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In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled
boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which
is different from Adomain decomposition method (Motsa and Sibanda, 2013). The reported method is very general and can be
extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed
iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain
polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013.
In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to
bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension
Bratu and Frank-Kamenetzkii equations.

1. Introduction

In the very beginning, the Newton-Raphson method con-
structed for nonlinear single-variable algebraic equation
whose efficiency index is optimal according to Kung-Traub
conjecture [1], actually Newton-Raphson uses two function
evaluations, and its computational order of convergence is
two. Many authors [2–7] have made good effort to construct
the iterative methods for algebraic equations. Similarly, for
the system of algebraic equation, the version of Newton-
Raphson gives us second-order convergence. In the litera-
ture, the efficiency index is only defined for single-variable
algebraic equation on the basis of function evaluations. For
multivariable case, if we consider system of 𝑛 algebraic
equations, then we require the computation of Jacobian
inverse 𝐽−1 of dimension 𝑛 × 𝑛 and 𝑛 function evaluations
to perform one newton iteration and it is clearly evident
the computational cost of matrix inversion is dominant over
other binary operations to complete one newton iteration.
The iterative methods which require only once the Jacobian
inverse for the whole cycle of iterations are clearly efficient.

When we talk about nonlinear boundary value problems,
the quasilinear method (QLM) [8–11] is an iterative method
which starts from initial guess for a boundary value problem
(BVP) which is quadratically convergent. Initially, Bellman
and Kalaba [12] proposed QLM and later Mandelzweig and
coauthors [8–11] provide the second-order convergence proof
for the BVPs. In [13], recently authors proposed higher-order
quasilinearization method for single BVP as well as coupled
BVPs.The original idea in [13] is to decompose the nonlinear
operator as an infinite sum of Adomain [14] polynomials.The
reported algorithm is efficient in the case of couple BVPs.
The computation of Jacobian inverse is performed at the
initial guess, but the calculation of Adomain polynomials is
somehow difficult and also increases the computation cost
of iterative scheme. To avoid the computational burden of
Adomain polynomials, we use a different decomposition
method for nonlinear operatorwhichwas actually introduced
in [15]. Our proposed scheme uses only one calculation of
Jacobian inverse 𝐽−1 and does not require any calculation of
Adomain polynomials, and this fact increases its computa-
tional efficiency in comparison with [13]. The sequences of
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iteration schemes have convergence orders two, three, four,
five, and so forth. The numerical stability and efficiency are
tested over two problems, namely, one-dimensional Bratu
problem [16–23]

𝑦


(𝑥) + 𝜆𝑒
𝑦(𝑥)

= 0, 𝑦 (0) = 𝑦 (1) = 0 (1)

and Frank-Kamenetzkii [24] boundary value problem

𝑦


(𝑥) +

𝑘

𝑥

𝑦


(𝑥) + 𝜆𝑒
𝑦(𝑥)

= 0, 𝑦


(0) = 𝑦 (1) = 0.

(2)

The Frank-Kamenetzkii BVP (2) has no solution if 𝜆 > 2,
unique solution if 𝜆 = 2 and two solutions if 𝜆 < 2.The closed
form solution of (2) is reported in [24–26]. The solutions of
(2) in [25] are given as

𝑐
1

= log [2 (4 − 𝜆) ± 4√2 (2 − 𝜆)] ,

𝑐
2

= log[4 − 𝜆 ± 2
√2 (2 − 𝜆)

2𝜆
2

] ,

𝑦 = log[
16𝑒
𝑐

1

(2𝜆 + 𝑒
𝑐

1𝑥
2

)
2

] , 𝑦 = log[
16𝑒
𝑐

1

(1 + 2𝜆𝑒
𝑐

2𝑥
2

)
2

] .

(3)

The closed form solution for Bratu equation [27] can be
written as

𝑦 (𝑥) = −2 log [cosh ((𝑥 − 1/2) (𝜃/2))
cosh (𝜃/4)

]

𝜃 = √2𝜆 cosh(𝜃
4

) .

(4)

The critical parameter 𝜆
𝑐

for Bratu problem satisfies 4 =
√2𝜆
𝑐

sinh(𝜃
𝑐

/4) and if 𝜆 < 𝜆
𝑐

, 𝜆 = 𝜆
𝑐

, and 𝜆 > 𝜆
𝑐

, then
there are two solutions, unique solution and no solution for
(1).The numerical reported value of critical parameter is 𝜆

𝑐

=

3.51383071912516 [18].

2. Construction of Iterative Methods

2.1. Single Nonlinear Boundary Value Problem. Consider a
nonlinear ordinary differential equation

𝐿 (𝑦) + 𝑓 (𝑦) = 0, (5)

where 𝐿 is a linear derivative operator; for Bratu and Frank-
Kamenetzkii problems linear operators are 𝐿[𝑦] = 𝑑2𝑦/𝑑𝑥2
and 𝐿[𝑦] = 𝑑2𝑦/𝑑𝑥2 + (𝑘/𝑥)(𝑑𝑦/𝑑𝑥), and 𝑓 is any nonlinear
function of 𝑦. Let 𝛾 be an initial guess (satisfying the

boundary conditions) for the solution 𝑦 of (5). By expanding
𝑓 around 𝛾, we obtain

𝑓 (𝑦 − 𝛾 + 𝛾) = 𝑓 (𝛾) + (𝑦 − 𝛾) 𝑓
𝑦

(𝛾) + 𝑔 (𝑦) ,

𝑔 (𝑦) = 𝑓 (𝑦) − 𝑓 (𝛾) − (𝑦 − 𝛾) 𝑓
𝑦

(𝛾) ,

where 𝑓
𝑦

(𝛾) =

𝜕𝑓 (𝑦)

𝜕𝑦







𝑦=𝛾

,

𝑀 (𝑦) = 𝑦 −

𝑓 (𝑦)

𝑓
𝑦

(𝛾)

− 𝛾 +

𝑓 (𝛾)

𝑓
𝑦

(𝛾)

,

where 𝑀(𝑦) = −
𝑔 (𝑦)

𝑓
𝑦

(𝛾)

,

(6)

𝑀(𝑦) + 𝑐 = 𝑦 −

𝑓 (𝑦)

𝑓
𝑦

(𝛾)

, where 𝑐 = 𝛾 −
𝑓 (𝛾)

𝑓
𝑦

(𝛾)

, (7)

𝐿 (𝑦) + 𝑓 (𝛾) + (𝑦 − 𝛾) 𝑓
𝑦

(𝛾) + 𝑔 (𝑦) = 0, (8)

