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We show some results which can replace the graph theory used to construct global Lyapunov functions in some coupled systems of
differential equations. We present an example of an epidemic model with stage structure and latency spreading in a heterogeneous
host population and obtain a more general threshold for the extinction and persistence of a disease. Using some results obtained
by mathematical induction and suitable Lyapunov functionals, we prove the global stability of the endemic equilibrium. For some
coupled systems of differential equations, by a similar approach to the discussion of the epidemicmodel, the conditions of threshold
property or global stability can be established without the assumption that the relative matrix is irreducible.

1. Introduction

Graph theory has developed into a substantial body of knowl-
edge. A graph theoretic approach developed in [1, 2] is used
to resolve a long-standing open problem on the uniqueness
and global stability of the endemic equilibrium of a class
of multigroup models in mathematical epidemiology. Using
results from graph theory, a systematic approach developed
in [3] allows one to construct global Lyapunov functions
for large-scale coupled systems from building blocks of
individual vertex systems. The graph-theoretical approach
has been applied to various classes of coupled systems in
engineering, ecology, and epidemiology (see, e.g., [1–13]).
However, as in [14], while using the same Lyapunov function
[3], sometimes graph theory can be replaced by positive
operator theory. Furthermore, it seems that all authors use the
graph theory under the assumption that the relative matrix is
irreducible (see, e.g., [1–13]).

Motivated by the above discussion, in this paper, we
show some results which can replace graph theory used
to construct global Lyapunov functions in some coupled
systems of differential equations (see, e.g., [1–13]) and a
more general threshold without the assumption that the

relative matrix is irreducible. For some coupled systems
of differential equations (see, e.g., [1–13]), by a similar
approach to the one discussed in this paper, the conditions
of threshold property or global stability can be established
without the assumption that the relative matrix is irre-
ducible.

Various epidemics continue to pose a public health threat
to humans. One of the most important subjects in this
study of epidemic models (see, e.g., [1–3, 7–13]) is to obtain
a threshold that determines the persistence or extinction
of a disease. In the real world, some epidemics, such as
malaria, dengue, fever, gonorrhea, and bacterial infections,
may have a different ability to transmit the infections in
different ages. For example, measles and varicella always
occur in juveniles, while it is reasonable to consider the
disease transmission in adult population such as typhus and
diphtheria. A heterogeneous host population can be divided
into several homogeneous groups according to models of
transmission, contact patterns, or geographic distributions.
Since the time it takes from the moment of new infection
to the moment of becoming infectious may differ from
individual to individual, it is indeed a random variable. We
present an example of an epidemicmodel with stage structure
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and latency spreading in a heterogeneous host population and
show a general threshold to improved existing results.

Some results which can replace the graph theory used to
construct global Lyapunov functions in some coupled sys-
tems of differential equations are shown in the next sections.
In Section 3, a new approach to the method of Lyapunov
functionals is applied to an epidemic model to obtain a more
general threshold for the extinction and persistence of a
disease.

2. Some Results Obtained by
Mathematical Induction

In this section, we show some results which can replace graph
theory used to construct global Lyapunov functions in some
coupled systems of differential equations.

Assumption 1. There exist V𝑘 > 0, such that

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
V𝑘 −

𝑛

∑

𝑗=1

𝛽
𝑗𝑘
V𝑗 = 0, (1)

where 𝛽
𝑘𝑗
≥ 0, 𝑘, 𝑗 = 1, 2, . . . , 𝑛, 𝑛 ≥ 2.

Theorem 2. Under Assumption 1, the following results hold:

𝑛

∑

𝑘,𝑗=1

V𝑘𝛽𝑘𝑗 [𝐹𝑘 (𝑥𝑘) − 𝐹𝑗 (𝑥𝑗)] = 0, (2)

where 𝐹𝑘(𝑥𝑘), 𝑘 = 1, 2, . . . , 𝑛, are arbitrary functions. In
particular, if 𝐹𝑘(𝑥𝑘) > 0, 𝑘 = 1, 2, . . . , 𝑛, then

𝑛

∑

𝑘,𝑗=1

V𝑘𝛽𝑘𝑗 [1 −
𝐹𝑘 (𝑥𝑘)

𝐹𝑗 (𝑥𝑗)

] ≤ 0. (3)

Proof. Note that

𝑛

∑

𝑘,𝑗=1

V𝑘𝛽𝑘𝑗 [𝐹𝑘 (𝑥𝑘) − 𝐹𝑗 (𝑥𝑗)]

= ∑

𝑛≥𝑘≥𝑗≥1

(V𝑘𝛽𝑘𝑗 − V𝑗𝛽𝑗𝑘) [𝐹𝑘 (𝑥𝑘) − 𝐹𝑗 (𝑥𝑗)]

=: 𝑍𝑛.

(4)

Let

Δ 𝐿 = ∑

𝐿≥𝑘≥𝑗≥2

(V𝑘𝛽𝑘𝑗 − V𝑗𝛽𝑗𝑘) [𝐹𝑘 (𝑥𝑘) − 𝐹𝑗 (𝑥𝑗)] ,

𝐿 = 2, 3, . . . , 𝑛.

(5)

According to Assumption 1, it is easy to see that we only need
to prove the following result:

𝑍𝑛 =

𝑞+1

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿 + V𝐿𝛽𝐿,𝑛−1

−V𝑛−1𝛽𝑛−1,𝐿 + ⋅ ⋅ ⋅ + V𝐿𝛽𝐿,𝑞+2 − V𝑞+2𝛽𝑞+2,𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] + Δ 𝑞+1 =: 𝐴𝑞+1,

𝑞 = 1, 2, . . . , 𝑛 − 2.

(6)

In fact, if the above result holds, then we have

𝑍𝑛 =

𝑛

∑

𝐿=1

(V2𝛽2𝐿 − V𝐿𝛽𝐿2) [𝐹2 (𝑥2) − 𝐹1 (𝑥1)] + Δ 2. (7)

Using Assumption 1, we have 𝑍𝑛 = Δ 2 = 0. First, we show
that 𝑍𝑛 = 𝐴𝑛−1. We can rewrite 𝑍𝑛 as

𝑍𝑛 =

𝑛

∑

𝐿=2

{(V𝑛𝛽𝑛𝐿 − V𝐿𝛽𝐿𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹𝐿 (𝑥𝐿)]

+ (V𝐿𝛽𝐿1 − V1𝛽1𝐿) [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)]} + Δ 𝑛−1.

(8)

Then, using the fact that 𝑎𝑏 + 𝑐𝑑 = 𝑎(𝑏 + 𝑑) + 𝑑(𝑐 − 𝑎), where
𝑎, 𝑏, 𝑐, and 𝑑 are arbitrary numbers, we may obtain

𝑍𝑛 =

𝑛

∑

𝐿=2

{(V𝑛𝛽𝑛𝐿 − V𝐿𝛽𝐿𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹1 (𝑥1)]

+ (V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] } + Δ 𝑛−1

=

𝑛

∑

𝐿=2

(V𝑛𝛽𝑛𝐿 − V𝐿𝛽𝐿𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹1 (𝑥1)]

+ (V𝑛𝛽𝑛1 − V1𝛽1𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹1 (𝑥1)]

+

𝑛−1

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] + Δ 𝑛−1

=

𝑛

∑

𝐿=1

(V𝑛𝛽𝑛𝐿 − V𝐿𝛽𝐿𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹1 (𝑥1)] + Δ 𝑛−1

+

𝑛−1

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] .

