

[0, 1] is constant. It can be seen that if we take 𝑞(𝑡) = 0, 𝛼 =
𝛽 = 1, then (5), (6) will convert to (1), (2).

However, these two results do not give any information
on the sign-changing of the eigenfunction of (5), (6).

In 1991, Kelley and Peterson [3] considered the linear
eigenvalue problems (5), (6) with 𝛼 = 𝛽 = 0, where 𝑝(𝑡) > 0
on {0, 1, . . . 𝑛}, 𝑞(𝑡) is defined and real valued on T and𝑚(𝑡) >
0 on T . They obtained that (5), (6) have exactly 𝑛 real and
simple eigenvalues 𝜆

𝑘
, 𝑘 ∈ T which satisfies

𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑛
(7)

and the eigenfunction corresponding to 𝜆
𝑘
changes its sign

exactly 𝑘 − 1 times.
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Furthermore, when 𝑚(𝑡) ≡ 1, Agarwal et al. [4] general-
ized the above results to the dynamic equations with Sturm-
Liouville boundary condition. Moreover, under the assump-
tion that the weight functions are of one sign, for further
important results in linear Hamiltonian difference systems,
including the oscillation properties of solutions, one can see
Shi and Chen [5], Bohner [6], and the references therein.The
spectrum results for the continuous case have been studied
and used to deal with several nonlinear problems; see, for
example, [7–13] and the references therein.

However, there are few results on the spectrum of discrete
second-order linear eigenvalue problems when𝑚(𝑡) changes
its sign on T . In 2007, Ji and Yang [14, 15] studied the structure
of the eigenvalues of (5), (6) with𝑚(𝑡) changing its sign, and
they obtained the number of positive eigenvalues equal to
the number of positive elements in the weight function, and
the number of negative eigenvalues equals to the number of
negative elements in theweight function. It is worth remaking
that they provided no information on the distribution of
these eigenvalues of (1), (2) and no information on the sign-
changing of the corresponding eigenfunctions.

Naturally, there are two interesting questions: (a) how to
distribute of the eigenvalues of (1), (2) and (b) how the sign-
changing of the corresponding eigenfunctions occur.

It is the purpose of this paper to establish the structure of
eigenvalues and the oscillatory properties of the correspond-
ing eigenfunctions of (1), (2).

The main result of our paper is the following theorem.

Theorem 1. Suppose that (A0), (A1) hold. Then one has the
following.

(i) If ∑𝑛
𝑡=1
𝑚(𝑡) > 0, then (1), (2) have 𝑛 real and simple

eigenvalues, which can be ordered as follows:

𝜆
−

𝑛
−

< 𝜆
−

𝑛
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

2
< 𝜆
−

1
< 0 = 𝜆

+

1
< 𝜆
+

2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛
+

.

(8)

Moreover, for 𝑘 ∈ {1, . . . , 𝑛−}, the eigenfunction 𝜓−
𝑘

corresponding to the eigenvalue 𝜆−
𝑘
has exactly 𝑘 − 1

simple generalized zeros; for 𝑘 ∈ {1, . . . , 𝑛+}, the eigen-
function 𝜓+

𝑘
corresponding to the eigenvalue 𝜆+

𝑘
has

exactly 𝑘 − 1 simple generalized zeros.

(ii) If ∑𝑛
𝑡=1
𝑚(𝑡) < 0, then (1), (2) have 𝑛 real and simple

eigenvalues, which can be ordered as follows:

𝜆
−

𝑛
−

< 𝜆
−

𝑛
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

2
< 𝜆
−

1
= 0 < 𝜆

+

1
< 𝜆
+

2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛
+

.

(9)

Moreover, for 𝑘 ∈ {1, . . . , 𝑛−}, the eigenfunction 𝜓−
𝑘

corresponding to the eigenvalue 𝜆−
𝑘
has exactly 𝑘 −

1 simple generalized zeros; for 𝑘 ∈ {1, . . . , 𝑛+}, the
eigenfunction 𝜓+

𝑘
corresponding to the eigenvalue 𝜆+

𝑘

has exactly 𝑘 − 1 simple generalized zeros.
(iii) If∑𝑛

𝑡=1
𝑚(𝑡) = 0, then 𝜆 = 0 is an eigenvalue of (1), (2)

and other 𝑛 − 2 eigenvalues are real and simple, which
can be ordered as follows:

𝜆
−

𝑛
−

< 𝜆
−

𝑛
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

2
< 𝜆
−

1
= 0 = 𝜆

+

1
< 𝜆
+

2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛
+

.

(10)
Moreover, for 𝑘 ∈ {2, . . . , 𝑛−}, the eigenfunction 𝜓−

𝑘

corresponding to the eigenvalue 𝜆−
𝑘
has exactly 𝑘 − 1

simple generalized zeros; for 𝑘 ∈ {2, . . . , 𝑛+}, the eigen-
function 𝜓+

𝑘
corresponding to the eigenvalue 𝜆+

𝑘
has

exactly 𝑘 − 1 simple generalized zeros.

Remark 2. It is worth remarking that the number of sign
changing of eigenfunction is given in Theorem 1. Thus, this
result is a generalization of the main results in [15].

Remark 3. Applying Theorem 1 and the well-known Rabi-
nowitz global bifurcation theorem, it is easy to obtain exis-
tence results of sign-changing solutions for the nonlinear
analogue of (1)-(2); see Ma and Gao [12, 16] for some related
results.

The rest of the paper is devoted to provingTheorem 1. To
do this, we make use of the law of inertia for quadratic forms
and some techniques form oscillation matrices [17].

2. Proof of the Main Result

Let 𝑐(𝑡) = 𝑝(𝑡 − 1) + 𝑝(𝑡) for 𝑡 = 2, . . . , 𝑛 − 1, 𝑐(1) = 𝑝(1),
𝑐(𝑛) = 𝑝(𝑛 − 1). Then (1), (2) can be written as a linear pencil
problem as follows:

𝐽𝑢 = 𝜆𝐷𝑢, (11)

where

𝐽 =

(
(
(
(
(

(

𝑝(1) −𝑝 (1) 0 ⋅ ⋅ ⋅ 0 0 0

−𝑝 (1) 𝑝 (1) + 𝑝 (2) −𝑝 (2) ⋅ ⋅ ⋅ 0 0 0

0 −𝑝 (2) 𝑝 (2) + 𝑝 (3) ⋅ ⋅ ⋅ 0 0 0
...

...
... d

...
...

...
0 0 0 ⋅ ⋅ ⋅ −𝑝 (𝑛 − 2) 𝑝 (𝑛 − 2) + 𝑝 (𝑛 − 1) −𝑝 (𝑛 − 1)

0 0 0 ⋅ ⋅ ⋅ 0 −𝑝 (𝑛 − 1) 𝑝 (𝑛 − 1)

)
)
)
)
)

)

,
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𝐷 =(

(

𝑚
1
0 ⋅ ⋅ ⋅ 0 0

0 𝑚
2
⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝑚
𝑛−1
0

0 0 ⋅ ⋅ ⋅ 0 𝑚
𝑛

)

)

.