𝐿 (𝑦)

𝑓
𝑦

(𝛾)

+

𝑓 (𝛾)

𝑓
𝑦

(𝛾)

+ (𝑦 − 𝛾) = 𝑀(𝑦) , (9)

𝐿 (𝑦)

𝑓
𝑦

(𝛾)

+ 𝑦 = 𝑐 +𝑀(𝑦) . (10)

Suppose, that we can decompose the solution 𝑦 into infinite
series sum

𝑦 =

∞

∑

𝑖=0

𝑦
𝑖

. (11)

Further, we obtain the decomposition of nonlinear operator
𝑀(𝑦) as follows:

𝑀(𝑦) = 𝑀(

∞

∑

𝑖=0

𝑦
𝑖

) = 𝑀(𝑦
0

) + (𝑀 (𝑦
0

+ 𝑦
1

) − 𝑀(𝑦
0

))

+ (𝑀 (𝑦
0

+ 𝑦
1

+ 𝑦
2

) − 𝑀(𝑦
0

+ 𝑦
1

)) + ⋅ ⋅ ⋅

(12)

𝑀(𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

)

= 𝑀(𝑦
0

) + (𝑀 (𝑦
0

+ 𝑦
1

) − 𝑀(𝑦
0

))

+ (𝑀 (𝑦
0

+ 𝑦
1

+ 𝑦
2

) − 𝑀(𝑦
0

+ 𝑦
1

)) + ⋅ ⋅ ⋅

+ (𝑀 (𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

)

−𝑀(𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛

)) .

(13)

By substituting (11) in (10), we get

𝐿 (𝑦
0

+ 𝑦
1

+ 𝑦
2

+ ⋅ ⋅ ⋅ )

𝑓
𝑦

(𝛾)

+ (𝑦
0

+ 𝑦
1

+ 𝑦
2

+ ⋅ ⋅ ⋅ )

= 𝑐 +𝑀(

∞

∑

𝑖=0

𝑦
𝑖

) .

(14)
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By using (13), we obtain

𝐿 (𝑦
0

+ 𝑦
1

+ 𝑦
2

+ ⋅ ⋅ ⋅ )

𝑓
𝑦

(𝛾)

+ (𝑦
0

+ 𝑦
1

+ 𝑦
2

+ ⋅ ⋅ ⋅ )

= 𝑐 +𝑀(𝑦
0

) + (𝑀 (𝑦
0

+ 𝑦
1

) − 𝑀(𝑦
0

)) + ⋅ ⋅ ⋅ .

(15)

By comparing left and right sides in (15), we have

𝐿 (𝑦
0

)

𝑓
𝑦

(𝛾)

+ 𝑦
0

= 𝑐, (16)

𝐿 (𝑦
1

)

𝑓
𝑦

(𝛾)

+ 𝑦
1

= 𝑀(𝑦
0

) ,

𝐿 (𝑦
2

)

𝑓
𝑦

(𝛾)

+ 𝑦
2

= 𝑀(𝑦
0

+ 𝑦
1

) − 𝑀(𝑦
0

)

...

(17)

𝐿 (𝑦
𝑛+1

)

𝑓
𝑦

(𝛾)

+ 𝑦
𝑛+1

= 𝑀(𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛

)

− 𝑀(𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛−1

) .

(18)

If we approximate solution

𝑦 ≈ 𝑌
𝑛+1

= 𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

. (19)

By adding (16) to (18), we get

𝐿 (𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

)

𝑓
𝑦

(𝛾)

+ 𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

= 𝑐 +𝑀(𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛

) ,

𝐿 (𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

)

𝑓
𝑦

(𝛾)

+ 𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛+1

= 𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛

−

𝑓 (𝑦
0

+ 𝑦
1

+ ⋅ ⋅ ⋅ + 𝑦
𝑛

)

𝑓
𝑦

(𝛾)

,

(20)

𝐿 (𝑌
𝑛+1

) + 𝑓
𝑦

(𝛾) 𝑌
𝑛+1

= 𝑓
𝑦

(𝛾) 𝑌
𝑛

− 𝑓 (𝑌
𝑛

) . (21)

Equations (16) and (21) give

𝐿 (𝑌
0

) + 𝑌
0

= 𝑓
𝑦

(𝛾) 𝛾 − 𝑓 (𝛾) , where 𝑌
0

= 𝑦
0

,

𝐿 (𝑌
𝑛+1

) + 𝑓
𝑦

(𝛾) 𝑌
𝑛+1

= 𝑓
𝑦

(𝛾) 𝑌
𝑛

− 𝑓 (𝑌
𝑛

) , 𝑛 = 0, 1, . . . .

(22)

After renaming the variables, we obtain the following
iterative schemes.

Scheme 𝑆
0

. Consider

𝐿 (𝑦
1

) + 𝑓
𝑦

(𝑦
0

) 𝑦
1

= 𝑓
𝑦

(𝑦
0

) 𝑦
0

− 𝑓 (𝑦
0

) . (23)

Note that 𝑆
0

corresponds to the QLM scheme which is
quadratically convergent.

Scheme 𝑆
1

. Consider

𝐿 (𝑦
1

) + 𝑓
𝑦

(𝑦
0

) 𝑦
1

= 𝑓
𝑦

(𝑦
0

) 𝑦
0

− 𝑓 (𝑦
0

) ,

𝐿 (𝑦
2

) + 𝑓
𝑦

(𝑦
0

) 𝑦
2

= 𝑓
𝑦

(𝑦
0

) 𝑦
1

− 𝑓 (𝑦
1

) .

(24)

Scheme 𝑆
2

. Consider

𝐿 (𝑦
1

) + 𝑓
𝑦

(𝑦
0

) 𝑦
1

= 𝑓
𝑦

(𝑦
0

) 𝑦
0

− 𝑓 (𝑦
0

) ,

𝐿 (𝑦
2

) + 𝑓
𝑦

(𝑦
0

) 𝑦
2

= 𝑓
𝑦

(𝑦
0

) 𝑦
1

− 𝑓 (𝑦
1

) ,

𝐿 (𝑦
3

) + 𝑓
𝑦

(𝑦
0

) 𝑦
3

= 𝑓
𝑦

(𝑦
0

) 𝑦
2

− 𝑓 (𝑦
2

) .

