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Motivated by Lounici and Nickl’s work (2011), this paper considers the problem of estimation of a density f based on an independent

and identically distributed sample Y, ..

.Y, from g = f * ¢. We show a wavelet optimal estimation for a density (function) over

Besov ball Bj’ q (L)and Lf risk (1 < p < 00) in the presence of severely ill-posed noises. A wavelet linear estimation is firstly presented.
Then, we prove a lower bound, which shows our wavelet estimator optimal. In other words, nonlinear wavelet estimations are not
needed in that case. It turns out that our results extend some theorems of Pensky and Vidakovic (1999), as well as Fan and Koo

(2002).

1. Introduction and Preliminary

Wavelets have made great achievements in studying the
statistical model Y = X + ¢, where X stands for real-valued
random variable with unknown probability density f, and €
denotes an independent random noise (error) with density ¢.

In 1999, Pensky and Vidakovic [1] investigate Meyer
wavelet estimation over Sobolev spaces W;(R) and L* risk
under moderately and severely ill-posed noises. Three years
later, Fan and Koo [2] extend those works from W;(R) to
Besov spaces Biq(lR) (1 < r < 2). It should be pointed out
that, by using different method, Lounici and Nickl [3] study
wavelet optimal estimation over Besov spaces By, ,,(R) and
L risk under both noises. In [4], we provide a wavelet
optimal estimation over B;, q(R) and L? risk (1 < p < oo,
7,q € [1,00]) under moderately ill-posed noise. This current
paper deals with the same problem under the severely ill-
posed noises. It turns out that our result contains some
theorems of [1, 2] as special cases. Our discussion also shows
that nonlinear wavelet estimations are not needed for severely
ill-posed noise, which is totally different with moderately ill-
posed case.

Let ¢ and v € L*(R) be a scaling and mother wavelet
function, respectively. Then each f € L*(R) has an expansion
(in L* sense):

f= Z‘X}k‘/’]k + Z Zﬁjklpjk’ (1)

kez j2] kez

witha := (f,¢;) and B == (f, yji.). Here and throughout,
we use the standard notation hjk(x) = 272n(27x - k) in
wavelet analysis [5]. A class of important wavelets are Meyer’s,
whose Fourier transforms are C* and compactly supported
on {t : 2m/3 < |t| < 8m/3} [5]. It is easy to see that Va > 0,
3C, > 0 such that |x|?|¢(x)| < C,. In this paper, the Fourier
transform f for f € L(R) is defined by

f ()= (Ff)(t) = jR f(x)e ™ dx. (2)

The classical method extends that definition to L*(R) func-
tions.



The following two lemmas are fundamental in our discus-
sions. We use | f|,, to denote LP(R) norm of f € LP(R), and

IAll, do IP(Z) norm of A € IP(Z), where

{A:{Ak},ZMklp <oo]>, 1< p< oo,
1P (2) := keZ

€©)
{/\ = {Ac},sup [A] < oo]> , p=o00.
kez

Lemma 1 (see [6]). Let h be a scaling or a wavelet function
with sup, g Y ez 1h(x — k)| < co. Then, there exist C, > C, >
0 such that for A = {1, } € IP(Z) with 1 < p < oo,

pRIL

kez

Clzj(l/zfl/p)”/\”p < SCZZj(l/Z’l/p)||/\||p. (4)

p

One of the advantages of wavelet bases is that they can
characterize Besov spaces. To introduce those spaces [6], we
need the well-known Sobolev spaces with integer exponents

W' (R) = {f e I’ R), f™ e ¥ (R)}, (5)

with the Sobolev norm ||f||W;n = ||f||P + ||f('”) ||P. Then L?(R)

can be considered as WISO)([R). Forl < p,q < coands = m+«a
with « € (0, 1], a Besov space is defined by

B, (R) = [f e W @), |} (F".1)] < oo}, (6)

r

W (f,t) := sup <l f (- +2h) = 2f(- + h) + f()ll, denotes the
smoothness modulus of f and

00 1/
. (J <M>dt> q, if 1 <gq< oo,
;= A\ o e 7)

ess sup |1 (t)], if g = oo.
teR

; — —a, 2 (m) *
with the norm IIfIIWI = IIfIIW + 1% (f ,t)llq, where

Lemma 2 (see [6]). Let ¢ be a Meyer scaling function and y
be the corresponding wavelet. If f € L'(R), 1 < r < oo,

ag = | fX)bo(x)dx, and By = [ fx)y(x)dx, then the

following assertions are equivalent:
(i) fe Bj)q([R), 1<g<o0;
(i) {271P;f = fll }js0 € 1% where P;f := Yrep i
(i) ot + 27 2B ol < 0.