(12)

Let 𝐽
𝑗
denote the 𝑗th principal submatrix of 𝐽 and 𝐷

𝑗
the 𝑗th

principal submatrix of𝐷. It is easy to verify that 𝐽
𝑖
is positive

definite for 𝑖 = 1, . . . , 𝑛 − 1, 𝐽 is positive semidefinite and

det 𝐽 = 0. (13)

In fact, for any real vector x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) ∈ R𝑛−1,

it follows that

x𝐽
𝑛−1

x𝑇 =
𝑛−2

∑
𝑠=1

𝑝 (𝑠) (𝑥
𝑠+1
− 𝑥
𝑠
)
2

+ 𝑝 (𝑛 − 1) 𝑥
2

𝑛−1
≥ 0. (14)

From (A0), 𝑝(𝑠) > 0, 𝑠 ∈ {1, 2, . . . , 𝑛 − 1}. If x𝐽
𝑛−1

x𝑇 = 0, then
𝑥
𝑖
= 𝑥
𝑖+1

for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑥
𝑛−1
= 0, leading to x = 0. So,

𝐽
𝑛−1

is positive definite. By the same method, with obvious
changes, we can conclude that 𝐽

𝑖
is also positive definite for

𝑗 = 1, 2, . . . , 𝑛 − 2.
For any real vector y = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ R𝑛, we have

y𝐽y𝑇 = ∑𝑛−1
𝑠=1
𝑝(𝑠)(𝑦

𝑠+1
− 𝑦
𝑠
)
2

≥ 0. Thus, 𝐽 is positive semi-
definite.

For 𝑗 = 1, 2, . . . , 𝑛, let 𝑄
𝑗
(𝜆) denote the 𝑗th principal

subdeterminant of 𝐽 − 𝜆𝐷 and suppose that 𝑄
0
(𝜆) = 1; then

𝑄
𝑛
(𝜆) = det(𝐽 − 𝜆𝐷), and

𝑄
0
(𝜆) = 1;

𝑄
1
(𝜆) = 𝑐 (1) − 𝜆𝑚 (1) ;

𝑄
𝑗
(𝜆) = (𝑐 (𝑗) − 𝜆𝑚 (𝑗))𝑄

𝑗−1
(𝜆) − 𝑝

2

(𝑗 − 1)𝑄
𝑗−2
(𝜆) ,

𝑗 = 2, 3, . . . , 𝑛 − 1;

𝑄
𝑛
(𝜆) = (𝑐 (𝑛) − 𝜆𝑚 (𝑛)) 𝑄

𝑛−1
(𝜆) − 𝑝

2

(𝑛 − 1)𝑄
𝑛−2
(𝜆) ,

(15)

where 𝑐(𝑗) = 𝑝(𝑗 − 1) + 𝑝(𝑗), 𝑗 = 2, . . . , 𝑛 − 1, 𝑐(0) = 𝑝(1) and
𝑐(𝑛) = 𝑝(𝑛 − 1).

Aswe know, to find the eigenvalues of (1), (2) is equivalent
to find the roots of𝑄

𝑛
(𝜆).Thus, it is necessary to discuss some

properties of the sequence (15).
For 𝑗 ∈ {1, . . . , 𝑛}, let 𝑗+ be the number of the elements in
{𝑚(𝑖) | 𝑚(𝑖) > 0 for som 𝑖 ∈ {1, . . . , 𝑗}}, and 𝑗− the number of
the elements in {𝑚(𝑖) | 𝑚(𝑖) < 0 for some 𝑖 ∈ {1, . . . , 𝑗}}.

Lemma 4. For 𝑗 ∈ {1, . . . , 𝑛}, one has

lim
𝜆→−∞

(−1)
𝑗
−

𝑄
𝑗
(𝜆) = +∞,

lim
𝜆→+∞

(−1)
𝑗
+

𝑄
𝑗
(𝜆) = +∞.

(16)

Proof. For 𝑗 ∈ {1, . . . , 𝑛}, it is evident that 𝑄
𝑗
(𝜆) is a

polynomial of degree precisely 𝑗, and

𝑄
𝑗
(𝜆) = 𝑚 (1) ⋅ ⋅ ⋅ 𝑚 (𝑗) (−𝜆)

𝑗

+ 𝑂 (𝜆
𝑗−1

) . (17)

Lemma 5. The roots of 𝑄
𝑗
(𝜆) are real, 𝑗 = 1, 2, . . . , 𝑛.

Moreover, 𝑄
𝑗
(𝜆) = 0 (𝑗 = 1, 2, . . . , 𝑛 − 1) has 𝑗+ positive roots

and 𝑗− negative roots.

Proof. Since 𝐽
𝑗
is positive definite matrix for 𝑗 = 1, 2, . . . , 𝑛−1

and 𝐽 is positive semidefinite matrix, it follows that the roots
of 𝑄
𝑗
(𝜆) are real, 𝑗 = 1, 2, . . . , 𝑛.

For the 𝐽
𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1, there exists a unique lower

triangular real matrix 𝐿 such that

𝐿𝐿
𝑇

= 𝐽
𝑗

(18)

(this is the well-known Cholesky decomposition; see [18,
Corollary 7.2.9]). It is easy to check that the matrix
𝐿−1𝐷
𝑗
(𝐿𝑇)
−1 is real and symmetric, and 𝜆 is a root of𝑄

𝑗
(𝜆) if

and only if 1/𝜆 is an eigenvalue of 𝐿−1𝐷
𝑗
(𝐿𝑇)
−1.

The fact that 𝐿−1𝐷
𝑗
(𝐿𝑇)
−1 is real and symmetric indicates

that there exists an orthogonal matrix 𝑄 such that

𝑄
𝑇

𝐿
−1

𝐷
𝑗
(𝐿
𝑇

)
−1

𝑄 = diag (𝑎
1
, . . . , 𝑎

𝑗
) , (19)

where 𝑎
1
≥ 𝑎
2
≥ ⋅ ⋅ ⋅ ≥ 𝑎

𝑗
are all eigenvalues of 𝐿−1𝐷

𝑗
(𝐿𝑇)
−1.

Let 𝑥 = (𝐿𝑇)−1𝑄𝑧. It is seen from (19) that

𝑗

∑
𝑖=1

𝑎
𝑖
𝑧
2

𝑖
=

𝑗

∑
𝑖=1

𝑚(𝑖) 𝑥
2

𝑖
(20)

are two representations of the real quadratic form 𝑥𝑇𝐷
𝑗
𝑥. In

view of the law of inertia for quadratic forms [19, Theorem 1,
p. 297], we immediately deduce that the number of positive
and the number of negative elements in the set {𝑎

1
, . . . , 𝑎

𝑗
} are

𝑗+ and 𝑗−, respectively.