(25)

Scheme 𝑆
𝑛

. Consider

𝐿 (𝑦
1

) + 𝑓
𝑦

(𝑦
0

) 𝑦
1

= 𝑓
𝑦

(𝑦
0

) 𝑦
0

− 𝑓 (𝑦
0

) ,

𝐿 (𝑦
2

) + 𝑓
𝑦

(𝑦
0

) 𝑦
2

= 𝑓
𝑦

(𝑦
0

) 𝑦
1

− 𝑓 (𝑦
1

) ,

𝐿 (𝑦
3

) + 𝑓
𝑦

(𝑦
0

) 𝑦
3

= 𝑓
𝑦

(𝑦
0

) 𝑦
2

− 𝑓 (𝑦
2

) ,

...

𝐿 (𝑦
𝑛+1

) + 𝑓
𝑦

(𝑦
0

) 𝑦
𝑛+1

= 𝑓
𝑦

(𝑦
0

) 𝑦
𝑛

− 𝑓 (𝑦
𝑛

) .

(26)

By calculating computational order of convergence, we show
that the order of convergence of 𝑆

𝑛

is 𝑛 + 2.
Consider the following nonlinear coupled boundary

value problem:

𝐿
1

(𝑧
(1)

) + 𝑓
1

(𝑧) = 0,

𝐿
2

(𝑧
(2)

) + 𝑓
2

(𝑧) = 0,

𝐿
3

(𝑧
(3)

) + 𝑓
3

(𝑧) = 0,

...

𝐿
𝑛

(𝑧
(𝑛)

) + 𝑓
𝑛

(𝑧) = 0,

(27)

where 𝑧 = [𝑧(1), 𝑧(2), 𝑧(3), . . . , 𝑧(𝑛)]𝑇 and 𝐿
1

, 𝐿
2

, 𝐿
3

, . . . , 𝐿
𝑛

are
linear derivative operators. Equation (27) can be rewritten as

𝐿 (𝑧) + 𝑓 (𝑧) = 0, (28)

where 𝐿 = [𝐿
1

, 𝐿
2

, 𝐿
3

, . . . , 𝐿
𝑛

]
𝑇 and 𝑓(𝑧) = [𝑓

1

(𝑧), 𝑓
2

(𝑧),
. . . , 𝑓
𝑛

(𝑧)]
𝑇. Let 𝛾 = [𝛾

1

, 𝛾
2

, . . . , 𝛾
𝑛

] be an initial guess, which
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satisfies boundary conditions, for problem (28). Taylor’s
expansion of 𝑓 around 𝛾 is

𝑓 (𝑧) = 𝑓 (𝛾) + 𝐽 (𝑧 − 𝛾) + 𝑔 (𝑧) ,

where 𝐽 is a Jacobian 𝐽 =
𝜕𝑓

𝜕𝑧







𝑧=𝛾

,

𝑔 (𝑧) = 𝑓 (𝑧) − 𝑓 (𝛾) − 𝐽 (𝑧 − 𝛾) ,

−𝐽
−1

𝑔 (𝑧) = −𝐽
−1

𝑓 (𝑧) + 𝐽
−1

𝑓 (𝛾) + 𝑧 − 𝛾,

(29)

𝑀(𝑧) + 𝑐 = 𝑧 − 𝐽
−1

𝑓 (𝑧) , where 𝑐 = 𝛾 − 𝐽−1𝑓 (𝛾) ,

𝑀 (𝑧) = −𝐽
−1

𝑔 (𝑧) .

(30)

Equation (28) can be written as

𝐽
−1

𝐿 (𝑧) + 𝐽
−1

𝑓 (𝑧) = 0, (30) implies (31)

𝐽
−1

𝐿 (𝑧) + 𝑧 = 𝑀 (𝑧) + 𝑐, (32)

where 𝑧 can be decomposed into infinite series sum

𝑧 =

∞

∑

𝑖=0

𝑧
𝑖

. (33)

Substituting (33) in (32), we get

𝐽
−1

𝐿(

∞

∑

𝑖=0

𝑧
𝑖

) +

∞

∑

𝑖=0

𝑧
𝑖

= 𝑀(

∞

∑

𝑖=0

𝑧
𝑖

) + 𝑐. (34)

By using the same decomposition for nonlinear operator
𝑀(𝑧) for multivariable case which is given in (12), we obtain

𝐽
−1

𝐿 (𝑧
0

) + 𝑧
0

= 𝑐,

𝐽
−1

𝐿 (𝑧
1

) + 𝑧
1

= 𝑀(𝑧
0

) ,

𝐽
−1

𝐿 (𝑧
2

) + 𝑧
2

= 𝑀(𝑧
0

+ 𝑧
1

) − 𝑀(𝑧
0

) ,

𝐽
−1

𝐿 (𝑧
3

) + 𝑧
3

= 𝑀(𝑧
0

+ 𝑧
1

+ 𝑧
2

) − 𝑀(𝑧
0

+ 𝑧
1

) ,

...

𝐽
−1

𝐿 (𝑧
𝑛+1

) + 𝑧
𝑛+1

= 𝑀(𝑧
0

+ 𝑧
1

+ ⋅ ⋅ ⋅ + 𝑧
𝑛

)

− 𝑀(𝑧
0

+ 𝑧
1

+ ⋅ ⋅ ⋅ + 𝑧
𝑛−1

) .

(35)

If we approximate the solution by

𝑧 ≈ 𝑍
𝑛+1

= 𝑧
0

+ 𝑧
1

+ ⋅ ⋅ ⋅ + 𝑧
𝑛+1

, (36)

we get by adding (35)

𝐽
−1

𝐿 (𝑍
𝑛+1

) + 𝑍
𝑛+1

= 𝑐 +𝑀(𝑍
𝑛

) . (37)

From (32), we have

𝐽
−1

𝐿 (𝑍
𝑛+1

) + 𝑍
𝑛+1

= 𝑍
𝑛

− 𝐽
−1

𝑓 (𝑍
𝑛

) ,

𝐿 (𝑍
𝑛+1

) + 𝐽𝑍
𝑛+1

= 𝐽𝑍
𝑛

− 𝑓 (𝑍
𝑛

) .

(38)

After renaming the variables, we get the following iterative
schemes.

Scheme 𝑆𝑀
0

. Consider

𝐿 (𝑧
1

) + 𝐽𝑧
1

= 𝐽𝑧
0

− 𝑓 (𝑧
0

) , where 𝐽 =
𝜕𝑓

𝜕𝑧






𝑧=𝑧
0

. (39)

Note that 𝑆𝑀
0

is the QLM scheme which is quadratically
convergent.

Scheme 𝑆𝑀
1

. Consider

𝐿 (𝑧
1

) + 𝐽𝑧
1

= 𝐽𝑧
0

− 𝑓 (𝑧
0

) ,

𝐿 (𝑧
2

) + 𝐽𝑧
2

= 𝐽𝑧
1

− 𝑓 (𝑧
1

) .