In each case,

”f"srq ~ ”060. "r + |'{2j(5+1/2_1/,)

Bil bl ®

Here and after, A < B denotes A < CB for some constant
C > 0; A > Bmeans B < A; A ~ B stands for both A < Band
B < A, «,. does for the sequence of {a;, k € Z}.
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At the end of this subsection, we make some assumptions
on noise density ¢, which will be dealt with in this current
paper. Fora > 0,¢ > 0, B € R,

(C1) ()] < C(1 + [t2) PP (ae.);
(C2) 19 ()] < C + |t) PP (ae);
(C3) 13(1)] = C(1 + |t)P12e " (ace.).

Clearly, the classical Cauchy densities satisfy (C1)-(C3) with
« = c = 1 and 3 = 0, and the Gaussian density does satisfy
(CH-(C3) witha = 2,¢ = 1/2,and 3 = 0. It should be pointed
out that those above conditions (C1)-(C3) are a little different
with [2].

In the next section, we define a wavelet linear estimator
and provide an upper bound estimation over Besov spaces
Bi’ q(IR) and L? risk under the condition (C3); the third part
gives a lower bound estimation which shows the result of
Section 2 optimal; some concluding remarks are discussed in
the last part.

2. Upper Bound

To introduce the main theorem of this section, we assume
thatY,,Y,,...,Y, are independent and identically distributed
(i.i.d) random variables of Y = X +¢, the density ¢ of random
noise € satisfies condition (C3), and ¢ stands for the Meyer
scaling function. As in [1], define

K)o [ 0 2O,

¢ (-27t)
9)
- Iy
Xji = ;;(K;‘P)ﬂ( (Yz)
as well as a linear wavelet estimator
L _
fo= ) Gpdyeo (10)

[k|<K,

(the positive integer K, will be given later on). Then &;. € I*°,
fL is well defined, and Ef} = k<K, %jkPik-

We use supp f to stand for the support of f and | supp f]|
to do its length. Moreover, for L > 0, denote

B, (L)

= {f € Bj,q([R),fZO, JRf(x)dx=1 and ||f||$rqu},

B, (L,M)={f €B,, (L), |supp f|<M for some M>O}.
(11)

It is reasonable to assume L > 1 for r = 1, since ||, =
[ ll; = 1in that case.
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Theorem 3. Let ¢ satisfy (C3) and ¢ be the Meyer scaling
function.If p € [1,00),q,7 € [1,00], |’ fll, < A (u= 1, A >
0), then, with K, ~ e’ (0 < 8 < 1), (3/87)((In n)/4c)"/* <

2/ < (3/4n)((nn)/4c)®, s == s — (1)r - 1/p),, and x, =
max{x, 0},

sup E
fe€B; ,(LM)

- fl sty

In particular, f € Bj,q(L,M) can be replaced by f € Bi’q(L),
whenr < p.

Proof. Whenr < p, s= s—(1/r=1/p), = s—1/r+1/p. Since
I" is continuously embedded to I”, Lemma 2 implies B; ,(R) <

B;,,q(R). Hence,

T | R

L p
sup E"fn _f"P < sup E
feB;, (@) feBy (L)
When r > p, one obtains that, for some C > 0, Bi)q(L, M) ¢
B;,q(CL,M) and

sup EanL —f"i < sup
feBy (L,M) feB;, (CLM

)E||fnL -

In fact, f € Bﬁ’q(L, M) and Holder inequality imply that
IFI2 = [IfGolPdx < 1fGOIP due to |supp f| < M. By
the definition of Besov norm, | 1, < Cll f|,,,- According to
(13) and (14), it is sufficient to prove

e By = 7], = im0, (15)

for the conclusion of Theorem 3.