(9)
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Using Assumption 1, we have 𝑍𝑛 = 𝐴𝑛−1. Next, we show that
𝐴𝑞+1 = 𝐴𝑞, 𝑞 = 1, 2, . . . , 𝑛 − 2. We can rewrite 𝐴𝑞+1 as

𝐴𝑞+1 =

𝑞+1

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿 + V𝐿𝛽𝐿,𝑛−1

−V𝑛−1𝛽𝑛−1,𝐿 + ⋅ ⋅ ⋅ + V𝐿𝛽𝐿,𝑞+2 − V𝑞+2𝛽𝑞+2,𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] + Δ 𝑞

+

𝑞+1

∑

𝑗=2

(V𝑞+1𝛽𝑞+1,𝑗 − V𝑗𝛽𝑗,𝑞+1) [𝐹𝑞+1 (𝑥𝑞+1) − 𝐹𝑗 (𝑥𝑗)] .

(10)

By a similar argument as for the discussion
𝑛

∑

𝐿=2

{(V𝑛𝛽𝑛𝐿 − V𝐿𝛽𝐿𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹𝐿 (𝑥𝐿)]

+ (V𝐿𝛽𝐿1 − V1𝛽1𝐿) [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)]}

=

𝑛

∑

𝐿=1

(V𝑛𝛽𝑛𝐿 − V𝐿𝛽𝐿𝑛) [𝐹𝑛 (𝑥𝑛) − 𝐹1 (𝑥1)]

+

𝑛−1

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] ,

(11)

in the proof of 𝑍𝑛 = 𝐴𝑛−1, we can obtain
𝑞+1

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿) [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)]

+

𝑞+1

∑

𝑗=2

(V𝑞+1𝛽𝑞+1,𝑗 − V𝑗𝛽𝑗,𝑞+1) [𝐹𝑞+1 (𝑥𝑞+1) − 𝐹𝑗 (𝑥𝑗)]

=

𝑞+1

∑

𝐿=1

(V𝑞+1𝛽𝑞+1,𝐿 − V𝐿𝛽𝐿,𝑞+1) [𝐹𝑞+1 (𝑥𝑞+1) − 𝐹1 (𝑥1)]

+

𝑞

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿,𝑞+1 − V𝑞+1𝛽𝑞+1,𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] .

(12)

Substituting (12) into (10), we have

𝐴𝑞+1 =

𝑞+1

∑

𝐿=2

(V𝐿𝛽𝐿𝑛 − V𝑛𝛽𝑛𝐿 + V𝐿𝛽𝐿,𝑛−1 − V𝑛−1𝛽𝑛−1,𝐿

+ ⋅ ⋅ ⋅ + V𝐿𝛽𝐿,𝑞+2 − V𝑞+2𝛽𝑞+2,𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)] + Δ 𝑞

+

𝑞+1

∑

𝐿=1

(V𝑞+1𝛽𝑞+1,𝐿 − V𝐿𝛽𝐿,𝑞+1) [𝐹𝑞+1 (𝑥𝑞+1) − 𝐹1 (𝑥1)]

+

𝑞

∑

𝐿=2

(V𝐿𝛽𝐿1 − V1𝛽1𝐿 + V𝐿𝛽𝐿,𝑞+1 − V𝑞+1𝛽𝑞+1,𝐿)

× [𝐹𝐿 (𝑥𝐿) − 𝐹1 (𝑥1)]

=

𝑛

∑

𝐿=1

(V𝑞+1𝛽𝑞+1,𝐿 − V𝐿𝛽𝐿,𝑞+1) [𝐹𝑞+1 (𝑥𝑞+1) − 𝐹1 (𝑥1)]

+ 𝐴𝑞.

(13)

By Assumption 1, we can get 𝐴𝑞+1 = 𝐴𝑞. Using 1 −

(𝐹𝑘(𝑥𝑘)/𝐹𝑗(𝑥𝑗)) + ln(𝐹𝑘(𝑥𝑘)/𝐹𝑗(𝑥𝑗)) ≤ 0 and the result above,
we can obtain that∑𝑛

𝑘,𝑗=1
V𝑘𝛽𝑘𝑗(1 − (𝐹𝑘(𝑥𝑘)/𝐹𝑗(𝑥𝑗))) ≤ 0. This

completes the proof.

Remark 3. Some results in [1–13] from graph
theory can be obtained by Theorem 2. For example,
∑
𝑛

𝑘,𝑗=1
V𝑘𝛽𝑘𝑗 ln((𝐸𝑘𝐸

∗

𝑗
)/(𝐸

∗

𝑘
𝐸𝑗)) = 0 in [11] and

∑
𝑛

𝑘,𝑗=1
V𝑘𝛽𝑘𝑗[𝑛 + 2 − (𝑆

∗

𝑘
/𝑆𝑘) − ((𝑆𝑘𝐼𝑗𝑦

∗

𝑘,1
)/(𝑆

∗

𝑘
𝐼
∗

𝑗
𝑦𝑘,1)) −

∑
𝑛

𝑖=2
((𝑦𝑘,𝑖−1𝑦

∗

𝑘,𝑖
)/(𝑦

∗

𝑘,𝑖−1
𝑦𝑘,𝑖)) − ((𝑦𝑘,𝑛𝐼

∗

𝑘
)/(𝑦

∗

𝑘,𝑛
𝐼𝑘)) ≤ 0] in [10].

The following result is one result of Kirchhoff ’s Three
Theorem (a result in graph theory). In the following, using
mathematical induction, we show the result.

Theorem 4. If (𝛽
𝑘𝑗
)𝑛×𝑛, 𝑛 ≥ 2, is irreducible, then

Assumption 1 holds.

Proof. Obviously, the result holds for 𝑛 = 2. We assume 𝑛 ≥ 3

and can rewrite (1) as

[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸= 1

𝛽
1𝑙

−𝛽
21

⋅ ⋅ ⋅ −𝛽
𝑛1

−𝛽
12

∑

𝑙 ̸= 2

𝛽
2𝑙

⋅ ⋅ ⋅ −𝛽
𝑛2

...
... d

...
−𝛽

1𝑛
−𝛽

2𝑛
⋅ ⋅ ⋅ ∑

𝑙 ̸= 𝑛

𝛽
𝑛𝑙

]
]
]
]
]
]
]
]
]

]

(

V1
V2
...
V𝑛

) = (

0

0

...
0

) . (14)

Note that (14) is equivalent to the following system:

[
[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸= 1

𝛽
1𝑙

−𝛽
21

⋅ ⋅ ⋅ −𝛽
𝑛1

0 ∑

𝑙 ̸= 2

𝛽
2𝑙
− 𝛽

21

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ −𝛽
𝑛2
− 𝛽

𝑛1

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

...
... d

...

0 −𝛽
2𝑛
− 𝛽

21

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ ∑

𝑙 ̸= 𝑛

𝛽
𝑛𝑙
− 𝛽

𝑛1

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

]
]
]
]
]
]
]
]
]
]
]
]

]

×(

V1
V2
...
V𝑛

) = (

0

0

...
0

) .

(15)
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Consider the following system:

[
[
[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸= 2

𝛽
2𝑙
− 𝛽

21

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

−𝛽
32
− 𝛽

31

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ −𝛽
𝑛2
− 𝛽

𝑛1

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

−𝛽
23
− 𝛽

21

𝛽
13

∑
𝑙 ̸= 1

𝛽
1𝑙

∑

𝑙 ̸= 3

𝛽
3𝑙
− 𝛽

31

𝛽
13

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ −𝛽
𝑛3
− 𝛽

𝑛1

𝛽
13

∑
𝑙 ̸= 1

𝛽
1𝑙

...
... d

...

−𝛽
2𝑛
− 𝛽

21

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

−𝛽
3𝑛
− 𝛽

31

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ ∑

𝑙 ̸= 𝑛

𝛽
𝑛𝑙
− 𝛽

𝑛1

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

]
]
]
]
]
]
]
]
]
]
]
]
]

]

×(

V2
...
V𝑛

) = (

0

...
0

) .