(40)

Scheme 𝑆𝑀
2

. Consider

𝐿 (𝑧
1

) + 𝐽𝑧
1

= 𝐽𝑧
0

− 𝑓 (𝑧
0

) ,

𝐿 (𝑧
2

) + 𝐽𝑧
2

= 𝐽𝑧
1

− 𝑓 (𝑧
1

) ,

𝐿 (𝑧
3

) + 𝐽𝑧
3

= 𝐽𝑧
2

− 𝑓 (𝑧
2

) .

(41)

Scheme 𝑆𝑀
𝑛

. Consider

𝐿 (𝑧
1

) + 𝐽𝑧
1

= 𝐽𝑧
0

− 𝑓 (𝑧
0

) ,

𝐿 (𝑧
2

) + 𝐽𝑧
2

= 𝐽𝑧
1

− 𝑓 (𝑧
1

) ,

𝐿 (𝑧
3

) + 𝐽𝑧
3

= 𝐽𝑧
2

− 𝑓 (𝑧
2

) ,

...

𝐿 (𝑧
𝑛+1

) + 𝐽𝑧
𝑛+1

= 𝐽𝑧
𝑛

− 𝑓 (𝑧
𝑛

) .

(42)

2.2. Coupled Boundary Value with Many Variables. Consider
the following nonlinear coupled boundary value problem
with many variables:

𝐿
1

(𝑧
(1)

) + 𝑓
1

(𝑤) = 0,

𝐿
2

(𝑧
(2)

) + 𝑓
2

(𝑤) = 0,

𝐿
3

(𝑧
(3)

) + 𝑓
3

(𝑤) = 0,

...

𝐿
𝑛

(𝑧
(𝑛)

) + 𝑓
𝑛

(𝑤) = 0,

(43)

where 𝑤 = [𝑧(1), 𝑧(2), 𝑧(3), . . . , 𝑧(𝑛), 𝑠(1), 𝑠(2), . . . , 𝑠(𝑚)]𝑇. The
compact form of (43) is

𝐿 (𝑧) + 𝑓 (𝑤) = 0, (44)

where 𝑧 = [𝑧(1), 𝑧(2), 𝑧(3), . . . , 𝑧(𝑛)]𝑇, 𝑠 = [𝑠(1), 𝑠(2), . . . , 𝑠(𝑚)]𝑇,
𝐿 = [𝐿

1

(𝑧
(1)

), 𝐿
2

(𝑧
(2)

), . . . , 𝐿
𝑛

(𝑧
(𝑛)

)]
𝑇, 𝑓(𝑤) = [𝑓

1

(𝑤), 𝑓
2

(𝑤),
. . . , 𝑓
𝑛

(𝑤)]
𝑇. Let 𝛿 = [𝛾

𝑇

, 𝜂
𝑇

]
𝑇 be an initial guess

for (44) which satisfies the boundary conditions where
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𝛾 = [𝛾
1

, 𝛾
2

, . . . , 𝛾
𝑛

]
𝑇 and 𝜂 = [𝜂

1

, 𝜂
2

, . . . , 𝜂
𝑚

]
𝑇. The expansion

of 𝑓 around 𝛿 is

𝑓 (𝑤) = 𝑓 (𝛿) + 𝐽 (𝑤 − 𝛿) + 𝑔 (𝑤) ,

𝑓 (𝑤) = 𝑓 (𝛿) + 𝐽
1

(𝑧 − 𝛾) + 𝐽
2

(𝑠 − 𝜂) + 𝑔 (𝑤) ,

where 𝐽
1

=

𝜕𝑓

𝜕𝑧






𝑧=𝛾

, 𝐽
2

=

𝜕𝑓

𝜕𝑠






𝑠=𝜂

,

𝐽
−1

1

𝑓 (𝑤) = 𝐽
−1

1

𝑓 (𝛿) + 𝑧 − 𝛾 + 𝐽
−1

1

𝐽
2

(𝑠 − 𝜂) + 𝐽
−1

1

𝑔 (𝑤) ,

𝑀 (𝑤) = −𝐽
−1

1

𝑓 (𝑤) + 𝐽
−1

1

𝑓 (𝛿) + 𝑧 − 𝛾 + 𝐽
−1

1

𝐽
2

(𝑠 − 𝜂) ,

where 𝑀(𝑤) = −𝐽−1
1

𝑔 (𝑤) ,

𝑀 (𝑤) + 𝛾 + 𝐽
−1

1

𝐽
2

𝜂 − 𝐽
−1

1

𝑓 (𝛿) = −𝐽
−1

1

𝑓 (𝑤) + 𝑧 + 𝐽
−1

1

𝐽
2

𝑠,

(45)

𝑀(𝑤) + 𝑐 = 𝑧 + 𝐽
−1

1

𝐽
2

𝑠 − 𝐽
−1

1

f (𝑤) ,

where 𝑐 = 𝛾 + 𝐽−1
1

𝐽
2

𝜂 − 𝐽
−1

1

𝑓 (𝛿) ,

(46)

𝑓 (𝑤) = 𝐽
1

𝑧 + 𝐽
2

𝑠 − 𝐽
1

(𝑀 (𝑤) + 𝑐) . (47)

From (44), we obtain

𝐿 (𝑧) + 𝐽
1

𝑧 + 𝐽
2

𝑠 = 𝐽
1

𝑐 + 𝐽
1

𝑀(𝑤) . (48)

We decompose the solution into infinite series sum

𝑤 =

∞

∑

𝑖=0

𝑤
𝑖

. (49)

Equation (48) implies

𝐿(

∞

∑

𝑖=0

𝑧
𝑖

) + 𝐽
1

(

∞

∑

𝑖=0

𝑧
𝑖

) + 𝐽
2

(

∞

∑

𝑖=0

𝑠
𝑖

) = 𝐽
1

𝑐 + 𝐽
1

𝑀(

∞

∑

𝑖=0

𝑤
𝑖

) ,

𝐿(

∞

∑

𝑖=0

𝑧
𝑖

) + 𝐽
1

(

∞

∑

𝑖=0

𝑧
𝑖

) + 𝐽
2

(

∞

∑

𝑖=0

𝑠
𝑖

)

= 𝐽
1

𝑐 + 𝐽
1

(𝑀 (𝑤
0

) + (𝑀 (𝑤
0

+ 𝑤
1

) − 𝑀(𝑤
0

))