L ~ L
- Recall that fn = Z|k|§Kn (Xjk(l)jk and Efn = Z|k|§Kn “jk¢jk'
en

P
Efy = F <Ny - B+ Y ] +[Bif - 1
k|>K, »
(16)
By f € B;’q(L) and Lemma 2,
|Pif - £l, <27 17)

To estimate the middle term of (16), one observes that
Xje = jR(bjk(x)f(-x)dxa |k2f>6jk| < _[R [27x — k -
ZJXI2_|¢jk(x)|f(x)dx < fR [2/x - k|2|¢jk(X)|f(x)dx +
jR |21x|2|¢jk(x)|f(x)dx. Since ¢ is the Meyer scaling func-
tion, supx€R|x|2|<p(x)| < 0o and

JR 'ij - k|2 |q5jk (x)| f(x)dx < 2]'/zsu£|x|2 | (x)].
(18)

A

On the other hand, [ [2/x]*|¢;(x)| f(x)dx < 27| f]], x
bl 2CRDN £, with 1/ + 1/y = 1. Therefore
oyl < 20 4 270270 < IO and 3 layl? <
YKok, k2P2C120p < K172P2iG/2P This with Lemma 1 leads
to

P
i(p/2-1) P i(3p-1) 1-1-2
< PPN o [T < 270 VK )R
[k|>K,,

> X

[k|>K,

p
(19)

Now, it remains to consider E| f — Ef* ||§: Using fF -

EfF = 2iki<k, (@ — ;)¢ and Lemma 1, one knows

Elfy - Bl <2970 Y Blap-aul” ()
[KI<K,

Clearly, @y — ay = (1/n) XL [(K;) i (Y;) — E(K;p) i (V)]
Define X;; = (K;9) x(Y:) = E(K;¢) 5 (Y)). Then EX;; =
0 and &y - ay = (1/m) Y. X To apply Rosen-
thal’s inequality (Proposition 10.2, [6]), one estimates | X |
and E|X;;|f: note that |(K;¢),(Y)l = 2/7|(1/2m) x
Jo @@ R@0/G(-2 )t < 277 [ (1+ [P
10|t < 2T PPN que to (C3) and supp ¢ <
[-(4/3)m, (4/3)r]. Then

lXi,k| < 2j(ﬁ+1/2)ec((4rr/3)2J)

- (21
E|Xi,klp < 21(ﬁ+1/2)pecp((4n/3)2’) ]

Because X are ii.d, the Rosenthal’s inequality tells that
_ P
Bl - oy

nP

nE| X, |” + nP/Z(E|X,-’k|2)P/2] . p>2

p/2

n PP (E|X') 0<p<2

(22)

This with (21) implie§ that, for p > 2, Elay — aul? <
nl—sz(ﬁ+1/2)PeCP((4ﬂ/3)2’)“I{p > 2} + n—P/sz(ﬁH/Z)P %
PRI =2 J(BH1DP pep((Un/32)° - Noveqver, (20)
reduces to

Bl - A < KPR
Then it follows from (16)-(19) and (23) that
L p —j i(3p-1) 1-1-2
L

(24)
+ K, PI25j(B+1)p- jecp((4ﬂ/3)2j)a.



By the choices K, ~ ™" and (3/87)((Inn)/4c)"/* < 2/ <
(3/4m)((Inn) /46)1/ % (stated in Theorem 3), one receives that
2797 < (Inn) /P,

jB3p-1) 1-1-2p
270!
0
< (Inn)®P~D/eg=@p-Dlinn)

=0 ((ln n)_(s/“)P) ,

- (25)
K P2 B 0p=s gep@n/)2)
<e (nn)’ p/2(ln n)((ﬁﬂ)pfl)/vcnp/él
=0 ((ln n)f(s/“)p) )
Finally, the desired conclusion (15) follows. O

Remark 4. Note that the choices of jand K, do not depend on
the unknown parameters s, 7, and g. Then our linear wavelet
estimator f,]l“ over Besov space B q 18 adaptive or imple-

mentable. The same conclusion holds for L and L? estima-
tions; see Theorem 2 in [3] and Corollary1in [1]. On the other
hand, when p = 2and 1 < r < 2, our Theorem 3 reduces to
Theorem 4 in [2]; from the proof of Theorem 3, we find that,
for p > 1, the assumption [l Fl u S A can be replaced
by llxf(x)ll, < A, which is the same as in [1]. Therefore, for
p =r = q = 2, Theorem 3 of [1] follows directly from our
Theorem 3.