(16)

Let

[
[
[
[

[

−𝑎11 −𝑎21 ⋅ ⋅ ⋅ −𝑎𝑛−1,1

−𝑎12 −𝑎22 ⋅ ⋅ ⋅ −𝑎𝑛−1,2

...
... d

...
−𝑎1,𝑛−1 −𝑎2,𝑛−1 ⋅ ⋅ ⋅ −𝑎𝑛−1,𝑛−1

]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸= 2

𝛽
2𝑙
− 𝛽

21

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

−𝛽
32
− 𝛽

31

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ −𝛽
𝑛2
− 𝛽

𝑛1

𝛽
12

∑
𝑙 ̸= 1

𝛽
1𝑙

−𝛽
23
− 𝛽

21

𝛽
13

∑
𝑙 ̸= 1

𝛽
1𝑙

∑

𝑙 ̸= 3

𝛽
3𝑙
− 𝛽

31

𝛽
13

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ −𝛽
𝑛3
− 𝛽

𝑛1

𝛽
13

∑
𝑙 ̸= 1

𝛽
1𝑙

...
... d

...

−𝛽
2𝑛
− 𝛽

21

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

−𝛽
3𝑛
− 𝛽

31

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

⋅ ⋅ ⋅ ∑

𝑙 ̸= 𝑛

𝛽
𝑛𝑙
− 𝛽

𝑛1

𝛽
1𝑛

∑
𝑙 ̸= 1

𝛽
1𝑙

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(17)

We can rewrite (16) as

[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸= 1

𝑎1𝑙 −𝑎21 ⋅ ⋅ ⋅ −𝑎𝑛−1,1

−𝑎12 ∑

𝑙 ̸= 2

𝑎2𝑙 ⋅ ⋅ ⋅ −𝑎𝑛−1,2

...
... d

...
−𝑎1,𝑛−1 −𝑎2,𝑛−1 ⋅ ⋅ ⋅ ∑

𝑙 ̸= 𝑛−1

𝑎𝑛−1,𝑙

]
]
]
]
]
]
]
]
]

]

(

V2
V3
...
V𝑛

) = (

0

0

...
0

) . (18)

From (17), it is easy to see that (𝑎𝑘𝑗)(𝑛−1)×(𝑛−1), 𝑛 ≥ 3, is
also irreducible. Note that ∑

𝑙 ̸= 1
𝛽
1𝑙

̸= 0. According to the
discussion above, we can deduce that if the result (if (𝛽

𝑘𝑗
)𝑛×𝑛,

𝑛 ≥ 2, is irreducible, then Assumption 1 holds) holds for

𝑛 = 𝐿, 𝐿 ≥ 2, then it holds also for 𝑛 = 𝐿 + 1. The proof
is complete.

3. An Example of an Epidemic Model with
Stage Structure and Latency Spreading in
a Heterogeneous Host Population

In this section, we present an epidemic model with stage
structure and latency spreading in a heterogeneous host pop-
ulation and obtain amore general threshold for the extinction
and persistence of a disease. Using the results obtained by
mathematical induction and suitable Lyapunov functionals,
we prove the global stability of the endemic equilibrium.
For some coupled systems of differential equations, by a
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similar approach to the discussion of the epidemic model,
the conditions of threshold property or global stability can be
established without the assumption that the relative matrix is
irreducible.

We formulate an epidemic model with latency spreading
in a heterogeneous host population. Let 𝑆(1)

𝑘
, 𝑆(2)
𝑘
, 𝐼𝑘, and 𝑅𝑘

denote the immature susceptible, mature susceptible, infec-
tious, and recovered population in the 𝑘th group, respectively.
The disease incidence in the 𝑘th group can be calculated as

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
𝐼𝑗, (19)

where the sum takes into account cross-infections from
all groups and 𝛽

(𝑖)

𝑘𝑗
is the transmission coefficient between

compartments 𝑆(𝑖)
𝑘

and 𝐼𝑗. Let 𝑑
(1)

𝑘
and 𝑑

(2)

𝑘
represent death

rates of 𝑆(1)
𝑘

and 𝑆
(2)

𝑘
populations, respectively. Let 𝜏 be the

latent period of the population. 𝑒−𝑑
(𝑖)

𝑘
𝜏
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏)𝐼𝑗(𝑡 − 𝜏)

represents the individuals surviving in the latent period 𝜏 and
becoming infective at time 𝑡. Let 𝑝(𝑖)

𝑘
(𝜏) : [0, ℎ] → R+ be

integrable function with ∫ℎ
0
𝑝
(𝑖)

𝑘
(𝜏)𝑑𝜏 = 1.We assume that 𝜏 is

distributed according to 𝑝(𝑖)
𝑘
(𝜏) over the interval [0, ℎ], where

ℎ is the upper bound of the latent period.Then, we obtain the
following model for a disease with latency:

̇𝑆
(1)

𝑘
= 𝑏𝑘 − 𝑑

(1)

𝑘
𝑆
(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
,

̇𝑆
(2)

𝑘
= 𝑎𝑘𝑆

(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
,

̇𝐼𝑘 =

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑝
(𝑖)

𝑘
(𝜏) 𝑒

−𝑑
(𝑖)

𝑘
𝜏
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏

− (𝑑𝑘 + 𝜇𝑘 + 𝛾𝑘) 𝐼𝑘,

𝑅̇𝑘 = 𝛾𝑘𝐼𝑘 − 𝑑𝑘𝑅𝑘, 𝑘 = 1, 2, . . . , 𝑛,

(20)

where 𝑏(1)
𝑘

denotes influx of individuals into the immature
susceptible class in the 𝑘th group. 𝑎𝑘 is the conversion rate
from immature individual to mature individual in group 𝑘.
𝑑𝑘, 𝜇𝑘, and 𝛾𝑘 are the natural death rate, the disease-related
death rate, and the recovery rate in the 𝑘th group, respectively.
All parameter values are assumed to be nonnegative and 𝑏𝑘,
ℎ, 𝑎𝑘, 𝑑

(𝑖)

𝑘
, 𝑑𝑘 > 0.

Let 𝑓(𝑖)
𝑘
(𝜏) = 𝑝

(𝑖)

𝑘
(𝜏)𝑒

−𝑑
(𝑖)

𝑘
𝜏, 𝑐(𝑖)

𝑘
= ∫

ℎ

0
𝑝
(𝑖)

𝑘
(𝜏)𝑒

−𝑑
(𝑖)

𝑘
𝜏
𝑑𝜏,

𝜑𝑘(𝑆
(1)

𝑘
) = 𝑏𝑘 − 𝑑

(1)

𝑘
𝑆
(1)

𝑘
, and 𝑚𝑘 = 𝑑𝑘 + 𝜇𝑘 + 𝛾𝑘. Since the

variables 𝑅𝑘 do not appear in the remaining three equations
of (20), we can consider the following reduced system:

̇𝑆
(1)

𝑘
= 𝜑𝑘 (𝑆

(1)

𝑘
) −

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
,

̇𝑆
(2)

𝑘
= 𝑎𝑘𝑆

(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
,

̇𝐼𝑘 =

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏 − 𝑚𝑘𝐼𝑘,

𝑘 = 1, 2, . . . , 𝑛.

(21)

The initial conditions for system (21) take the form

𝑆
(1)

𝑘
(𝜃) = 𝜙

(1)

𝑘
(𝜃) ≥ 0, 𝑆

(2)

𝑘
(𝜃) = 𝜙

(2)

𝑘
(𝜃) ≥ 0,

𝐼𝑘 (𝜃) = 𝜙𝑘 (𝜃) ≥ 0, 𝜙
(𝑖)

𝑘
(0) > 0, 𝜙𝑘 (0) > 0,

𝑖 = 1, 2, 𝑘 = 1, 2, . . . , 𝑛, 𝜃 ∈ [−ℎ, 0] ,

(22)

where (𝜙
(1)

1
(𝜃), 𝜙

(2)

1
(𝜃), . . . , 𝜙𝑛(𝜃)) ∈ 𝐶([−ℎ, 0],R3𝑛

+
), the

Banach space of continuous functions mapping the interval
[−ℎ, 0] into R3𝑛

+
.