Lemma 6. Two consecutive polynomials 𝑄
𝑗−1
(𝜆), 𝑄

𝑗
(𝜆) have

no common zeros for 𝑗 = 1, . . . , 𝑛.

Proof. Suppose on the contrary that there exists 𝜆 = 𝜆
0

such that 𝑄
𝑗−1
(𝜆
0
) = 𝑄

𝑗
(𝜆
0
) = 0. Then by the recurrence

relation (15), we get 𝑄
𝑗−2
(𝜆
0
) = 0. Furthermore, we can get

𝑄
𝑗−3
(𝜆
0
) = ⋅ ⋅ ⋅ = 𝑄

1
(𝜆
0
) = 𝑄

0
(𝜆
0
) = 0. However, this

contradicts 𝑄
0
(𝜆
0
) = 1.
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Lemma 7. Suppose that 𝜆 = 𝜆
0
is a root of 𝑄

𝑗
(𝜆). Then

𝑄
𝑗−1
(𝜆
0
)𝑄
𝑗+1
(𝜆
0
) < 0 for 𝑗 = 1, . . . , 𝑛 − 1.

Proof. Since 𝑄
𝑗
(𝜆
0
) = 0, by the Lemma 6, we have

𝑄
𝑗−1
(𝜆
0
) ̸= 0. By the recurrence relation (15), 𝑄

𝑗+1
(𝜆
0
) =

−𝑝2(𝑗)𝑄
𝑗−1
(𝜆
0
), which implies that 𝑄

𝑗+1
(𝜆
0
)𝑄
𝑗−1
(𝜆
0
) =

−𝑝2(𝑖)𝑄2
𝑗−1
(𝜆
0
) < 0. This completes the assertion.

Lemma 8. Assume that (A0), (A1) hold. Then

(1) 𝑄󸀠
𝑛
(0) = −𝑝(1) ⋅ ⋅ ⋅ 𝑝(𝑛 − 1)∑

𝑛

𝑠=1
𝑚(𝑠);

(2) If ∑𝑛
𝑠=1
𝑚(𝑠) = 0, then 𝑄󸀠󸀠

𝑛
(0) < 0.

Proof. (1) From (11), we have

𝑄
󸀠

𝑛
(𝜆) =
𝑑 |𝐽𝑢 − 𝜆𝐷𝑢|

𝑑𝜆

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑚 (1) 0 ⋅ ⋅ ⋅ 0 0

−𝑝 (1) 𝑝 (1) + 𝑝 (2) − 𝜆𝑚 (2) ⋅ ⋅ ⋅ 0 0

0 −𝑝 (2) ⋅ ⋅ ⋅ 0 0
...

... d
...

...
0 0 ⋅ ⋅ ⋅ 𝑝 (𝑛 − 2) + 𝑝 (𝑛 − 1) − 𝜆𝑚 (𝑛 − 1) −𝑝 (𝑛 − 1)

0 0 ⋅ ⋅ ⋅ −𝑝
𝑛−1

𝑝
𝑛−1
− 𝜆𝑚
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 (1) − 𝜆𝑚 (1) −𝑝 (1) ⋅ ⋅ ⋅ 0 0

0 −𝑚 (2) ⋅ ⋅ ⋅ 0 0

0 −𝑝 (2) ⋅ ⋅ ⋅ 0 0
...

... d
...

...
0 0 ⋅ ⋅ ⋅ 𝑝 (𝑛 − 2) + 𝑝 (𝑛 − 1) − 𝜆𝑚 (𝑛 − 1) −𝑝 (𝑛 − 1)

0 0 ⋅ ⋅ ⋅ −𝑝 (𝑛 − 1) 𝑝 (𝑛 − 1) − 𝜆𝑚 (𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 (1) − 𝜆𝑚 (1) ⋅ ⋅ ⋅ 0 0

−𝑝 (1) ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0
... d

...
...

0 ⋅ ⋅ ⋅ 𝑝 (𝑛 − 2) + 𝑝 (𝑛 − 1) − 𝜆𝑚 (𝑛 − 1) −𝑝 (𝑛 − 1)

0 ⋅ ⋅ ⋅ 0 −𝑚 (𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(21)

So, by simple computation, it follows that

𝑄
󸀠

𝑛
(0) =
𝑑 |𝐽𝑢 − 𝜆𝐷𝑢|

𝑑𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0

= −𝑚 (1) 𝑝 (1) 𝑝 (2) ⋅ ⋅ ⋅ 𝑝 (𝑛 − 1)

− 𝑚 (2) 𝑝 (1) 𝑝 (2) ⋅ ⋅ ⋅ 𝑝 (𝑛 − 1)

− ⋅ ⋅ ⋅ − 𝑚 (𝑛) 𝑝 (1) 𝑝 (2) ⋅ ⋅ ⋅ 𝑝 (𝑛 − 1)

= −𝑝 (1) 𝑝 (2) ⋅ ⋅ ⋅ 𝑝 (𝑛 − 1)

𝑛

∑
𝑠=1

𝑚(𝑠) .

(22)

(2) If ∑𝑛
𝑠=1
𝑚(𝑠) = 0, then 𝑄

𝑛
(0) = 𝑄󸀠

𝑛
(0) = 0. Moreover,

let 𝑗
1
, . . . , 𝑗

𝑛−2
be 𝑛 − 2 elements in {1, 2, . . . , 𝑛 − 1} with

𝑗
1
< 𝑗
2
< ⋅ ⋅ ⋅ < 𝑗

𝑛−3
< 𝑗
𝑛−2
. (23)

Let

Λ
𝑛
= {(𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛−2
) | 𝑗
𝑘
∈ {1, 2, . . . , 𝑛 − 1}

with 𝑗
1
< 𝑗
2
< ⋅ ⋅ ⋅ < 𝑗

𝑛−3
< 𝑗
𝑛−2
} .

(24)

Let us arrange the elements of Λ
𝑛
in the increasing order,

(1, 2, . . . , 𝑛 − 3, 𝑛 − 2) , (1, 2, . . . , 𝑛 − 3, 𝑛 − 1) , . . . ,

(2, 3, . . . , 𝑛 − 2, 𝑛 − 1) .
(25)

It is easy to check that the number of the elements onΛ
𝑛
is 𝑛−

1.We denote the 𝑘th elements in (25) by 𝛽
𝑘
, 𝑘 = 1, 2, . . . , 𝑛−1.

For given 𝛽
𝑘
= (𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛−2
), define 𝑎

𝑘
= 𝑃
𝑗
1

𝑃
𝑗
2

⋅ ⋅ ⋅ 𝑃
𝑗
𝑛−2

.
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By computing and simplifying, we get that

𝑄
󸀠󸀠

𝑛
(𝜆)
󵄨󵄨󵄨󵄨󵄨𝜆=0

=
𝑛

∑
𝑖,𝑗=1

𝑖<𝑗

𝑚(𝑖)𝑚 (𝑗)𝑊
𝑛−2
(. . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗 + 1, . . .)

= −2𝑎
1
[𝑚 (1) + 𝑚 (2) + ⋅ ⋅ ⋅ + 𝑚 (𝑛 − 1)]

2

− 2𝑎
2
[𝑚 (1) + 𝑚 (2) + ⋅ ⋅ ⋅ + 𝑚 (𝑛 − 2)]

2

− ⋅ ⋅ ⋅

− 2𝑎
𝑛−2
[𝑚 (1) + 𝑚 (2)]

2

− 2𝑎
𝑛−1
𝑚(1)
2

= −2
𝑛−1

∑
𝑘=1

𝑎
𝑘
(
𝑛−𝑘

∑
𝑠=1

𝑚(𝑠))

2

,

(26)
and here𝑊

𝑛−2
(. . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗 + 1, . . .) denote the

principal minor determinant of order 𝑛−2 of 𝐽−𝜆𝐷, which is
obtained by deleting the elements of 𝑖 column and 𝑖 row and
deleting the elements of 𝑗 column and 𝑗 row.Thus, from (A0)
and ∑𝑛

𝑠=1
𝑚(𝑠) = 0, it follows that

𝑄
󸀠󸀠

𝑛
(0) < 0. (27)

Lemma 9. For 𝑗 = 1, . . . , 𝑛 − 1, the roots of 𝑄
𝑗
(𝜆) = 0 are

simple. Moreover, one has the following.
(i) The largest negative root 𝜆−

𝑗,1
and the smallest positive

root 𝜆+
𝑗,1

of 𝑄
𝑗
(𝜆) = 0 and the largest negative root

𝜆−
𝑗+1,1

and the smallest positive root 𝜆+
𝑗+1,1

of 𝑄
𝑗+1
(𝜆) =

0 satisfy

(𝜆
−

𝑗,1
, 𝜆
+

𝑗,1
) ⊃ (𝜆

−

𝑗+1,1
, 𝜆
+

𝑗+1,1
) , 𝑗 = 2, . . . , 𝑛. (28)

(ii) For 𝑗 = 1, . . . , 𝑛 − 1, the positive roots of𝑄
𝑗
(𝜆) = 0 and

𝑄
𝑗+1
(𝜆) = 0 separate one another; the negative roots of

𝑄
𝑗
(𝜆) = 0 and 𝑄

𝑗+1
(𝜆) = 0 separate one another.

(iii) If∑𝑛
𝑠=1
𝑚(𝑠) ̸= 0, then the roots of 𝑄

𝑛
(𝜆) = 0 are simple

and 0 is a simple root; if ∑𝑛
𝑠=1
𝑚(𝑠) = 0, then 0 is a

double roots of𝑄
𝑛
(𝜆) = 0 and the other root are simple.

Proof. First, we deal with the case 𝑗 = 1.
Obviously, 𝑄

1
(𝜆) = 𝑐(1) − 𝜆𝑚(1). If𝑚(1) > 0, then

𝑗 = 1, 𝑗
+

= 1, 𝑗
−

= 0,

𝜆
+

1,1
=
𝑐 (1)

𝑚 (1)
> 0.

(29)

If𝑚(1) < 0, then
𝑗 = 1, 𝑗

+

= 0, 𝑗
−

= 1,

𝜆
−

1,1
=
𝑐 (1)

𝑚 (1)
< 0.

(30)

Recall 𝑄
2
(𝜆) = (𝑐(2) − 𝜆𝑚(2))(𝑐(1) − 𝜆𝑚(1)) − 𝑝2(1). If

𝑚(1) > 0,𝑚(2) > 0, then
𝑗 = 2, 𝑗

+

= 2, 𝑗
−

= 0, (31)

and𝑄
2
(𝜆) = 0 has two different roots 𝜆+

2,1
and 𝜆+

2,2
as follows:

𝜆
+

2,1
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

−√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

> 0,

𝜆
+

2,2
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

+√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

> 0.

(32)

It is easy to see that 0 < 𝜆+
2,1
< 𝜆+
1,1
< 𝜆+
2,2
.

If𝑚(1) < 0,𝑚(2) > 0, then

𝑗 = 2, 𝑗
+

= 1, 𝑗
−

= 1, (33)

and𝑄
2
(𝜆) = 0 has two different roots 𝜆+

2,1
and 𝜆−

2,1
as follows:

𝜆
+

2,1
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

−√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

> 0,

𝜆
−

2,1
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

+√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

< 0.

(34)

It is easy to see that 𝜆−
1,1
< 𝜆−
2,1
< 0 < 𝜆+

2,1
.

If𝑚(1) > 0,𝑚(2) < 0, then

𝑗 = 2, 𝑗
+

= 1, 𝑗
−

= 1, (35)

and𝑄
2
(𝜆) = 0 has two different roots 𝜆+

2,1
and 𝜆−

2,1
as follows:

𝜆
+

2,1
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

−√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

> 0,

𝜆
−

2,1
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

+√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

< 0.

(36)

It is easy to see that 𝜆−
1,1
< 𝜆−
2,1
< 0 < 𝜆+

2,1
.
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If𝑚(1) < 0,𝑚(2) < 0, then

𝑗 = 2, 𝑗
+

= 0, 𝑗
−

= 2, (37)

and𝑄
2
(𝜆) = 0 has two different roots 𝜆−

2,1
and 𝜆−

2,2
as follows:

𝜆
−

2,1
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

+√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

< 0,

𝜆
−

2,2
= (𝑐 (1)𝑚 (2) + 𝑐 (2)𝑚 (1)

−√(𝑐 (1)𝑚 (2) − 𝑐 (2)𝑚 (1))
2 + 4𝑝2 (1)𝑚 (1)𝑚 (2))

× (2𝑚 (1)𝑚 (2))
−1

< 0.

(38)

It is easy to see that 𝜆−
2,2
< 𝜆−
1,1
< 𝜆−
2,1
< 0. Thus, the assertion

is true for 𝑗 = 1.
Second, suppose that for 𝑗 = 𝑘 (𝑘 ≤ 𝑛 − 3), and the

relations of 𝑄
𝑘
(𝜆) = 0 and 𝑄

𝑘+1
(𝜆) = 0 are true, that is, the

following two assertions hold.
If𝑚(𝑘 + 1) > 0, then (𝑘 + 1)+ = 𝑘+ + 1, (𝑘 + 1)− = 𝑘− and

accordingly,

𝜆
−

𝑘,𝑘
−

< 𝜆
−

𝑘+1,𝑘
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑘,1
< 𝜆
−

𝑘+1,1
< 0, (39)

0 < 𝜆
+

𝑘+1,1
< 𝜆
+

𝑘,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+1,𝑘
+

< 𝜆
+

𝑘,𝑘
+

< 𝜆
+

𝑘+1,(𝑘+1)
+
.