3. Lower Bound

In this part, we will provide a lower bound estimation, which
shows Theorem 3 to be the best possible in some sense.
The following lemmas are needed in the proof of our main
theorem of this section.

Lemma 5. Let h,,(x) = nplnx) with p(x) = 1/m(1 + x2),
n>0,andr,q> 1. Then for L > 0 (L > 2 whenr = 1), there
exists 1y > 0 such that hy == h, € Bi’q(L/Z). Ify is the Meyer
wavelet function and |A;| < A2 (k=1,2,...,2%), then, for
some small d > 0,

2/

> M (%)

k=1

< hy (x). (26)

Proof. Itis easy to see that (1 +x) e W™(R) (forr > 1) and
h,7 € Bj’ q(R) (s < m) by the definition of Besov space. Since

1-1/r +Ls]=1/r|| . (Ls])

Ipl, + ' p

||h’1 "srq

r

W (D, 1) * (27)

ts—l_sJ

+ ;11+s—1/r

>

q

where |s] denotes the largest integer no more than s, ||/, 4
can be made small enough by choosing small #, > 0, when
r > 1. Clearly, L > 2 is needed, when r = 1.
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IVl <d277? (k= 1,2,...,2)), then | T2, by ()] <
dZiJ 1 |1//(2jx k)| < dZiJ 1(1 +120x—k»)! because q/is the

Meyer function. Note that Zk LA+ 127 x — kPP Zk A+
-2k <278 3 (IxP-1)"" = 27 (x2~1)"". Then
for some smalld > 0 and |x| > 2,

2/ )

Y My ()| < 27k (x). (28)

k=1

Hence, (26) holds for |x| > 2. On the other hand, when |x| <
J J ;

2, hy(x) 2 land | Yi, L)l < dY5, lw(@x — k)| <

dsup, Yz lWw(x — k)| < Cd < hy(x). Therefore, (26) is

true, when d > 0 small enough. This completes the proof of

Lemma 5. O

The next lemma extends an estimate in the proof of
Theorem 1in [3].

Lemma 6. Let y be the Meyer wavelet function, hy(x), defined
as in Lemma 5. If ¢ satisfies (Cl1), (C2), and wy, € {0, 1}, then

J (hy * ¢)° <kzwk%k*¢> (y)dy

J

< 2—2]ﬁ —2c((2/3)27)" Z

(29)

Proof. As shown in proof of Theorem 1 of [3], one finds easily
that (hy = ¢)(y) = (1 + yz)*1 and therefore

[weor ) <zzwkw,-k * <P> )y

5 (30)
2
< J (1 +y2) (Zwk%‘k * §0> (»)dy
R k=1

By Parseval identity, (Cl1) and supp 17]\,( < {lyl = @2nr/
- j

3)2'}, I[R(Ziﬂ Wik * 9 (dy = (1/21) I|t|2(2ﬂ/3)2jx

| Yho TP g0 < 27

IZiJ:1 wklfj\k(t)lzdt. Moreover, the orthonormality of 1;7;
concludes that

2
2]
J-[R <z“’k%k * ‘P> (y)dy < C22hig2e(Cr/32)" Z

k=1
(31

.[|t|2(2n/3)2j x

To estimate JR yz(Zij:l WY i * ¢)*(y)dy, one proves an
inequality:

2

2/ d 2/ R
- gLl dt<C . (32)
JR I;wkdtV/Jk( ) k;wk
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Noje that le‘il OYo(x), xzijzl wYor(x) € L(R), and
/AN = 2 CPE/ANFSL, wa))@71),
T [ 40RO = ], P12