We see that system (21) exits a disease-free equilibrium
𝑃0 = (𝑆

(1)

10
, 𝑆
(2)

10
, . . . , 𝑆

(1)

𝑛0
, 𝑆
(2)

𝑛0
, 0, 0, . . . , 0), where

𝜑𝑘 (𝑆
(1)

𝑘0
) = 𝑑

(2)

𝑘
𝑆
(2)

𝑘0
, 𝑎𝑘𝑆

(1)

𝑘0
= 𝑑

(2)

𝑘
𝑆
(2)

𝑘0
, 𝑘 = 1, 2, . . . , 𝑛.

(23)

Let

𝐴𝑘𝑗 =

∑
2

𝑖=1
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘0

𝑚𝑘

, 𝑘, 𝑗 = 1, 2, . . . , 𝑛, (24)

andQ = (𝐴𝑘𝑗)𝑛×𝑛. We assume that

(H1) there exist (𝑤1, 𝑤2, . . . , 𝑤𝑛) > 0 (𝑤𝑘 > 0, 𝑘 =

1, 2, . . . , 𝑛), such that

(𝑤1, 𝑤2, . . . , 𝑤𝑛)Q < (𝑤1, 𝑤2, . . . , 𝑤𝑛) ; (25)

(H2) there exist (𝑤1, 𝑤2, . . . , 𝑤𝑛) > 0, such that

(𝑤1, 𝑤2, . . . , 𝑤𝑛)Q = (𝑤1, 𝑤2, . . . , 𝑤𝑛) ; (26)

(H3) there exist (𝑤1, 𝑤2, . . . , 𝑤𝑛) > 0, such that

(𝑤1, 𝑤2, . . . , 𝑤𝑛)Q > (𝑤1, 𝑤2, . . . , 𝑤𝑛) . (27)

Let

(i) 𝑅0 < 1 if and only if (H1) holds;
(ii) 𝑅0 = 1 if and only if (H2) holds;
(iii) 𝑅0 > 1 if and only if (H3) holds.
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Remark 5. By an approach as the one in [1–3, 7–13], we define
𝑟0. Let 𝑟0 = 𝜌(Q), where 𝜌 denotes the spectral radius. If a
matrix is irreducible, then, for the eigenvalue of maximum,
the associated eigenvector is positive. Note that the authors
in [1–3, 7–13] discussed some coupled systems of differential
equations under a definition with an approach as the one of
definition of 𝑟0 and the assumption that the relevant matrix
is irreducible. In fact, if 𝑟0 < 1 and the relevant matrix is
irreducible, then 𝑅0 < 1; if 𝑟0 = 1 and the relevant matrix
is irreducible, then 𝑅0 = 1; if 𝑟0 > 1 and the relevant matrix
is irreducible, then 𝑅0 > 1. However, the reverse is not true.
For example,

(𝐴𝑘𝑗)2×2
= [

1 0

1 2
] . (28)

Furthermore, let

(𝐴𝑘𝑗)4×4
=

[
[
[

[

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

]
]
]

]

. (29)

Obviously, 𝑅0 > 1 holds also for arbitrary (𝑤1, 𝑤2, 𝑤3, 𝑤4) >
0. (𝐴𝑘𝑗)4×4 conforms to the conditions ofTheorem 8but is not
in accord with the conditions of Corollary 10. The definition
of 𝑟0 and the assumption that the relativematrix is irreducible
in the results of Corollaries 9 and 10 are analogous with
relative definition and assumption in [1–3, 7–13].

The equilibria of (21) are the same as those of the
associated ODE system:

̇𝑆
(1)

𝑘
= 𝜑𝑘 (𝑆

(1)

𝑘
) − 𝑆

(1)

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
,

̇𝑆
(2)

𝑘
= 𝑎𝑘𝑆

(1)

𝑘
− 𝑆

(2)

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
,

̇𝐼𝑘 =

2

∑

𝑖=1

𝑐
(𝑖)

𝑘
𝑆
(𝑖)

𝑘

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘, 𝑘 = 1, 2, . . . , 𝑛.

(30)

Let

𝑁𝑘 = 𝑆
(1)

𝑘
+ 𝑆

(2)

𝑘
+ 𝐼𝑘, 𝑑

𝑘
= min {𝑑(1)

𝑘
, 𝑑
(2)

𝑘
, 𝑑𝑘} ,

𝑘 = 1, 2, . . . , 𝑛.

(31)

From (30) and 𝑐(𝑖)
𝑘

≤ 1, we have

𝑁̇𝑘 ≤ 𝜑𝑘 (𝑆
(1)

𝑘
) + 𝑑

(1)

𝑘
𝑆
(1)

𝑘
− 𝑑

𝑘
𝑁𝑘. (32)

We derive from (32) that the region

Γ = { (𝑆
(1)

1
, 𝑆
(2)

1
, . . . , 𝑆

(1)

𝑛
, 𝑆
(2)

𝑛
, 𝐼1, . . . , 𝐼𝑛)

∈ R
3𝑛

+
: 𝑆
(1)

𝑘
≤ 𝑆

(1)

𝑘0
, 𝑆
(2)

𝑘
≤ 𝑆

(2)

𝑘0
, 𝑆
(1)

𝑘
+ 𝑆

(2)

𝑘
+ 𝐼𝑘

≤

𝜑𝑘 (0) + 𝑑
(1)

𝑘
𝑆
(1)

𝑘0

𝑑
𝑘

, 𝑘 = 1, 2, . . . , 𝑛}

(33)

is a forward invariant compact absorbing set with respect to
(30). Let Γ∘ denote the interior of Γ.

Note that Γ is positively invariant with respect to (21). In
fact, let

𝐸̇𝑘 =

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
𝐼𝑗

−

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏 − 𝑑𝑘𝐸𝑘,

𝑘 = 1, 2, . . . , 𝑛.

(34)

Then, we have

𝑁̇𝑘 + 𝐸̇𝑘 ≤ 𝜑𝑘 (𝑆
(1)

𝑘
) + 𝑑

(1)

𝑘
𝑆
(1)

𝑘
− 𝑑

𝑘
(𝑁𝑘 + 𝐸𝑘) . (35)

Furthermore, using the fact that𝑁𝑘 ≤ 𝑁𝑘+𝐸𝑘, wemay obtain
that Γ is positively invariant with respect to (21).

Lemma 6. If 𝑅0 > 1, then 𝑃0 of system (30) is unstable in Γ

and there exists a positive equilibrium 𝑃
∗ in Γ∘.

Proof. Let I = (𝐼1, 𝐼2, . . . , 𝐼𝑛) and 𝑀 = ∑
𝑛

𝑘=1
((𝜔𝑘𝐼𝑘)/(𝑚𝑘)).

Thus

𝑀̇ =

𝑛

∑

𝑘=1

𝜔𝑘
[

[

∑
2

𝑖=1
𝑐
(𝑖)

𝑘
∑
𝑛

𝑗=1
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
𝐼𝑗

𝑚𝑘

− 𝐼𝑘
]

]

≤ (𝜔1, 𝜔2, . . . , 𝜔𝑛) (QI
𝑇
− I𝑇) .

(36)

If 𝑅0 > 1, by continuity, we obtain 𝑀̇ > 0, in a neighborhood
of 𝑃0 in Γ

∘.This implies that 𝑃0 is unstable. Using the uniform
persistence result from [15] and by a similar argument to that
in the proof in [1], we can show that if 𝑅0 > 1, the instability
of 𝑃0 implies the uniform persistence of system (30). This,
together with the uniform boundedness of solutions of (30)
in Γ∘, implies (30) has at least a positive equilibrium 𝑃

∗ in Γ∘.
The proof is completed.