(40)

If𝑚(𝑘 + 1) < 0, then (𝑘 + 1)+ = 𝑘+, (𝑘 + 1)− = 𝑘− + 1 and
accordingly,

𝜆
−

𝑘+1,𝑘
−

+1
< 𝜆
−

𝑘,𝑘
−

< 𝜆
−

𝑘+1,𝑘
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑘,1
< 𝜆
−

𝑘+1,1
< 0,

0 < 𝜆
+

𝑘+1,1
< 𝜆
+

𝑘,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+1,𝑘
+

< 𝜆
+

𝑘,𝑘
+

.
(41)

Now, we consider the case 𝑗 = 𝑘+ 1. It is enough to verify
the following four cases.

Case 1.𝑚(𝑘 + 1) > 0 and𝑚(𝑘 + 2) > 0.
In this case, (𝑘 + 2)+ = 𝑘+ + 2, (𝑘 + 2)− = 𝑘−, we need to

prove that

𝜆
−

𝑘+1,𝑘
−

< 𝜆
−

𝑘+2,𝑘
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑘+1,1
< 𝜆
−

𝑘+2,1
< 0, (42)

0 < 𝜆
+

𝑘+2,1
< 𝜆
+

𝑘+1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+2,𝑘
+

+1
< 𝜆
+

𝑘+1,𝑘
+

+1
< 𝜆
+

𝑘+2,𝑘
+

+2
.

(43)

Case 2.𝑚(𝑘 + 1) > 0 and𝑚(𝑘 + 2) < 0.
In this case, (𝑘 + 2)+ = 𝑘+ + 1, (𝑘 + 2)− = 𝑘− + 1, we need

to prove that

𝜆
−

𝑘+2,𝑘
−

+1
< 𝜆
−

𝑘+1,𝑘
−

< 𝜆
−

𝑘+2,𝑘
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑘+1,1
< 𝜆
−

𝑘+2,1
< 0,

0 < 𝜆
+

𝑘+2,1
< 𝜆
+

𝑘+1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+2,𝑘
+

+1
< 𝜆
+

𝑘+1,𝑘
+

+1
.

(44)

Case 3.𝑚(𝑘 + 1) < 0 and𝑚(𝑘 + 2) < 0.
In this case, (𝑘 + 2)+ = 𝑘+, (𝑘 + 2)− = 𝑘− + 2, we need to

prove that

𝜆
−

𝑘+2,𝑘
−

+2
< 𝜆
−

𝑘+1,𝑘
−

+1
< 𝜆
−

𝑘+2,𝑘
−

+1
< ⋅ ⋅ ⋅ < 𝜆

−

𝑘+1,1
< 𝜆
−

𝑘+2,1
< 0,

0 < 𝜆
+

𝑘+2,1
< 𝜆
+

𝑘+1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+2,𝑘
+

< 𝜆
+

𝑘+1,𝑘
+

.

(45)

Case 4.𝑚(𝑘 + 1) < 0 and𝑚(𝑘 + 2) > 0.
In this case, (𝑘 + 2)+ = 𝑘+ + 1, (𝑘 + 2)− = 𝑘− + 1, we need

to prove that

𝜆
−

𝑘+2,𝑘
−

+1
< 𝜆
−

𝑘+1,𝑘
−

< 𝜆
−

𝑘+2,𝑘
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑘+1,1
< 𝜆
−

𝑘+2,1
< 0,

0 < 𝜆
+

𝑘+2,1
< 𝜆
+

𝑘+1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+2,𝑘
+

< 𝜆
+

𝑘+1,𝑘
+

< 𝜆
+

𝑘+2,𝑘
+

+1
.

(46)

We only deal with Case 1. The other cases could be dealt
via the same method.

First, we show that (42) holds.
Since (𝑘 + 2)− = (𝑘 + 1)− = 𝑘−, it follows from Lemma 4

that

(−1)
𝑘
−

𝑄
𝑘
(−∞) > 0,

(−1)
(𝑘+1)

−

𝑄
𝑘+1
(−∞) = (−1)

𝑘
−

𝑄
𝑘+1
(−∞) > 0.

(47)

We only deal with the case that 𝑘− is even. The case 𝑘− is
odd could be treated by the same way.

Thus (47) reduces to

𝑄
𝑘
(−∞) > 0,

𝑄
𝑘+1
(−∞) > 0.

(48)

Recall (39) as follows:

𝜆
−

𝑘,𝑘
−

< 𝜆
−

𝑘+1,𝑘
−

< 𝜆
−

𝑘,𝑘
−

−1
< 𝜆
−

𝑘+1,𝑘
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

𝑘,1
< 𝜆
−

𝑘+1,1
< 0

(49)

and the fact that

𝑄
𝑘+1
(𝜆
−

𝑘+1,𝑘
−

) = 𝑄
𝑘+1
(𝜆
−

𝑘+1,𝑘
−

−1
) = ⋅ ⋅ ⋅ = 𝑄

𝑘+1
(𝜆
−

𝑘+1,1
) = 0.

(50)

It follows from (47), (48), and (49) that

(−1)
𝑗

𝑄
𝑘
(𝜆
−

𝑘+1,𝑘
−

−𝑗
) < 0, 𝑗 = 0, . . . , 𝑘

−

− 1. (51)

Combining this with (50) and using Lemma 7, it concludes
that

(−1)
𝑗

𝑄
𝑘+2
(𝜆
−

𝑘+1,𝑘
−

−𝑗
) > 0, 𝑗 = 0, . . . , 𝑘

−

− 1. (52)

In particular,

𝑄
𝑘+2
(𝜆
−

𝑘+1,1
) < 0. (53)

By Lemma 5, 𝑄
𝑘+2
(𝜆) = 0 has exactly 𝑘− zeros in (−∞, 0).

This together with (52), (53), and the fact that

𝑄
𝑘
(0) > 0, 𝑄

𝑘+1
(0) > 0, 𝑄

𝑘+2
(0) > 0 (54)
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implies that there exist 𝜆−
𝑘+2,𝑘

−

−𝑗
∈ (𝜆−
𝑘+1,𝑘

−

−𝑗
, 𝜆−
𝑘+1,𝑘

−

−𝑗−1
), 𝑗 =

0, . . . , 𝑘− − 2, and 𝜆−
𝑘+2,1
∈ (𝜆−
𝑘+1,1
, 0), such that

𝑄
𝑘+2
(𝜆
−

𝑘+2,𝑘
−

−𝑗
) = 0, 𝑗 = 0, . . . , 𝑘

−

− 1. (55)

Therefore, (42) is valid.
Next, we show that (43) is true.
Obviously,𝑚(𝑘 + 1) > 0,𝑚(𝑘 + 2) > 0 yields

(𝑘 + 2)
+

= (𝑘 + 1)
+

+ 1 = 𝑘
+

+ 2. (56)

In the following, we only deal with the case that 𝑘+ is even.
The case 𝑘+ is odd could be treated by the same way.