VpPdx = Y2 Y2 wp [ G+ KPpGIylx - (K -
k)]dx and

2/ 2

I= Z_ZjZ Z Wy Wy J (x+k)’y(x)y [x - (k’ - k)] dx.
k=1k'=1 R
(33)

Since (y(x), y(x=k)) = g, zk Dby ok [yt
k-k)dx = Zk 1wik2 < 2% Zk L ;s On the other hand, the

boundedness of IR x*y(x)y(x+1)dx and _[R xy(x)y(x+)dx
implies that

2

Z Zwkwk:-[ x 1//(x)1//(x+k—k')dx

k=1k'=1

(34)
22

< Z Zwkwk: <2/ Zwk,
k=1k'=1
as well as IZ?=1 Ziizl Wy k IR xy(X)y(x + k — K')dx| <
2% Zijzl w;. Hence, I < Zijzl w;, which reaches (32).
Define g(t) := F(Ziilwkwjk # @)(t). Then g, q € L(R)
and q is locally absolutely continuous. Therefore, ' (y) =

ivd(y) = iy(Yi., @i * 9)(~y) and

JR yz(éwk%k * <P>2 (y)dy = JR 7 ()| dy

- ZnJ g’ (t)'zdt.
R

(35)

Clearly, q'(t) = Zi;l wk[@;(t)('p"(t) + @(t)(d/dt)tf/\jk(t)] and
JR _Iq'(t)lzdt < Z[IR l§(t) Zi;l wk(d/dt)‘///j\k(t)lzd”.[w [AG
Zill wk@(t)lzdt] S 2—2jﬁe—26((2ﬂ/3)2])a[JR | 212{):1 wk(d/dt) X
@(t)lzdt+2 _[R | Zi;l wklff\ﬂ((t)lzdt] thanks to (Cl), (C2), and

— 21 ;i
supp ¥ < {y, ly| = ?21}. (36)

Moreover, JR Iq'(t)lzdt <GB/ Zk_l wi

because of (32) and the orthonormality of y . This with (35),
(31), and (30) leads to the desired conclusion of Lemma 6.
Two more classical theorems play important roles in our

discussions. We list the first one as Lemma 7, which can be
found in [7]. O

Lemma 7 (Varshamov-Gilbert). Let Q) =
w, € {0,1}} with m >

{w = (wy,...,w,,),
8. Then there exists a subset

(09, ..., 0™} of Q such that M > 2™, @ = (0,...,0),
and for j,1=0,1,...,M, j#1,

m

> Ja - o] = % (37)
k=1

Given two probability measures P and Q on a measurable
space (X, F), the Kullback divergence of P and Q is defined

by

dp .
,[hl(dQ)dP’ if P<Q,

+00, otherwise.

K(P,Q) = <| (38)

Here, P <« Q stands for P absolutely continuous with respect
to Q. In that case, K(P,Q) = Iln(fp(x)/fQ(x))fP(x)dx,

where the function fp(x) denotes the density function of P.
The second classical theorem is taken from [8].

Lemma 8 (Fano). Let (X, %, P,) be probability measurable
spacesand A, € F, k=0,1,....m. IfA  NA, =0 fork+v,
then

1 _
sup P (A}) = min {E’CO Vme K"’} , (39)

0<k<m

1

where K, := info_,.,,(1/m) ¥, ., K(P, P,), Cy = ¢, and
A° denotes the complement of a set A.

Now, we are in the position to state the main theorem in
this section.

Theorem 9. Let ¢ satisfy (C1) and (C2), and let f,(-) :=
f,(Y,Y,,...,Y,, ) be an estimator of f € Bi)q(L). Then for
s> 0,p € [l,00),qr € [l,00], and s > 1/r, there exists
C > 0 independent of f, such that with s' := s — (1/r - 1/p),,

sup E“fn I = Cnmy €1, (40)

feB, (D)
Proof. Assume that y is the Meyer wavelet function, then
Vjx € B, (R). By Lemma 2,

< 2—j(s+1/2)2j(s—1/r+1/2)

N 1/r
x <Z|‘0k|r> <L
k=1

for w, € {0, 1}. Furthermore, with the function h, defined
in Lemma 5, there exists ¢, > 0 such that h, = h, +