Let

𝑃
∗
= (𝑆

(1)∗

1
, 𝑆
(2)∗

1
, . . . , 𝑆

(1)∗

𝑛
, 𝑆
(2)∗

𝑛
, 𝐼
∗

1
, 𝐼
∗

2
, . . . , 𝐼

∗

𝑛
) ; (37)

then the components of 𝑃∗ satisfy

𝜑𝑘 (𝑆
(1)∗

𝑘
) =

2

∑

𝑖=1

𝑆
(𝑖)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝐼
∗

𝑗
+ 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
, (38)

2

∑

𝑖=1

𝑐
(𝑖)

𝑘
𝑆
(𝑖)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝐼
∗

𝑗
= 𝑚𝑘𝐼

∗

𝑘
, (39)

𝑎𝑘𝑆
(1)∗

𝑘
= 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
+ 𝑆

(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗
, 𝑘 = 1, 2, . . . , 𝑛. (40)

Next, we will study the global stability of equilibria of system
(21).
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Theorem 7. If 𝑐(1)
𝑘

≥ 𝑐
(2)

𝑘
, 𝑘 = 1, 2, . . . , 𝑛, and 𝑅0 ≤ 1, then 𝑃0

of system (21) is globally asymptotically stable in Γ.

Proof. Let S0 = (𝑆
(1)

10
, 𝑆
(2)

10
, . . . , 𝑆

(1)

𝑛0
, 𝑆
(2)

𝑛0
). Consider a Lyapunov

functional 𝐿1 + 𝐿2, where

𝐿1 =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

[

2

∑

𝑖=1

𝑐
(𝑖)

𝑘
(𝑆

(𝑖)

𝑘
− 𝑆

(𝑖)

𝑘0
− 𝑆

(𝑖)

𝑘0
ln
𝑆
(𝑖)

𝑘

𝑆
(𝑖)

𝑘0

) + 𝐼𝑘] ,

𝐿2 =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

[

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) ∫

𝑡

𝑡−𝜏

𝑆
(𝑖)

𝑘
(𝑥) 𝐼𝑗 (𝑥) 𝑑𝑥𝑑𝜏

]

]

.

(41)

Differentiating 𝐿1 along the solution of system (21), we obtain

𝐿̇1 =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

{

{

{

𝑐
(1)

𝑘
[

[

𝜑𝑘 (𝑆
(1)

𝑘
) −

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
]

]

+ 𝑐
(2)

𝑘
[

[

𝑎𝑘𝑆
(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
]

]

+

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘𝑗
(𝑡 − 𝜏)

× 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏 − 𝑚𝑘𝐼𝑘

−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

[

[

𝜑𝑘 (𝑆
(1)

𝑘
) −

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
]

]

−

𝑐
(2)

𝑘
𝑆
(2)

𝑘0

𝑆
(2)

𝑘

[

[

𝑎𝑘𝑆
(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
]

]

}

}

}

.

(42)

Differentiating 𝐿2 along the solution of system (21), we obtain

𝐿2 =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

[

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
𝐼𝑗

−

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝑆

(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏

]

]

.

(43)

Therefore

𝐿̇ =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

{

{

{

𝜑𝑘 (𝑆
(1)

𝑘
)(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

) + 𝑑
(2)

𝑘
𝑆
(2)

𝑘0

× (𝑐
(2)

𝑘
−

𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)

𝑘0

) + 𝑎𝑘𝑆
(1)

𝑘0

× [𝑐
(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)

𝑘0

+

𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)

𝑘0

−

𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)

𝑘0

𝑆
(1)

𝑘0
𝑆
(2)

𝑘

]

+

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑆
(𝑖)

𝑘0
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘

}

}

}

=

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

{𝜑𝑘 (𝑆
(1)

𝑘
)(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

)

+

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑆
(𝑖)

𝑘0
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘

+ 𝑑
(2)

𝑘
𝑆
(2)

𝑘0
[𝑐

(1)

𝑘
+ 𝑐

(2)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)

𝑘0

+

𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)

𝑘0

−

𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)

𝑘0

𝑆
(1)

𝑘0
𝑆
(2)

𝑘

−

𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)

𝑘0

]} .

(44)

From (23), we know that

𝜑𝑘 (𝑆
(1)

𝑘0
)(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

) = 𝑑
(2)

𝑘
𝑆
(2)

𝑘0
(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

) ,

𝑘 = 1, 2, . . . , 𝑛.

(45)

By (45), we obtain

𝐿̇ =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

{[𝜑𝑘 (𝑆
(1)

𝑘
) − 𝜑𝑘 (𝑆

(1)

𝑘0
)](𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

)

+

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑆
(𝑖)

𝑘0
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘

+ 𝑑
(2)

𝑘
𝑆
(2)

𝑘0
[2𝑐

(1)

𝑘
+ 𝑐

(2)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)

𝑘0

−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

+

𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)

𝑘0

−

𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)

𝑘0

𝑆
(1)

𝑘0
𝑆
(2)

𝑘

−

𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)

𝑘0

]} .

(46)
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We can rewrite the equation as

𝐿̇ =

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

{[𝜑𝑘 (𝑆
(1)

𝑘
) − 𝜑𝑘 (𝑆

(1)

𝑘0
)](𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘0

𝑆
(1)

𝑘

)

+

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑆
(𝑖)

𝑘0
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘

+ 𝑑
(2)

𝑘
𝑆
(2)

𝑘0
[2𝑐

(1)

𝑘
+ 𝑐

(2)

𝑘
− (𝑐

(1)

𝑘
− 𝑐

(2)

𝑘
)

× (

𝑆
(1)

𝑘

𝑆
(1)

𝑘0

+

𝑆
(1)

𝑘0

𝑆
(1)

𝑘

)

−𝑐
(2)

𝑘
(

𝑆
(1)

𝑘0

𝑆
(1)

𝑘

+

𝑆
(1)

𝑘
𝑆
(2)

𝑘0

𝑆
(1)

𝑘0
𝑆
(2)

𝑘

+

𝑆
(2)

𝑘

𝑆
(2)

𝑘0

)]} .

(47)

By the fact that 𝜑𝑘 is strictly decreasing function and the
arithmetic-geometric mean, we have

𝐿̇ ≤

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

{

{

{

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑆
(𝑖)

𝑘0
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘 + 𝑑

(2)

𝑘
𝑆
(2)

𝑘0

× [2𝑐
(1)

𝑘
+ 𝑐

(2)

𝑘
− 2 (𝑐

(1)

𝑘
− 𝑐

(2)

𝑘
) − 3𝑐

(2)

𝑘
]

}

}

}

=

𝑛

∑

𝑘=1

𝜔𝑘

𝑚𝑘

(

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑆
(𝑖)

𝑘0
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝐼𝑗 − 𝑚𝑘𝐼𝑘) =: 𝑈,

(48)

where equality holds if and only if

𝑆
(1)

𝑘
= 𝑆

(1)

𝑘0
, 𝑆

(2)

𝑘
= 𝑆

(2)

𝑘0
, 𝑘 = 1, 2, . . . , 𝑛. (49)

Thus

𝑈 =

𝑛

∑

𝑘=1

𝜔𝑘
[

[

∑
2

𝑖=1
𝑐
(𝑖)

𝑘
∑
𝑛

𝑗=1
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘0
𝐼𝑗

𝑚𝑘

− 𝐼𝑘
]

]

= (𝜔1, 𝜔2, . . . , 𝜔𝑛) (QI
𝑇
− I𝑇) .

(50)

If 𝑅0 < 1, then 𝐿̇ = 0 if and only if I𝑇 = 0. If 𝑅0 = 1, then
𝐿̇ = 0 implies 𝑈 = 0. If 𝑅0 = 1 and 𝑈̇ = 0, then (49) holds. If
(49) holds, then, from the first two equations of (21), we may
obtain ∑𝑛

𝑗=1
𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 ≡ 0, ∑𝑛

𝑗=1
𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 ≡ 0, 𝑘 = 1, 2 . . . , 𝑛.