+ (𝑀 (𝑤
0

+ 𝑤
1

+ 𝑤
2

)

−𝑀(𝑤
0

+ 𝑤
1

)) + ⋅ ⋅ ⋅ ) ,

(50)

𝐿 (𝑧
0

) + 𝐽
1

𝑧
0

+ 𝐽
2

𝑠
0

= 𝐽
1

𝑐, (51)

𝐿 (𝑧
0

) + 𝐽
1

𝑧
0

+ 𝐽
2

𝑠
0

= 𝐽
1

𝛾 + 𝐽
2

𝜂 − 𝑓 (𝛿) ,

𝐿 (𝑧
0

) + 𝐽𝑤
0

= 𝐽𝛿 − 𝑓 (𝛿) , where 𝐽 =
𝜕𝑓

𝜕𝑤







𝑤=𝛿

,

(52)
𝐿 (𝑧
1

) + 𝐽𝑤
1

= 𝐽
1

𝑀(𝑤
0

) ,

𝑧


𝑛

(𝑥) +

𝑘

𝑥

𝑧


𝑛

(𝑥) + 𝐽
0

𝑧
𝑛

(𝑥) = 𝐽
0

𝑦
𝑛

(𝑥) − 𝑓 (𝑦
𝑛

(𝑥)) ,

𝐿 (𝑧
2

) + 𝐽𝑤
2

= 𝐽
1

(𝑀 (𝑤
0

+ 𝑤
1

) − 𝑀(𝑤
0

)) ,

...

𝐿 (𝑧
𝑛+1

) + 𝐽𝑤
𝑛+1

= 𝐽
1

(𝑀 (𝑤
0

+ 𝑤
1

+ 𝑤
2

+ ⋅ ⋅ ⋅ + 𝑤
𝑛

)

−𝑀(𝑤
0

+ 𝑤
1

+ 𝑤
2

+ ⋅ ⋅ ⋅ + 𝑤
𝑛−1

)) .

(53)

By adding (51) and (53), we get

𝐿 (𝑧
0

+ 𝑧
1

+ ⋅ ⋅ ⋅ + 𝑧
𝑛+1

) + 𝐽 (𝑤
0

+ 𝑤
1

+ ⋅ ⋅ ⋅ + 𝑤
𝑛+1

)

= 𝐽
1

(𝑐 + 𝑀(𝑤
0

+ 𝑤
1

+ ⋅ ⋅ ⋅ + 𝑤
𝑛

)) .

(54)

We denote

𝑤 ≈ 𝑊
𝑛+1

= 𝑤
0

+ 𝑤
1

+ ⋅ ⋅ ⋅ + 𝑤
𝑛+1

,

𝑧 ≈ 𝑍
𝑛+1

= 𝑧
0

+ 𝑧
1

+ ⋅ ⋅ ⋅ + 𝑧
𝑛+1

.

𝑠 ≈ 𝑆
𝑛+1

= 𝑠
0

+ 𝑠
1

+ ⋅ ⋅ ⋅ + 𝑠
𝑛+1

.

(55)

From (54) and (46),

𝐿 (𝑍
𝑛+1

) + 𝐽𝑊
𝑛+1

= 𝐽
1

(𝑐 + 𝑀(𝑊
𝑛

)) ,

𝐿 (𝑍
𝑛+1

) + 𝐽𝑊
𝑛+1

= 𝐽
1

𝑍
𝑛

+ 𝐽
2

𝑆
𝑛

− 𝑓 (𝑊
𝑛

) ,

𝐿 (𝑍
𝑛+1

) + 𝐽𝑊
𝑛+1

= 𝐽𝑊
𝑛

− 𝑓 (𝑊
𝑛

) .

(56)

After renaming the variables, we get the following iterative
schemes.

Scheme 𝑆𝑊
0

. Consider

𝐿 (𝑧
1

) + 𝐽𝑤
1

= 𝐽𝑤
0

− 𝑓 (𝑤
0

) , where 𝐽 =
𝜕𝑓

𝜕𝑤






𝑤=𝑤

0

. (57)

Scheme 𝑆𝑊
1

. Consider

𝐿 (𝑧
1

) + 𝐽𝑤
1

= 𝐽𝑤
0

− 𝑓 (𝑤
0

) ,

𝐿 (𝑤
2

) + 𝐽𝑤
2

= 𝐽𝑤
1

− 𝑓 (𝑤
1

) .

(58)

Scheme 𝑆𝑊
2

. Consider

𝐿 (𝑧
1

) + 𝐽𝑤
1

= 𝐽𝑤
0

− 𝑓 (𝑤
0

) ,

𝐿 (𝑧
2

) + 𝐽𝑤
2

= 𝐽𝑤
1

− 𝑓 (𝑤
1

) ,

𝐿 (𝑧
3

) + 𝐽𝑤
3

= 𝐽𝑤
2

− 𝑓 (𝑤
2

) .

(59)
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Table 1: Convergence order and absolute error for Bratu problem for 𝜆 = 1 and different values of𝑁.

Iter. 𝑁

50 100 150 200
𝑆
0

1 0.000764899 0.000765714 0.000765861 0.000765913
2 3.22437𝑒 − 8 3.228𝑒 − 8 3.22866𝑒 − 8 3.22889𝑒 − 8

3 5.67396𝑒 − 17 5.68041𝑒 − 17 5.68158𝑒 − 17 5.68198𝑒 − 17

4 1.75415𝑒 − 34 1.75614𝑒 − 34 1.7565𝑒 − 34 1.75663𝑒 − 34

5 7.71203𝑒 − 49 1.67808𝑒 − 69 1.67843𝑒 − 69 1.67855𝑒 − 69

Rate
2.03003 2.03014 2.03016 2.03017
2.00097 2.00098 2.00098 2.00098
2.00008 2.00008 2.00008 2.00008

𝑆
1

1 0.000010196 0.0000102072 0.0000102092 0.0000102099
2 6.3566𝑒 − 18 6.36381𝑒 − 18 6.36511𝑒 − 18 6.36557𝑒 − 18