Ry Wy = 0and |h,l,, < L due to that

srq =

2]
2—j($+1/2) zwkl//‘k
J

k=1

B;
! (41)

Lemma. Define

k=1

2]
- {hw =hy + 27N Wy, € {0, 1}} . (42)



Then fhw(x)dx = 1 because jw(x)dx = 0and Jho(x)dx =
1.
By Lemma 7, one finds A’ := {h o, hym,...,hym} € A

with M > 2%/% and h,o = hy such that for 0 # @' and h,,
hy €A, Zijzl |y, — wp| = 27/8. Tt is easy to see that

2]

Z(wk - ‘U}’c)V’jk

k=1

Ihy = hull, = 27762 (43)

w

p

» "P > Clzfj(s+l/2) %

cu,il)l/‘l7 > ¢,27%, and therefore

This with Lemmal leads to ||k, —h
i(1/2-1 2/
2J(1/ /P)(Zk:1 |“’k _

— : _ —js
6] = ” ir}lljle/\’"hw hw’ "P = C12 . (44)
Define A, = {lf, —h,ll, < 0;/2} for h,, € A'. Then A, N

A, = 0, when w# w'. Clearly, h, * ¢ is a density function
because both 1, and ¢ are density functions. Let P}’ , be the

probability measure on the Lebesgue space (R", &) with the
density [T, (h, * ¢)(»;). Then Lemma 8 tells that

0; 1
]» > mm{z,CoMl/ze*KM}.

(45)

L, {Ilfn hl, >

According to Lemma 5, h,(x) < hy(x) and P,? <
P{:O* Moreover, K(P,? *(p,Ph0 ) = '[RK [In(IT, (h,, * ‘P)()’z)/
T (hy * Q)OI (h, * @)ydydy, -dy, =
n [ In((h, = 9)(0)/(hy * )(M)(h,, * 9)(y)dy = n [, In[1 +
G2 DS weyye « o)y * @)1, * @)()dy. Since

By @lhy x @ > 0,27 T gy x )i 9)” =
(hy, = @ — hy * @)/hy * ¢ > —1. Combining this with
In(1 + x) < x(x > —1), one knows

) < ng 2772

JRCE N

a3 "
K (Phw*rp’ Pho*(l’

) (46)
x <Z“’k%k N ‘P) ()
k=1
x (hy * @) (y)dy.
Because [, (v * 9)(»)dy = F(yy * )(0) = §7;(0)§(0) =

IN

0, the above inequality reduces to K(P; ... P .,)
G2 (30w + @ ]Iy <p>(y>r1dy

clznzfzj(””z*ﬁ)exp{—2c((27‘t/3)2j)“} Zilzl wp <cin 2720*P)
exp{—2c((27r/3)27)"*} thanks to Lemma 6. Hence,

N

Ky = inf —ZK (P, P,)

0<v<m m

2 2 _\*
< 22 P exp {—2c<?712]> } .

(47)
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Note that M > 2%/% and take j such that

_1/ 2 o ; 1/ 2 «
c1<?ﬂ> lnn<2]‘xs2“cl<?ﬂ> Inn.  (48)

Then M'Ze™ > exp{((In2)/16)(3/27)c /*(Inn)"/*}
exp{-Ccin [ V/%(3/2m)(In n) 172} > 1 (choose ¢, > 0
small enough). Furthermore, (45) reduces to

0.
sup P’ . W= hy, >—]}21. 49
s B {1k, > 5 ()

Hence, suprBiq(L)EIIfn - fI5 = sup, cnElf, =l =
supy en Pl lfu = all, > 6,/2)(6,/2) = 6. This with
(44) and (48) leads to

sup E P> (Inn)~P*,
fEBsP If. - f“ (50)

which is the desired conclusion of Theorem 9, when r > p
(s’ = s in that case).