Therefore, if 𝑅0 = 1 and 𝑈̇ = 0, then we have 𝐼𝑘 = 0.
Therefore, 𝐿̇ = 0 if and only if I = 0 and S = S0. Hence the
largest invariant subset of the set where 𝐿̇ = 0 is the singleton
{𝑃0}. By LaSalle’s Invariance Principle,𝑃0 is globally attractive.
Using the same proof as the one for Corollary 5.3.1 in [16],
we can show that 𝑃0 is locally stable. Hence, the disease-
free equilibrium 𝑃0 is globally asymptotically stable in Γ for
𝑅0 ≤ 1. This completes the proof.

Theorem 8. Under Assumption 1, 𝑃∗ of system (21) is globally
asymptotically stable in Γ, if 𝑐(1)

𝑘
≥ 𝑐

(2)

𝑘
, 𝑘 = 1, 2, . . . , 𝑛, and

𝑅0 > 1.

Proof. Set 𝛽
𝑘𝑗
= ∑

2

𝑖=1
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)∗

𝑘
𝐼
∗

𝑗
, 1 ≤ 𝑘, 𝑗 ≤ 𝑛. Consider a

Lyapunov functional 𝑉 = 𝑉1 + 𝑉2, where

𝑉1 =

𝑛

∑

𝑘=1

V𝑘 [
2

∑

𝑖=1

𝑐
(𝑖)

𝑘
(𝑆

(𝑖)

𝑘
− 𝑆

(𝑖)∗

𝑘
− 𝑆

(𝑖)∗

𝑘
ln

𝑆
(𝑖)

𝑘

𝑆
(𝑖)∗

𝑘

)

+ 𝐼𝑘 − 𝐼
∗

𝑘
− 𝐼

∗

𝑘
ln

𝐼𝑘

𝐼
∗

𝑘

] ,

𝑉2 =

𝑛

∑

𝑘=1

V𝑘

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗

× ∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) ∫

𝑡

𝑡−𝜏

(𝑆
(𝑖)

𝑘
(𝑥) 𝐼𝑗 (𝑥) − 𝑆

(𝑖)∗

𝑘
𝐼
∗

𝑗
− 𝑆

(𝑖)∗

𝑘
𝐼
∗

𝑗

× ln
𝑆
(𝑖)

𝑘
(𝑥) 𝐼𝑗 (𝑥)

𝑆
(𝑖)∗

𝑘
𝐼
∗

𝑗

)𝑑𝑥𝑑𝜏.

(51)

Differentiating𝑉1 along the solution of system (21), we obtain

𝑉̇1 =

𝑛

∑

𝑘=1

V𝑘
{

{

{

𝑐
(1)

𝑘
[

[

𝜑𝑘 (𝑆
(1)

𝑘
) −

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
]

]

+ 𝑐
(2)

𝑘
[

[

𝑎𝑘𝑆
(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
]

]

+

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏

− 𝑚𝑘𝐼𝑘

−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

[

[

𝜑𝑘 (𝑆
(1)

𝑘
) −

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)

𝑘
]

]

−

𝑐
(2)

𝑘
𝑆
(2)∗

𝑘

𝑆
(2)

𝑘

[

[

𝑎𝑘𝑆
(1)

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)

𝑘
]

]

−

𝐼
∗

𝑘

𝐼𝑘

[

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏)

× 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏 − 𝑚𝑘𝐼𝑘
]

]

}

}

}

.

(52)
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Differentiating𝑉2 along the solution of system (21), we obtain

𝑉̇2 =

𝑛

∑

𝑘=1

V𝑘

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗

× {𝑐
(𝑖)

𝑘
𝑆
(𝑖)

𝑘
𝐼𝑗

− ∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) [𝑆

(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) + 𝑆

(𝑖)∗

𝑘
𝐼
∗

𝑗

× ln
𝑆
(𝑖)

𝑘
𝐼𝑗

𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

] 𝑑𝜏} .

(53)

Therefore

𝑉̇ =

𝑛

∑

𝑘=1

V𝑘
{

{

{

𝜑𝑘 (𝑆
(1)

𝑘
)(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

)

+ 𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
(𝑐

(2)

𝑘
−

𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)∗

𝑘

) +

2

∑

𝑖=1

𝑐
(𝑖)

𝑘

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)∗

𝑘
𝐼𝑗

+ 𝑚𝑘𝐼
∗

𝑘
− 𝑚𝑘𝐼𝑘 + 𝑎𝑘𝑆

(1)∗

𝑘

× [𝑐
(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

+

𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

−

𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

]

−

𝐼
∗

𝑘

𝐼𝑘

[

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘

× (𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏
]

]

− Δ

}

}

}

,

(54)

where

Δ =

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝑆

(𝑖)∗

𝑘
𝐼
∗

𝑗
ln

𝑆
(𝑖)

𝑘
𝐼𝑗

𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

𝑑𝜏.

(55)

From (38), we know that

𝜑𝑘 (𝑆
(1)∗

𝑘
)(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

)

= (

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)∗

𝑘
𝐼
∗

𝑗
+ 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
)(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

) .

(56)

It follows from (39), (40), and (56) that

𝑉̇ =

𝑛

∑

𝑘=1

V𝑘 {[𝜑𝑘 (𝑆
(1)

𝑘
) − 𝜑𝑘 (𝑆

(1)∗

𝑘
)](𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

)

+ 𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
(𝑐

(2)

𝑘
−

𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)∗

𝑘

)

+

2

∑

𝑖=1

𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)∗

𝑘
𝐼
∗

𝑗
(

𝐼𝑗

𝐼
∗

𝑗

−

𝐼𝑘

𝐼
∗

𝑘

+ 1)

+ 𝑆
(1)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗
(𝑐

(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

)

+ (𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
+ 𝑆

(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗
)

× [2𝑐
(1)

𝑘
−

𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

−

𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

+

𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

−

𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

] −

𝐼
∗

𝑘

𝐼𝑘

× [

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘
(𝑡−𝜏) 𝐼𝑗 (𝑡−𝜏) 𝑑𝜏

]

]

−Δ} .

(57)

By Theorem 2 and the fact that 𝜑𝑘 is strictly decreasing
function, we obtain

𝑉̇ ≤

𝑛

∑

𝑘=1

V𝑘
{

{

{

𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
(𝑐

(2)

𝑘
−
𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)∗

𝑘

)

+

2

∑

𝑖=1

𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)∗

𝑘
𝐼
∗

𝑗

+ 𝑆
(1)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗
(𝑐

(1)

𝑘
−
𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

)

+ (𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
+ 𝑆

(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗
)

× [

[

2𝑐
(1)

𝑘
−
𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

−
𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

+
𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

−
𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

]

]
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−
𝐼
∗

𝑘

𝐼𝑘

[

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘

× (𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏
]

]

− Δ
}

}

}

=

𝑛

∑

𝑘=1

V𝑘
{

{

{

𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
(𝑐

(2)

𝑘
+ 2𝑐

(1)

𝑘
−
𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

−
𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

+
𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

−
𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

−
𝑐
(2)

𝑘
𝑆
(2)

𝑘

𝑆
(2)∗

𝑘

)

+ 𝑆
(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗
[

[

2𝑐
(1)

𝑘
+ 𝑐

(2)

𝑘
−
𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

−
𝑐
(1)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

+
𝑐
(2)

𝑘
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

−
𝑐
(2)

𝑘
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

]

]

+ 𝑆
(1)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗
(2𝑐

(1)

𝑘
−
𝑐
(1)

𝑘
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

)