3 7.71203𝑒 − 49 1.52735𝑒 − 54 1.52766𝑒 − 54 1.52777𝑒 − 54

4 7.71203𝑒 − 49 1.14254𝑒 − 95 3.04915𝑒 − 142 2.11033𝑒 − 164

Rate 3.02829 3.0284 3.02842 3.02842
2.53302 3.00035 3.00035 3.00035

𝑆
2

1 1.35077𝑒 − 7 1.35226𝑒 − 7 1.35253𝑒 − 7 1.35262𝑒 − 7

2 2.18092𝑒 − 31 2.1834𝑒 − 31 2.18384𝑒 − 31 2.184𝑒 − 31

3 7.71203𝑒 − 49 1.1425376𝑒 − 95 1.46619𝑒 − 126 1.46629𝑒 − 126

Rate 4.02691 4.02701 4.02702 4.02703
𝑆
3

1 1.7892𝑒 − 9 1.79116𝑒 − 9 1.79152𝑒 − 9 1.79164𝑒 − 9

2 1.79244𝑒 − 48 1.31437𝑒 − 48 1.31464𝑒 − 48 1.31473𝑒 − 48

3 7.71203𝑒 − 49 1.14254𝑒 − 95 3.04915𝑒 − 142 1.03327𝑒 − 188

Rate 5.00878 5.02624 5.02626 5.02627

Scheme 𝑆𝑊
𝑛

. Consider

𝐿 (𝑧
1

) + 𝐽𝑤
1

= 𝐽𝑤
0

− 𝑓 (𝑤
0

) ,

𝐿 (𝑧
2

) + 𝐽𝑤
2

= 𝐽𝑤
1

− 𝑓 (𝑤
1

) ,

𝐿 (𝑧
3

) + 𝐽𝑤
3

= 𝐽𝑤
2

− 𝑓 (𝑤
2

) ,

...

𝐿 (𝑧
𝑛+1

) + 𝐽𝑤
𝑛+1

= 𝐽𝑤
𝑛

− 𝑓 (𝑤
𝑛

) .

(60)

3. Numerical Results and Rate of Convergence

In all numerical experimentation, we use Chebyshev pseu-
dospectral methods (for more details, see [13]). In order
to show the rate of convergence, we require the definition
of computational order of convergence, The computational
order of convergence can be approximated by [28]

COC ≈
ln 

(𝑦
𝑛+1

− 𝛼) (𝑦
𝑛

− 𝛼)
−1





∞

ln 

(𝑦
𝑛

− 𝛼) (𝑦
𝑛−1

− 𝛼)
−1





∞

, (61)

where 𝑦
𝑛−1

, 𝑦
𝑛

, and 𝑦
𝑛+1

are successive iterations closer to
the solution 𝛼(𝑥) of boundary value problem and ‖V

𝑞

‖
∞

=

max{|V
𝑞

(𝑥
1

)|, |V
𝑞

(𝑥
2

)|, . . . , |V
𝑞

(𝑥
𝑁

)|} such that {𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑁

}

defines the partition of domain of the BVP. For BVPs with
infinite domain, for instance, [𝑎,∞), (−∞, 𝑎], or (−∞,∞),
one could replace infinity by a suitable large number to
make the domain compact. The iterative scheme 𝑆

0

for Bratu
problem with boundary conditions is

𝑦


𝑛+1

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛+1

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛

(𝑥) − 𝜆𝑒
𝑦

𝑛
(𝑥)

,

𝑦
𝑛+1

(0) = 𝑦
𝑛+1

(1) = 0,

(62)

and 𝑦
0

(𝑥) = 𝑥(1 − 𝑥) is an initial guess for (62). Similarly, we
can obtain the scheme 𝑆

1

as follows:

𝑧


𝑛

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑧
𝑛

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛

(𝑥) − 𝜆𝑒
𝑦

𝑛
(𝑥)

,

𝑦


𝑛+1

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛+1

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑧
𝑛

(𝑥) − 𝜆𝑒
𝑧

𝑛
(𝑥)

.

(63)
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Table 2: Convergence order for Bratu problem for 𝜆 = 3 and different values of𝑁.

Iter. 𝑁

50 100 150
𝑆
0

1 0.0458144 0.045864 0.045873
2 0.000954118 0.000955184 0.000955377
3 4.40809𝑒 − 7 4.41304𝑒 − 7 4.41393𝑒 − 7

4 9.41641𝑒 − 14 9.42698𝑒 − 14 9.4289𝑒 − 14

5 4.29662𝑒 − 27 4.30146𝑒 − 27 4.30234𝑒 − 27

Rate
1.80854 1.80867 1.80869
1.98368 1.98369 1.98369
1.9999 1.9999 1.9999

𝑆
1

1 0.0104901 0.0105016 0.0105037
2 5.27186𝑒 − 7 5.27777𝑒 − 7 5.27884𝑒 − 7

3 6.88292𝑒 − 20 6.89065𝑒 − 20 6.89205𝑒 − 20

4 1.80799𝑒 − 32 1.53308𝑒 − 58 1.503335𝑒 − 58

Rate 2.73823 2.73837 2.73839
2.99715 2.99716 2.99716

𝑆
2

1 0.00253291 0.0025357 0.00253621
2 1.86441𝑒 − 11 1.86651𝑒 − 11 1.86688𝑒 − 11

3 1.80799𝑒 − 32 5.50708𝑒 − 44 5.5082𝑒 − 44

Rate 3.71869 3.71882 3.71885
𝑆
3

1 0.000618859 0.000619541 0.000619664
2 4.0232𝑒 − 17 4.02771𝑒 − 17 4.02853𝑒 − 17

3 1.80799𝑒 − 32 4.68𝑒 − 63 4.65698𝑒 − 83

Rate 4.71115 4.71128 4.7113

Table 3: Iterative convergence for different schemes for the critical value of 𝜆
𝑐

for Bratu problem,𝑁 = 200.

Iter.
𝑆
0

𝑆
1

𝑆
2

Critical 𝜆
𝑐

0 2.94303552937154 2.94303552937154 2.94303552937154
5 3.63644753861909 3.51376131743441 3.95335426360815
10 3.51383579457353 3.51383064747221 3.51383072002551
15 3.5138308350082 3.5138307190047 3.51383071919088

Absolute errors
0 0.570795189753462 0.570795189753462 0.570795189753462
5 0.122616819494092 6.94016905877781𝑒 − 005 0.439523544483147
10 5.07544853212138𝑒 − 006 7.16527859268012𝑒 − 008 9.00510332968452𝑒 − 010

15 1.15883229678815𝑒 − 007 1.20208731857474𝑒 − 010 6.58797461028371𝑒 − 011

The 𝑆
2

and 𝑆
3

schemes are

𝑧


𝑛

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑧
𝑛

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛

(𝑥) − 𝜆𝑒
𝑦

𝑛
(𝑥)

,

𝑤


𝑛

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑤
𝑛

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑧
𝑛

(𝑥) − 𝜆𝑒
𝑧

𝑛
(𝑥)