From Lemma 4, we have that

𝑄
𝑘
(+∞) > 0, 𝑄

𝑘+1
(+∞) < 0, 𝑄

𝑘+2
(+∞) > 0.

(57)

Combining this with (40) as

0 < 𝜆
+

𝑘+1,1
< 𝜆
+

𝑘,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑘+1,𝑘
+

< 𝜆
+

𝑘,𝑘
+

< 𝜆
+

𝑘+1,(𝑘+1)
+
,

(58)

and using the fact that

𝑄(𝜆
+

𝑘+1,(𝑘+1)
+

−𝑗
) = 0, 𝑗 = 0, . . . , (𝑘 + 1)

+

− 1, (59)

it concludes that

(−1)
𝑗

𝑄
𝑘
(𝜆
+

𝑘+1,(𝑘+1)
+

−𝑗
) > 0, 𝑗 = 0, . . . , (𝑘 + 1)

+

− 1.

(60)

This together with Lemma 7 implies that

(−1)
𝑗

𝑄
𝑘+2
(𝜆
+

𝑘+1,(𝑘+1)
+

−𝑗
) < 0, 𝑗 = 0, . . . , (𝑘 + 1)

+

− 1.

(61)

In particular, for 𝑗 = 0,

𝑄
𝑘+2
(𝜆
+

𝑘+1,(𝑘+1)
+
) < 0. (62)

This together with the third inequality in (57) implies that

𝑄
𝑘+2
(𝜆
𝑘+2,(𝑘+1)

+

+1
) = 0 (63)

for some 𝜆
𝑘+2,(𝑘+1)

+

+1
∈ (𝜆+
𝑘+1,(𝑘+1)

+

,∞).
Using (61) with 𝑗 = (𝑘 + 1)+ − 1, we get

𝑄
𝑘+2
(𝜆
+

𝑘+1,1
) < 0, (64)

which together with the fact

𝑄
𝑘+2
(0) > 0 (65)

implies that

𝑄
𝑘+2
(𝜆
+

𝑘+2,1
) = 0 (66)

for some 𝜆+
𝑘+2,1
∈ (0, 𝜆+

𝑘+1,1
).

Now, for 𝑗 = 1, . . . , (𝑘 + 1)+ − 1, there exist 𝜆+
𝑘+2,(𝑘+2)

+

−𝑗
∈

(𝜆+
𝑘+1,(𝑘+1)

+

−𝑗
, 𝜆+
𝑘+1,(𝑘+1)

+

−𝑗+1
), such that

𝑄
𝑘+2
(𝜆
+

𝑘+2,(𝑘+2)
+

−𝑗
) = 0, 𝑗 = 0, . . . , (𝑘 + 1)

+

. (67)

Therefore, (43) is valid.
Finally, for 𝑗 = 𝑛, the relation 𝑄

𝑛
(𝜆) = 0 and 𝑄

𝑛−1
(𝜆) = 0

are also true. From above conclusions, we have 𝑄
𝑛−1
(𝜆) =

0 has (𝑛 − 1)− negative roots and (𝑛 − 1)+ positive roots
satisfying

𝜆
−

𝑛−1,(𝑛−1)
−
< 𝜆
−

𝑛−1,(𝑛−1)
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

𝑛−1,1

< 0 < 𝜆+
𝑛−1,1
< 𝜆+
𝑛−1,2
< ⋅ ⋅ ⋅ < 𝜆+

𝑛−1,(𝑛−1)
+

.
(68)

If𝑚(𝑛) > 0, we have that 𝑛+ = (𝑛 − 1)+ + 1,𝑛− = (𝑛 − 1)−.
By a similar argument and together with the fact 𝑄

𝑛
(0) = 0

and Lemma 8, it follows that

(i) if ∑𝑛
𝑠=0
𝑚(𝑠) < 0, then

𝜆
−

𝑛−1,(𝑛−1)
−
< 𝜆
−

𝑛,𝑛
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑛−1,1
< 𝜆
−

𝑛,1

= 0 < 𝜆
+

𝑛,1
< 𝜆
+

𝑛−1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛−1,(𝑛−1)
+
< 𝜆
+

𝑛,𝑛
+

;

(69)

(ii) if ∑𝑛
𝑠=0
𝑚(𝑠) > 0, then

𝜆
−

𝑛−1,(𝑛−1)
−
< 𝜆
−

𝑛,𝑛
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑛−1,1
< 𝜆
−

𝑛,1
< 0

= 𝜆
+

𝑛,1
< 𝜆
+

𝑛−1,1
< 𝜆
+

𝑛,2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛−1,(𝑛−1)
+
< 𝜆
+

𝑛,𝑛
+

;

(70)

(iii) if ∑𝑛
𝑠=0
𝑚(𝑠) = 0, then

𝜆
−

𝑛−1,(𝑛−1)
−
< 𝜆
−

𝑛,𝑛
−

< ⋅ ⋅ ⋅ < 𝜆
−

𝑛−1,1
< 𝜆
−

𝑛,1

= 0 = 𝜆
−

𝑛,1
< 𝜆
+

𝑛−1,1
< 𝜆
+

𝑛,2

< ⋅ ⋅ ⋅ < 𝜆
+

𝑛−1,(𝑛−1)
+
< 𝜆
+

𝑛,𝑛
+

.

(71)

If𝑚(𝑛) < 0, we have that 𝑛+ = (𝑛−1)+, 𝑛− = (𝑛−1)−+1. By
a similar method and together with𝑄

𝑛
(0) = 0 and Lemma 8,

we get that

(i) if ∑𝑛
𝑠=0
𝑚(𝑠) < 0, then

𝜆
−

𝑛,𝑛
−

< 𝜆
−

𝑛−1,(𝑛−1)
−
< ⋅ ⋅ ⋅ < 𝜆

−

𝑛−1,1
< 𝜆
−

𝑛,1

= 0 < 𝜆
+

𝑛,1
< 𝜆
+

𝑛−1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛,𝑛
+

< 𝜆
+

𝑛−1,(𝑛−1)
+
;

(72)

(ii) if ∑𝑛
𝑠=0
𝑚(𝑠) > 0, then

𝜆
−

𝑛,𝑛
−

< 𝜆
−

𝑛−1,(𝑛−1)
−
< ⋅ ⋅ ⋅ < 𝜆

−

𝑛−1,1
< 𝜆
−

𝑛,1
< 0

= 𝜆
+

𝑛,1
< 𝜆
+

𝑛−1,1
< 𝜆
+

𝑛,2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛,𝑛
+

< 𝜆
+

𝑛−1,(𝑛−1)
+
;

(73)
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(iii) if ∑𝑛
𝑠=0
𝑚(𝑠) = 0, then

𝜆
−

𝑛,𝑛
−

< 𝜆
−

𝑛−1,(𝑛−1)
−
< ⋅ ⋅ ⋅ < 𝜆

−

𝑛,2
< 𝜆
−

𝑛−1,1
< 𝜆
−

𝑛,1

= 0 = 𝜆
+

𝑛,1
< 𝜆
+

𝑛−1,1
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛,𝑛
+

< 𝜆
+

𝑛−1,(𝑛−1)
+
.