−
𝐼
∗

𝑘

𝐼𝑘

[

[

2

∑

𝑖=1

𝑛

∑

𝑗=1

∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝛽

(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘

× (𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) 𝑑𝜏
]

]

− Δ
}

}

}

=

𝑛

∑

𝑘=1

V𝑘
{

{

{

𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
[

[

𝑐
(2)

𝑘
+2𝑐

(1)

𝑘
− (𝑐

(1)

𝑘
− 𝑐

(2)

𝑘
)

× (
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

+
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

)

−𝑐
(2)

𝑘
(
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

+
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

+
𝑆
(2)

𝑘

𝑆
(2)∗

𝑘

)]

]

+𝑆
(2)∗

𝑘

×

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗
[

[

2𝑐
(1)

𝑘
+ 𝑐

(2)

𝑘
− (𝑐

(1)

𝑘
− 𝑐

(2)

𝑘
)

× (
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

+
𝑆
(1)

𝑘

𝑆
(1)∗

𝑘

)

− ∫

ℎ

0

𝑓
(2)

𝑘
(𝜏)

× (
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

+
𝑆
(1)

𝑘
𝑆
(2)∗

𝑘

𝑆
(1)∗

𝑘
𝑆
(2)

𝑘

+ ((𝑆
(2)

𝑘
𝐼
∗

𝑘
𝑆
(2)

𝑘

× (𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏) )

×(𝑆
(2)∗

𝑘
𝑆
(2)

𝑘
𝐼𝑘𝐼

∗

𝑗
)
−1

))𝑑𝜏]

]

+ 𝑆
(1)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗

× [

[

2𝑐
(1)

𝑘

− ∫

ℎ

0

𝑓
(1)

𝑘
(𝜏)

× (
𝑆
(1)∗

𝑘

𝑆
(1)

𝑘

+ ( (𝑆
(1)

𝑘
𝐼
∗

𝑘
𝑆
(1)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏))

× (𝑆
(1)∗

𝑘
𝑆
(1)

𝑘
𝐼𝑘𝐼

∗

𝑗
)
−1

))𝑑𝜏]

]

−Δ
}

}

}

=: 𝐵1.

(58)

By the arithmetic-geometric mean, we easily see that

𝐵1 ≤

𝑛

∑

𝑘=1

V𝑘

{{{{

{{{{

{

𝑑
(2)

𝑘
𝑆
(2)∗

𝑘
[𝑐
(2)

𝑘
+ 2𝑐

(1)

𝑘
− 2 (𝑐

(1)

𝑘
− 𝑐

(2)

𝑘
) − 3𝑐

(2)

𝑘
]

+ 𝑆
(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗

[
[

[

2𝑐
(1)

𝑘
+ 𝑐

(2)

𝑘
− 2 (𝑐

(1)

𝑘
− 𝑐

(2)

𝑘
)

− 3∫

ℎ

0

𝑓
(2)

𝑘
(𝜏)

× (
𝐼
∗

𝑘
𝑆
(2)

𝑘
(𝑡−𝜏) 𝐼𝑗 (𝑡−𝜏)

𝑆
(2)

𝑘
𝐼𝑘𝐼

∗

𝑗

)

1/3

𝑑𝜏
]
]

]

+ 𝑆
(1)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗

×
[
[

[

2𝑐
(1)

𝑘

− 2∫

ℎ

0

𝑓
(1)

𝑘
(𝜏)

×(
𝐼
∗

𝑘
𝑆
(1)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

𝑆
(1)

𝑘
𝐼𝑘𝐼

∗

𝑗

)

1/2

𝑑𝜏
]
]

]

−Δ

}}}}

}}}}

}

=

𝑛

∑

𝑘=1

V𝑘
{

{

{

3𝑆
(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗

×
[
[

[

𝑐
(2)

𝑘

− ∫

ℎ

0

𝑓
(2)

𝑘
(𝜏)
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×(
𝐼
∗

𝑘
𝑆
(2)

𝑘
(𝑡−𝜏)𝐼𝑗(𝑡−𝜏)

𝑆
(2)

𝑘
𝐼𝑘𝐼

∗

𝑗

)

1/3

𝑑𝜏
]
]

]

+ 2𝑆
(1)∗

𝑘

×

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗

[
[

[

𝑐
(1)

𝑘

− ∫

ℎ

0

𝑓
(1)

𝑘
(𝜏)

×(
𝐼
∗

𝑘
𝑆
(1)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

𝑆
(1)

𝑘
𝐼𝑘𝐼

∗

𝑗

)

1/2

𝑑𝜏
]
]

]

−Δ
}

}

}

=: 𝐵2.

(59)

Let 𝑌(𝑥) = 1 − 𝑥 + ln𝑥. We can rewrite 𝐵2 as

𝑛

∑

𝑘=1

V𝑘
{

{

{

3𝑆
(2)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝐼
∗

𝑗

× ∫

ℎ

0

𝑓
(2)

𝑘
(𝜏) 𝑌

×([

[

𝐼
∗

𝑘
𝑆
(2)

𝑘
(𝑡 − 𝜏)𝐼𝑗(𝑡 − 𝜏)

𝑆
(2)

𝑘
𝐼𝑘𝐼

∗

𝑗

]

]

1/3

)𝑑𝜏

+ 2𝑆
(1)∗

𝑘

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝐼
∗

𝑗

× ∫

ℎ

0

𝑓
(1)

𝑘
(𝜏) 𝑌

×([

[

𝐼
∗

𝑘
𝑆
(1)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

𝑆
(1)

𝑘
𝐼𝑘𝐼

∗

𝑗

]

]

1/2

)𝑑𝜏

−

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗

× ∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝑆

(𝑖)∗

𝑘
𝐼
∗

𝑗

× ln
𝐼
∗

𝑘
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

𝐼𝑘𝐼
∗

𝑗
𝑆
(𝑖)

𝑘

𝑑𝜏 − Δ

}

}

}

.

(60)

ByTheorem 2 and the fact that𝑌(𝑥) ≤ 0, where equality holds
if and only if 𝑥 = 1, we obtain

𝐵2 ≤

𝑛

∑

𝑘=1

V𝑘
{

{

{

−

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽
(𝑖)

𝑘𝑗
∫

ℎ

0

𝑓
(𝑖)

𝑘
(𝜏) 𝑆

(𝑖)∗

𝑘
𝐼
∗

𝑗

× ln
𝐼
∗

𝑘
𝑆
(𝑖)

𝑘
(𝑡 − 𝜏) 𝐼𝑗 (𝑡 − 𝜏)

𝐼𝑘𝐼
∗

𝑗
𝑆
(𝑖)

𝑘

𝑑𝜏 − Δ

}

}

}

= −

𝑛

∑

𝑘=1

V𝑘

2

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)∗

𝑘
𝐼
∗

𝑗
ln

𝐼
∗

𝑘
𝐼𝑗

𝐼𝑘𝐼
∗

𝑗

= −

𝑛

∑

𝑘,𝑗=1

V𝑘𝛽𝑘𝑗 ln
𝐼
∗

𝑘
𝐼𝑗

𝐼𝑘𝐼
∗

𝑗

= 0.

(61)

From (58) and (59), we see that if 𝑉̇ = 0, then

𝑆
(𝑖)

𝑘
= 𝑆

(𝑖)∗

𝑘
, 𝑖 = 1, 2, 𝑘 = 1, 2, . . . , 𝑛. (62)

If (62) holds, it follows from (21) that

0 = 𝜑𝑘 (𝑆
(1)∗

𝑘
) −

𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)∗

𝑘
𝐼𝑗 − 𝑎𝑘𝑆

(1)∗

𝑘
,

0 = 𝑎𝑘𝑆
(1)∗

𝑘
−

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)∗

𝑘
𝐼𝑗 − 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
, 𝑘 = 1, 2, . . . , 𝑛.