,

𝑦


𝑛+1

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛+1

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑤
𝑛

(𝑥) − 𝜆𝑒
𝑤

𝑛
(𝑥)

,

(64)

𝑧


𝑛

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑧
𝑛

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛

(𝑥) − 𝜆𝑒
𝑦

𝑛
(𝑥)

,

𝑤


𝑛

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑤
𝑛

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑧
𝑛

(𝑥) − 𝜆𝑒
𝑧

𝑛
(𝑥)

,

𝑝


𝑛

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑝
𝑛

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑤
𝑛

(𝑥) − 𝜆𝑒
𝑤

𝑛
(𝑥)

,

𝑦


𝑛+1

(𝑥) + 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑦
𝑛+1

(𝑥) = 𝜆𝑒
𝑦

𝑛
(𝑥)

𝑝
𝑛

(𝑥) − 𝜆𝑒
𝑝

𝑛
(𝑥)

,

(65)
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Table 4: Convergence order for Frank-Kamenetzkii problem for 𝑘 = 1, 𝜆 = 1 and different values of𝑁.

Iter. 𝑁

50 100 150
𝑆
0

1 0.114557 0.114557 0.114557
2 0.00125407 0.00125407 0.00125407
3 1.58064𝑒 − 7 1.58064𝑒 − 7 1.58064𝑒 − 7

4 2.48121𝑒 − 15 2.48121𝑒 − 15 2.48121𝑒 − 15

5 6.09322𝑒 − 31 6.09322𝑒 − 31 6.09322𝑒 − 31

Rate
2.52799 2.52799 2.52799
1.98883 1.98883 1.98883
2.00133 2.00133 2.00133

𝑆
1

1 0.0329952 0.0329952 0.0329952
2 7.69119𝑒 − 7 7.69119𝑒 − 7 7.69119𝑒 − 7

3 8.94424𝑒 − 21 8.94424𝑒 − 21 8.94424𝑒 − 21

4 9.38343𝑒 − 52 1.39988𝑒 − 62 1.39988𝑒 − 62

Rate 3.51966 3.51966 3.51966
3.008 3.008 3.008

𝑆
2

1 0.00877215 0.00877215 0.00877215
2 2.38344𝑒 − 11 2.38344𝑒 − 11 2.38344𝑒 − 11

3 1.25899𝑒 − 45 1.25899𝑒 − 45 1.25899𝑒 − 45

Rate 4.52861 4.52861 4.52861
𝑆
3

1 0.00237755 0.00237755 0.00237755
2 6.27393𝑒 − 17 6.27393𝑒 − 17 6.27393𝑒 − 17

3 9.38343𝑒 − 52 7.50684𝑒 − 85 7.50684𝑒 − 85

Rate 5.52316 5.52316 5.52316

Table 5: Iterative convergence for different schemes for the critical value of 𝜆
𝑐

for Frank-Kamenetzkii problem,𝑁 = 200.

Iter.
𝑆
0

𝑆
1

𝑆
2

Critical 𝜆
𝑐

0 1.96202368624769 1.96202368624769 1.96202368624769
1 2.00031964646299 1.99933495330998 1.99987632667614
2 2.00025140688174 2.00000007821613 1.99999999897116
3 2.00000003077048 2.00000000000462 1.99999999999956
4 2.00000001017936 1.99999999999926 1.99999999999949

Absolute errors
0 0.0379763137523081 0.0379763137523081 0.0379763137523081
1 0.000319646462989098 0.000665046690023985 0.000123673323863427
2 0.000251406881741634 7.82161291290606𝑒 − 008 1.02883590535896𝑒 − 009

3 3.07704830504463𝑒 − 008 4.6216364069096𝑒 − 012 4.42312853010662𝑒 − 013

4 1.0179361797924𝑒 − 008 7.41184891239755𝑒 − 013 5.14255305006373𝑒 − 013
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Table 6: Iterative convergence for different schemes for the critical value of 𝛼
𝑐

for Frank problem,𝑁 = 200.

Iter.
𝑆
0

𝑆
1

𝑆
2

Critical 𝛼
𝑐

0 1.33333333333333 1.33333333333333 1.33333333333333
1 1.37022694167246 1.38416475416079 1.38597531980146
2 1.38643019839731 1.38630914733076 1.38629436351113
3 1.3864007758502 1.38629428714795 1.38629438822645
4 1.38629414907138 1.38629433591242 1.38629439729082

Absolute errors
0 0.0529610277866668 0.0529610277866668 0.0529610277866668
1 0.0160674194475423 0.0021296069592109 0.00031904131854454
2 0.000135837277305928 1.47862107602315𝑒 − 005 2.39112551980725𝑒 − 009

3 0.000106414730195015 7.3972053149518𝑒 − 008 2.71064524159925𝑒 − 008

4 2.12048618219995𝑒 − 007 2.52075842421817𝑒 − 008 3.61708230034452𝑒 − 008

respectively. Tables 1 and 2 show the infinity norms of error
and rates of convergence for (62), (63), (64), and (65) for 𝜆 =
1, 𝜆 = 3 and 𝑁 runs over 50, 100, 150, and 200. We denote
𝑓(𝑦) = 𝜆𝑒

𝑦(𝑥) and 𝑓
𝑦

(𝑦) = 𝜕𝑓(𝑦)/𝜕𝑦 = 𝜆𝑒
𝑦(𝑥) and 𝐽

0

=

𝑓
𝑦

(𝑦
0

(𝑥)). The construction of 𝑆
3

scheme for (2) is given
below and others are similar. Consider

𝑧


𝑛

(𝑥) +

𝑘

𝑥

𝑧


𝑛

(𝑥) + 𝐽
0

𝑧
𝑛

(𝑥) = 𝐽
0

𝑦
𝑛

(𝑥) − 𝑓 (𝑦
𝑛

(𝑥)) ,

𝑤


𝑛

(𝑥) +

𝑘

𝑥

𝑤


𝑛

(𝑥) + 𝐽
0

𝑤
𝑛

(𝑥) = 𝐽
0

𝑧
𝑛

(𝑥) − 𝑓 (𝑧
𝑛

(𝑥)) ,

𝑝


𝑛

(𝑥) +

𝑘

𝑥

𝑝


𝑛

(𝑥) + 𝐽
0

𝑝
𝑛

(𝑥) = 𝐽
0

𝑤
𝑛

(𝑥) − 𝑓 (𝑤
𝑛

(𝑥)) ,

𝑦


𝑛+1

(𝑥) +

𝑘

𝑥

𝑦


𝑛+1

(𝑥) + 𝐽
0

𝑦
𝑛+1

(𝑥)

= 𝐽
0

𝑝
𝑛

(𝑥) − 𝑓 (𝑝
𝑛

(𝑥)) ,

𝑦


𝑛+1

(0) = 𝑦
𝑛+1

(1) = 0.