(74)

Thus the proof is complete.

Lemma 10. Let 𝑤(𝜆) be the number of sign changes in the
sequence (15). Then for 𝑖 ∈ {1, . . . , 𝑛+},

lim
𝜆→ (𝜆+

𝑛,𝑖

)
−

𝑤 (𝜆) = 𝑖 − 1, lim
𝜆→ (𝜆+

𝑛,𝑖

)
+

𝑤 (𝜆) = 𝑖, (75)

where 𝜆 → (𝑎)− means that 𝜆 → 𝑎 in (−∞, 𝑎) and 𝜆 → (𝑎)+
means that 𝜆 → 𝑎 in (𝑎,∞).

Proof. It is motivated by the proof of Strums Theorem; see
[20, Theorem 1.4.3] and its proof.

The idea of the proof is to follow the changes in 𝑤 as 𝜆
passes through the interval [0, 𝑛]. In particular, we will show
that 𝑤 is a monotonically increasing function and that each
root of 𝑄

𝑛
and only a root of 𝑄

𝑛
make 𝑤 jump by 1.

If 𝑄
𝑗
(𝜆̂) = 0 for some 𝑗 ∈ {1, . . . , 𝑛 − 1}, then for 𝑄

𝑗−1
,

𝑄
𝑗
, 𝑄
𝑗+1

we have from Lemma 7 that 𝑄
𝑗−1

and 𝑄
𝑗+1

have
opposite, but constant signs, since 𝑄

𝑗−1
and 𝑄

𝑗+1
cannot

be zero in a sufficiently small neighborhood 𝑈(𝜆̂) and thus
cannot change sign.Hence, whatever the sign of𝑄

𝑗
is in𝑈(𝜆̂),

it does not change the overall sign change count (to see this,
note that𝑄

𝑗−1
and 𝑄

𝑗+1
have opposite signs, and hence if the

sign sequence before is+−−, it is after++− and the number of
sign changes remains the same.The same for the other cases).
In other word, 𝑤(𝜆) stays constant when 𝜆 passing through a
root of 𝑄

𝑗
from some 𝑗 ∈ {1, . . . , 𝑛 − 1}.

It is easy to see from Lemma 9 that

sgn 𝑄
𝑛−1
(𝜆
+

𝑛,𝑖
) = (−1)

𝑖−1

, 𝑖 ∈ {1, . . . , 𝑛
+

} . (76)

Next, we show that each root of 𝑄
𝑛
and only a root of 𝑄

𝑛

make 𝑤 jump by 1.
In fact, for 𝑖 = 1, 𝑄

𝑛−1
(𝜆+
𝑛,1
) > 0, which implies that there

exists a neighborhood 𝑈(𝜆+
𝑛,1
) of 𝜆+
𝑛,1
, such that

𝑄
𝑛−1
(𝜆) > 0, 𝜆 ∈ 𝑈 (𝜆

+

𝑛,1
) . (77)

From the definition of 𝜆+
𝑛,1
,

𝑄
𝑛
(𝜆) > 0, 𝜆 ∈ [0, 𝜆

+

𝑛,1
) . (78)

The chain of signs switches from “⋅ ⋅ ⋅ + +” to “⋅ ⋅ ⋅ + −” when
passing through 𝜆+

𝑛,1
, so 𝑤 increases by 1.

For 𝑖 = 2,

𝑄
𝑛−1
(𝜆
+

𝑛,2
) < 0,

𝑄
𝑛
(𝜆) < 0, 𝜆 ∈ (𝜆

+

𝑛,1
, 𝜆
+

𝑛,2
) .

(79)

The chain of signs switches from “⋅ ⋅ ⋅ − −” to “⋅ ⋅ ⋅ − +” when
passing through 𝜆+

𝑛,2
, so 𝑤 increases by 1.

Repeating the above argument, we may deduce that

lim
𝜆→ (𝜆+

𝑛,𝑖

)
−

𝑤 (𝜆) = 𝑖 − 1, lim
𝜆→ (𝜆+

𝑛,𝑖

)
+

𝑤 (𝜆) = 𝑖. (80)

This completes the proof.

Lemma 11. If 𝑢(⋅, 𝜆) satisfies (1), (2) with 𝑢(1, 𝜆) = 1, then

𝑢 (𝑘 + 1, 𝜆) = 𝑝 (1) ⋅ ⋅ ⋅ 𝑝 (𝑘)𝑄
𝑘
(𝜆) , 𝑘 = 1, . . . , 𝑛 − 1.

(81)

Proof. Let

𝑢 = (𝑢 (0) , 𝑢 (1) , 𝑢 (2) , . . . , 𝑢 (𝑛) , 𝑢 (𝑛 + 1))
𝑇 (82)

be a solution of (1), (2). Then

(𝑐 (1) − 𝜆𝑚 (1)) 𝑢 (1) − 𝑝 (1) 𝑢 (2) = 0,

−𝑝 (1) 𝑢 (1) + (𝑐 (2) − 𝜆𝑚 (2)) 𝑢 (2) − 𝑝 (2) 𝑢 (3) = 0,

⋅ ⋅ ⋅

− 𝑝 (𝑛 − 2) 𝑢 (𝑛 − 2) + (𝑐 (𝑛 − 1) − 𝜆𝑚 (𝑛 − 1)) 𝑢 (𝑛 − 1)

− 𝑝 (𝑛 − 1) 𝑢 (𝑛) = 0,

−𝑝 (𝑛 − 1) 𝑢 (𝑛 − 1) + (𝑐 (𝑛) − 𝜆𝑚 (𝑛)) 𝑢 (𝑛) = 0.

(83)

Clearly, (83) is equivalent to

− 𝑝 (𝑘 − 1) 𝑢 (𝑘 − 1) + (𝑝 (𝑘 − 1) + 𝑝 (𝑘) − 𝜆𝑚 (𝑘)) 𝑢 (𝑘)

− 𝑝 (𝑘) 𝑢 (𝑘 + 1) = 0, 𝑘 = 1, . . . , 𝑛,

(84)

with 𝑢(0) and 𝑢(𝑛 + 1) determined by (2).
Let

V
0
= 𝑢 (0) , V

1
= 𝑢 (1) , V

𝑘
= 𝑝 (1) ⋅ ⋅ ⋅ 𝑝 (𝑘 − 1) 𝑢 (𝑘) ,

𝑘 = 2, . . . 𝑛.