(63)

Then, we obtain that
𝑛

∑

𝑗=1

𝛽
(1)

𝑘𝑗
𝑆
(1)∗

𝑘
𝐼𝑗 = 𝜑𝑘 (𝑆

(1)∗

𝑘
) − 𝑎𝑘𝑆

(1)∗

𝑘
,

𝑛

∑

𝑗=1

𝛽
(2)

𝑘𝑗
𝑆
(2)∗

𝑘
𝐼𝑗 = 𝑎𝑘𝑆

(1)∗

𝑘
− 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
, 𝑘 = 1, 2, . . . , 𝑛.

(64)

Thus,

̇𝐼𝑘 = 𝑐
(1)

𝑘
(𝜑𝑘 (𝑆

(1)∗

𝑘
) − 𝑎𝑘𝑆

(1)∗

𝑘
)

+ 𝑐
(2)

𝑘
(𝑎𝑘𝑆

(1)∗

𝑘
− 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
) − 𝑚𝑘𝐼𝑘,

𝑘 = 1, 2, . . . , 𝑛.

(65)

This implies that

lim
𝑡→+∞

𝐼𝑘

=

𝑐
(1)

𝑘
(𝜑𝑘 (𝑆

(1)∗

𝑘
) − 𝑎𝑘𝑆

(1)∗

𝑘
) + 𝑐

(2)

𝑘
(𝑎𝑘𝑆

(1)∗

𝑘
− 𝑑

(2)

𝑘
𝑆
(2)∗

𝑘
)

𝑚𝑘

= 𝐼
∗

𝑘
.

(66)

Hence, the largest invariant subset of the set where 𝑉̇ = 0

is the singleton {𝑃∗}. By LaSalle’s Invariance Principle, 𝑃∗ is
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globally attractive. By a similar argument to that in the proof
of Theorem 7, 𝑃∗ is globally asymptotically stable in Γ for
𝑅0 > 1.

Following [17], we set matrices

F := (

2

∑

𝑖=1

𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘0
)

𝑛×𝑛

, V := diag (𝑚1, 𝑚2, . . . , 𝑚𝑛) .

(67)

The next generation matrix for system (16) is

Q := FV−1 = (

∑
2

𝑖=1
𝑐
(𝑖)

𝑘
𝛽
(𝑖)

𝑘𝑗
𝑆
(𝑖)

𝑘0

𝑚𝑘

)

𝑛×𝑛

. (68)

Let 𝑟0 = 𝜌(Q), where 𝜌 denotes the spectral radius.
By Lemma 6 and Theorems 2, 4, 7, and 8, we can obtain

the following results.

Corollary 9. Assume that B = [∑
2

𝑖=1
𝛽
(𝑖)

𝑘𝑗
] is irreducible and

𝑐
(1)

𝑘
≥ 𝑐

(2)

𝑘
, 𝑘 = 1, 2, . . . , 𝑛. If 𝑟0 ≤ 1, then 𝑃0 of system (21) is

globally asymptotically stable in Γ.

Corollary 10. Assume that B = [∑
2

𝑖=1
𝛽
(𝑖)

𝑘𝑗
] is irreducible and

𝑐
(1)

𝑘
≥ 𝑐

(2)

𝑘
, 𝑘 = 1, 2, . . . , 𝑛. If 𝑟0 > 1, then 𝑃∗ of system (21) is

globally asymptotically stable in Γ.

Remark 11. Note that, forTheorems 7 and 8, we donot assume
that B = [∑

2

𝑖=1
𝛽
(𝑖)

𝑘𝑗
] is irreducible. If Theorems 7 and 8 hold,

then Corollaries 9 and 10 hold too, respectively. However, it is
easy to show some examples which conform to the conditions
of Theorem 7 or Theorem 8 but are not in accord with the
conditions of Corollary 9 or Corollary 10. It seems that all
authors use the the graph theory under the assumption that
the relative matrix is irreducible which is analogous with the
conditions of Corollaries 9 and 10 (see, e.g., [1–13]).

Acknowledgments

This work was supported by the National Basic Research
Program of China (2010CB732501), and the National Natural
Science Foundation of China (61273015).

References

[1] H. Guo, M. Y. Li, and Z. Shuai, “Global stability of the endemic
equilibrium of multigroup SIR epidemic models,” Canadian
AppliedMathematics Quarterly, vol. 14, no. 3, pp. 259–284, 2006.

[2] H. Guo, M. Y. Li, and Z. Shuai, “A graph-theoretic approach to
the method of global Lyapunov functions,” Proceedings of the
American Mathematical Society, vol. 136, no. 8, pp. 2793–2802,
2008.

[3] M. Y. Li and Z. Shuai, “Global-stability problem for coupled
systems of differential equations on networks,” Journal of
Differential Equations, vol. 248, no. 1, pp. 1–20, 2010.

[4] H. Su, W. Li, and K. Wang, “Global stability of discrete-time
coupled systems on networks and its applications,” Chaos, vol.
22, Article ID 033135, 2012.

[5] C. Zhang, W. Li, and K. Wang, “Boundedness for network of
stochastic coupled van der Pol oscillators with time-varying
delayed coupling,” Applied Mathematical Modelling. Simulation
and Computation for Engineering and Environmental Systems,
vol. 37, no. 7, pp. 5394–5402, 2013.

[6] W. Li, H. Su, D. Wei, and K. Wang, “Global stability of coupled
nonlinear systemswithMarkovian switching,”Communications
in Nonlinear Science andNumerical Simulation, vol. 17, no. 6, pp.
2609–2616, 2012.

[7] C. Ji, D. Jiang, andN. Shi, “Multigroup SIR epidemicmodel with
stochastic perturbation,” Physica A, vol. 390, pp. 1747–1762, 2011.

[8] Q. Yang and X. Mao, “Extinction and recurrence of multi-
group SEIR epidemic models with stochastic perturbations,”
Nonlinear Analysis: Real World Applications, vol. 11, pp. 995–
1004, 2010.

[9] T. Kuniya, “Global stability analysis with a discretization
approach for an age-structured multigroup SIR epidemic
model,”Nonlinear Analysis: Real World Applications, vol. 12, no.
5, pp. 2640–2655, 2011.

[10] Z. Yuan and X. Zou, “Global threshold property in an epidemic
model for disease with latency spreading in a heterogeneous
host population,” Nonlinear Analysis: Real World Applications,
vol. 11, no. 5, pp. 3479–3490, 2010.

[11] M. Y. Li, Z. Shuai, and C. Wang, “Global stability of multi-
group epidemic models with distributed delays,” Journal of
Mathematical Analysis and Applications, vol. 361, no. 1, pp. 38–
47, 2010.

[12] Y. Muroya, Y. Enatsu, and T. Kuniya, “Global stability for a
multi-group SIRS epidemic model with varying population
sizes,” Nonlinear Analysis: Real World Applications, vol. 14, no.
3, pp. 1693–1704, 2013.

[13] “Amulti-group sveir epidemicmodel with distributed delay and
vaccination,” International Journal of Biomathematics, vol. 5, pp.
1–18, 2012.

[14] H. R. Thieme, “Global stability of the endemic equilibrium in
infinite dimension: Lyapunov functions and positive operators,”
Journal of Differential Equations, vol. 250, no. 9, pp. 3772–3801,
2011.

[15] H. I. Freedman, S. G. Ruan, and M. X. Tang, “Uniform
persistence and flows near a closed positively invariant set,”
Journal of Dynamics and Differential Equations, vol. 6, no. 4, pp.
583–600, 1994.

[16] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-
Differential Equations, vol. 99, Springer, New York, NY, USA,
1993.

[17] P. van denDriessche and J.Watmough, “Reproduction numbers
and sub-threshold endemic equilibria for compartmental mod-
els of disease transmission,”Mathematical Biosciences, vol. 180,
pp. 29–48, 2002.