When r < p, s =s—Q/r- 1/p), = s—1/r+1/p, it
remains to show

sup E|[f, - fI} = Cnp) TP )
€ qu L)
Similar to the proof of (50), one takes small ¢, > 0 such that

yu () (k=1,...,27)
(52)

Iy () = by (x) + 277D

satisfies h(x) = 0, b € Bj’q(L) and _[hk(x)dx = 1.
Clearly, "hk_hOHp — czzfj(sfl/r+1/2)2j(1/2—1/P)”v/”P and
Iy = gell, = 277 Py () = y(- = (K" = ), for 1 <
k#k' < 2. Since y is the Meyer wavelet function,
infolly() —y(- - K)ll, > 0and

6.::

o= min g =k, 2 g2 YD 5

0<k #k'<2/

Define A, = {| f, - ,27). Then

ArNA,=0 (k#v)and

hell, < 6;/2} (k=0,1,...

5 ,
} > min { ;,COZJ/zeszj} ,

(54)

e P {nfn nl, 2

due to Lemma 8. Similar (even simpler) arguments to the
estimation of Ky, show K, < 2n2 21/ BH1/2) p=2e(@n/3)2)7,
Taking j as in (48), one receives that

27\ —(2(s=1/r+p+1/2)) /e
Ky < Con' [c_l<?> lnn] , (55

and 272 > [c7'@2n/3)*Inn)/* exp{—Cczz[cfl(er/
3)7% In ]G Vr B e

Thus (54) reduces to

n'} > 1 by choosing small ¢, > 0.

8
} > 1 (56)

k=0,1,...,



Abstract and Applied Analysis

Moreover’ SuprBf’q(L)E;l’*(p"fn - f"g 2 SukaO,l,...,ZjEZk*(p”fn_
hk"g 2 Squ:o,l,‘..,ziPl?k*qa{”fn - hk"p 2 8]'/2}(81'/2)p 2 6}?'
This with (53) and (48) leads to (51). This completes the proof
of Theorem 9. O

Remark 10. By Theorems 9 and 3, the linear wavelet estimator
fL is optimal for a density in Besov spaces with severely ill-
posed noise. Therefore, we do not need to consider nonlinear
wavelet estimations in that case. This contrasts sharply
with moderately ill-posed noise case under which nonlinear
wavelet estimation improves the linear one [2, 4].

Remark 11. When p = 2and 1 < r < 2, our Theorem 9 is
better than Theorem 6 in [2], because (Inn)™*/* > (Inn)"
Moreover, Theorems 9 and 3 lead to Theorem 3 in that paper
for p=2and 1 < r < 2. In addition, our conditions (Cl) and
(C2) are a little weaker than the assumptions in [2].

s/o

4. Concluding Remarks

This paper provides an L? (1 < p < 00) risk upper bound for
a linear wavelet estimator fy]f (Theorem 3), which turns out
to be optimal (Theorem 9). Therefore, nonlinear estimations
are not needed under severely ill-posed noises. Although we
assume p < oo in Theorem 9, the proof of that theorem shows
that, for p = oo,

sup E|f, - > C(lnn) &0/,
feB:E(L) 1fs = flleo = Cllnn) (57)

In particular, when r = g = 00, this above estimation reduces
to partial result of Theorem 1 in [3].

Note that our model assumes the noise to be severely ill-
posed; that is, the density ¢ of noise € satisfies |@(£)| ~ (1 +

Itlz)fﬁ /2 gcltl” (a.e.). Then it is reasonable to choose the Meyer

scaling function as ¢ because the compact supportness of ¢
makes K¢ well defined, where

1 it ‘E(t)
(K;¢) (y) = > JR e Wdt' (58)

Compare with the proof of Theorem 1 in [3], the argu-
ments of Theorem 9 are more complicated in the sense
that we use Varshmov-Gilbert Lemma (Lemma?7). It is
reasonable because we deal with unmatched estimation
SUp 7 Bqu(R)E" fo-f ||§ (p and r may not be equal), while they

do the matched case sup rep ) Ell fy = flloo-

Although the Shannon function (/)S(t) = sinmt/mt is
much simpler than the Meyers, it cannot be used in our dis-
cussion because the Shannon’s does not belong to L(R), while
our theorems cover the case for p = 1.

Finally, it should be pointed out that we assume the inde-
pendence of observations Y;,Y,,...,Y, in this paper. How-
ever, some dependent data are more important (of course,
more complicated) in practice. We will investigate that case
in future.
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