(66)

The initial guess 𝑦
0

(𝑥) = 1 − 𝑥
2 for Frank-Kamenetzkii prob-

lem is used to start the proposed schemes.The infinity norms
of error and rates of convergence for Frank-Kamenetzkii
problem (𝜆 = 1, 𝑘 = 1) are depicted in Table 4. In order
to plot bifurcation diagram for the one-dimensional Bratu
problem and the Frank-Kamenetzkii problem, we rewrite the
both problems as follows:

𝑢


(𝑥) + 𝜆𝑒
𝑢(𝑥)

= 0, 𝑢 (0) = 𝑢 (1) = 0,

𝑢


(𝑥) +

𝑘

𝑥

𝑢


(𝑥) + 𝜂𝑒
𝑢(𝑥)

= 0, 𝑢


(0) = 𝑢 (1) = 0.

(67)

If 𝜆 < 𝜆
𝑐

(= 3.51383071912516), 𝜆 = 𝜆
𝑐

, and 𝜆 > 𝜆
𝑐

,
then the Bratu problem has two solutions, unique solution

and no solution, respectively, and similarly, for the Frank-
Kamenetzkii problem statement is valid if 𝑘 = 1 and 𝜂

𝑐

= 2.
We define B1-problem and FK1-problem

𝑢


(𝑥) + 𝜆𝑒
𝑢(𝑥)

= 0,

𝑢 (0) = 0, 𝑢


(0) = 𝛼, 𝑢 (1) = 0,

(68)

𝑢


(𝑥) +

𝑘

𝑥

𝑢


(𝑥) + 𝜆𝑒
𝑢(𝑥)

= 0,

𝑢


(0) = 0, 𝑢 (0) = 𝛼, 𝑢 (1) = 0,

(69)

respectively. The iterative forms of (68) and (69) are

𝑢


𝑛+1

(𝑥) + 𝜆
𝑛

𝑒
𝑢

𝑛
(𝑥)

𝑢
𝑛+1

(𝑥) + 𝑒
𝑢

𝑛
(𝑥)

𝜆
𝑛+1

= 𝜆
𝑛

𝑒
𝑢

𝑛
(𝑥)

𝑢
𝑛

(𝑥) ,

𝑢 (0) = 0, 𝑢


(0) = 𝛼
1

, 𝑢 (1) = 0,

𝑢


𝑛+1

(𝑥) +

𝑘

𝑥

𝑢


𝑛+1

(𝑥) + 𝜂
𝑛

𝑒
𝑢

𝑛
(𝑥)

𝑢
𝑛+1

(𝑥)

+ 𝑒
𝑢

𝑛
(𝑥)

𝜂n+1 = 𝜂𝑛𝑒
𝑢

𝑛
(𝑥)

𝑢
𝑛

(𝑥) ,

𝑢 (0) = 𝛼
2

, 𝑢


(0) = 0, 𝑢 (1) = 0.

(70)

The bifurcation diagrams are shown in Figures 1 and 2. The
calculation of critical parameters for the B1-problem and FK1-
problem is performed by using proposed system of equation
in [13] and Tables 2, 5, and 6 show numerical results of
different iterative schemes for B1-problem and FK1-problem.

The authors of [13] are pioneer to talk about higher-
order iterative quasilinearization method (QLM). Tables 1, 2,
and 4 confirm the orders of convergence of their respective
iterative schemes for the different values of parameters under
a different range of grid points for Chebyshev pseudospectral
method. We make all the calculation for Tables 1, 2, and 4
in Mathematica (MinPrecision = 200). The scheme-0 in [13]
and 𝑆

0

in this paper are the same because both are QLM
and the calculated results should be same but unfortunately
this is not the case. For the QLM, the infinity norm of
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Figure 1: Bifurcation diagram for Bratu problem (7).
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Figure 2: Bifurcation diagram for Frank-Kamenetzkii problem (8).

error for Bratu problem is (Scheme-0, 𝑁 = 50, 6.66e−49),
(Scheme-2, 𝑁 = 100, 6.34e−49), (Scheme-2, 𝑁 = 150,
6.34e−49), and (Scheme-3, 𝑁 = 200, 6.34e−49) in Table 1
[13] and in this article, in Table 1 (𝑆

0

, 𝑁 = 50, 7.7e−49),
(𝑆
1

, 𝑁 = 100, 1.67e−69), (𝑆
2

, 𝑁 = 150, 1.67e−69), (𝑆
3

,
𝑁 = 200, 1.67e−69) and in other cases, our results show
better reduction in error as compared to [13] for Table 1
as well as for Table 2 for Bratu problem. For the case of
Frank-Kamenetzkii problem, Table 4 results are comparable
with the reported results in Table 4 [13] and especially for
QLM case almost results are the same. The Table 3 shows
the computation of critical parameter 𝜆

𝑐

for Bratu problem,
and again the results produced in this article and in [13] for
QLM are not the same which in fact should be the same. The
results presented by other authors are surprisingly superior
for QLM and for other schemes. Notice that we useMatlab to
compute critical parameters. Tables 5 and 6 of [13] showbetter
performance and our results are comparable with them. It is
noticed that in [13], the constructed matrix systems (33) and

(34) for the Bratu and the Frank-Kamenetzkii problems have
not properly implemented for all boundary conditions. It is
also noted that in some of the cases, if we increase the grid
points by keeping the same scheme, there is an improvement
in the accuracy of the calculated results, but in some cases this
is not valid rule. It is also very clear from Tables 1, 2, and 4,
that we ensure the convergence order which was the claim.

4. Conclusions

An efficientmethod is presented in this article to get arbitrary
higher-order iterative schemes. The construction of iterative
schemes is very simple and straightforward. In [13], authors
used the idea to decompose the nonlinear operator by using
Adomain decomposition method (ADM) which requires
the calculation of Adomain polynomials and in a result,
the computational cost will be high. In our case, there
is no need to calculate any extra polynomial in order to
enhance the order of convergence of an iterative method and
both methods require only one inversion of Jacobian. Our
presentedmethod is computationally efficient because it does
not require to construct any Adomain polynomial and hence
implementation is also simple to achieve the same order of
convergence. We think that the results presented in [13] and
in this article should be the same for the case of QLM, but it
is not the case and we do not know the implementation of the
iterative schemes in [13].
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