(85)

Then

V
1
= 𝑢 (1, 𝜆) = 1 = 𝑄

0
(𝜆) , V

2
= 𝑄
1
(𝜆) ,

V
𝑘+1
= (𝑐 (𝑘) − 𝜆𝑚 (𝑘)) V

𝑘
− 𝑝
2

(𝑘 − 1) V
𝑘−1
,

𝑘 = 2, 3, . . . 𝑛 − 1.

(86)

Obviously, V
𝑘+1

and 𝑄
𝑘
(𝜆) satisfy the same recurrence for-

mula (15), and it follows that

V
𝑘+1
= 𝑄
𝑘
(𝜆) , 𝑘 = 1, . . . , 𝑛 − 1, (87)

and accordingly,

𝑄
𝑘
(𝜆) = 𝑝 (1) 𝑝 (2) ⋅ ⋅ ⋅ 𝑝 (𝑘) 𝑢 (𝑘 + 1, 𝜆) , 𝑘 = 1, . . . , 𝑛 − 1.

(88)
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Proof of Theorem 1. FromLemmas 5 and 9, we can obtain the
following consequence.

(i) If ∑𝑛
𝑡=1
𝑚(𝑡) > 0, then (1), (2) has 𝑛 real and simple

eigenvalues, which can be ordered as follows:

𝜆
−

𝑛
−

< 𝜆
−

𝑛
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

2
< 𝜆
−

1
< 0

= 𝜆
+

1
< 𝜆
+

2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛
+

.
(89)

(ii) If ∑𝑛
𝑡=1
𝑚(𝑡) < 0, then (1), (2) has 𝑛 real and simple

eigenvalues, which can be ordered as follows:

𝜆
−

𝑛
−

< 𝜆
−

𝑛
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

2
< 𝜆
−

1

= 0 < 𝜆
+

1
< 𝜆
+

2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛
+

.
(90)

(iii) If∑𝑛
𝑡=1
𝑚(𝑡) = 0, then 𝜆 = 0 is an eigenvalue of (1), (2)

and other 𝑛−2 eigenvalues are real and simple, which
can be ordered as follows:

𝜆
−

𝑛
−

< 𝜆
−

𝑛
−

−1
< ⋅ ⋅ ⋅ < 𝜆

−

2
< 𝜆
−

1

= 0 = 𝜆
+

1
< 𝜆
+

2
< ⋅ ⋅ ⋅ < 𝜆

+

𝑛
+

.
(91)

Now, we consider the numbers of sign changing of
eigenfunction. From Lemma 11, we may determine that the
number of sign changing of

{𝑢 (0) , 𝑢 (1) , . . . , 𝑢 (𝑛) , 𝑢 (𝑛 + 1)} (92)

via that of

{𝑄
1
(𝜆
+

𝑛,𝑖
) , . . . , 𝑄

𝑛−1
(𝜆
+

𝑛,𝑖
)} (93)

since (2) implies that 𝑢(0)𝑢(1) ≥ 0 and 𝑢(𝑛)𝑢(𝑛 + 1) ≥ 0.
Let 𝑤(𝜆) be the number of sign changes in the sequence

𝑄
0
(𝜆) = 1;

𝑄
1
(𝜆) = 𝑐 (1) − 𝜆𝑚 (1) ;

𝑄
𝑗
(𝜆) = (𝑐 (𝑗) − 𝜆𝑚 (𝑗))𝑄

𝑗−1
(𝜆) − 𝑝

2

(𝑗 − 1)𝑄
𝑗−2
(𝜆) ,

𝑗 = 2, 3, . . . , 𝑛 − 1;

𝑄
𝑛−1
(𝜆) = (𝑐 (𝑛 − 1) − 𝜆𝑚 (𝑛 − 1))

× 𝑄
𝑛−2
(𝜆) − 𝑝

2

(𝑛 − 2)𝑄
𝑛−3
(𝜆) .

(94)

Using the same method to prove Lemma 10, with obvious
changes, we may obtain that for 𝑖 ∈ {2, . . . , (𝑛 − 1)+},

lim
𝜆→𝜆

+

𝑛−1,𝑖−1

+0

𝑤 (𝜆) = 𝑖 − 1, lim
𝜆→𝜆

+

𝑛−1,𝑖

−0

𝑤 (𝜆) = 𝑖 − 1.

(95)

Thus, for 𝑖 ∈ {2, . . . , (𝑛 − 1)+}, Lemma 9 yields

𝜆
+

𝑛−1,𝑖−1
< 𝜆
+

𝑛,𝑖
< 𝜆
+

𝑛−1,𝑖
. (96)

This together with (95) and the fact that 𝑤(𝜆) is nondecreas-
ing in (0,∞) implies

𝑤(𝜆
+

𝑛,𝑖
) = 𝑤(

𝜆+
𝑛−1,𝑖−1
+ 𝜆+
𝑛−1,𝑖

2
) = 𝑖 − 1, (97)

and accordingly

𝑤(𝜆
+

𝑛,𝑖
) = 𝑤 (𝜆

+

𝑛,𝑖
) = 𝑖 − 1. (98)

For the case 𝑖 = 1, since 𝑄
𝑗
(0) > 0 for 𝑗 ∈ {0, 1, . . . , 𝑛 − 1}, it

follows that

lim
𝜆→0

+

𝑤 (𝜆) = 0. (99)

This together with the facts 0 ≤ 𝜆+
𝑛,1
< 𝜆+
𝑛−1,1

and

lim
𝜆→ (𝜆+

𝑛−1,1

)
−

𝑤 (𝜆) = 0 (100)

implies that

𝑤(𝜆
+

𝑛,1
) = 𝑤 (𝜆

+

𝑛,1
) = 0. (101)

If 𝑛+ = (𝑛−1)+, then it has been done! If 𝑛+ = (𝑛−1)++1,
then by the same method, with obvious changes, we may get

𝑤(𝜆
+

𝑛,𝑛
+

) = 𝑤 (𝜆
+

𝑛,𝑛
+

) = 𝑛
+

− 1. (102)

Finally, by using the abovemethod, with obvious changes,
wemay prove that the number of sign changes𝜓−

𝑛,𝑖
is 𝑖−1.

Remark 12. If one extra term 𝑞(𝑡)𝑦(𝑡) is present in (1), then
𝜆 = 0 is generally not an eigenvalue of

Δ [𝑝 (𝑡 − 1) Δ𝑢 (𝑡 − 1)] − 𝑞 (𝑡) 𝑢 (𝑡) + 𝜆𝑚 (𝑡) 𝑢 (𝑡) = 0,

𝑡 ∈ T ,

𝑢 (0) = 𝑢 (1) , 𝑢 (𝑛) = 𝑢 (𝑛 + 1) ,

(103)

anymore. Recall the fact that 𝜆 = 0 is essential in Lemma 8
and its proof. Therefore, the spectrum structure of the more
general problem (103) is still open.
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