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This study develops the novel fourth-order iterative alternating decomposition explicit (IADE)method ofMitchell and Fairweather
(IADEMF4) algorithm for the solution of the one-dimensional linear heat equationwithDirichlet boundary conditions.Thehigher-
order finite difference scheme is developed by representing the spatial derivative in the heat equation with the fourth-order finite
difference Crank-Nicolson approximation.This leads to the formation of pentadiagonal matrices in the systems of linear equations.
The algorithm also employs the higher accuracy of theMitchell and Fairweather variant. Despite the scheme’s higher computational
complexity, experimental results show that it is not only capable of enhancing the accuracy of the original correspondingmethod of
second-order (IADEMF2), but its solutions are also in very much agreement with the exact solutions. Besides, it is unconditionally
stable and has proven to be convergent. The IADEMF4 is also found to be more accurate, more efficient, and has better rate of
convergence than the benchmarked fourth-order classical iterative methods, namely, the Jacobi (JAC4), the Gauss-Seidel (GS4),
and the successive over-relaxation (SOR4) methods.

1. Introduction

Numerical methods with accuracy of the order, 𝑂(Δℎ)𝑛, 𝑛 >

2, are referred to as higher-order methods (ℎ = mesh size).
Recent developments seem to desire methods of higher-
order for achieving higher accuracy numerical solutions
for problems involving partial differential equations. When
higher-order methods are evaluated, factors such as rate of
convergence, stability, and boundary conditions have to be
considered too. There are mainly two categories of finite
difference higher-order schemes.

The first category is the noncompact stencils that util-
ize any grid point surrounding the grid points of interest
where the difference schemes are implemented. The method
involves larger matrix bandwidth, but in many cases, the
increase is not large [1]. There will be a probable increase
in execution time as more grid points are used. However,
increasing the number of grid points provides advantages
in terms of enhancement in accuracy and improvement in
resolution [2]. To enhance accuracy, the approach should
consider proper treatment of boundary conditions of com-
parable accuracy.

The second category is the compact stencils that use
Lax-Wendroff ’s idea [3] proposed by MacKinnon and Carey
[4]. The method uses smaller number of stencils, making
it computationally efficient and highly accurate. However, it
requires inversion of matrix to obtain spatial derivative at
each point. Also, the boundary stencil has a large effect on
the stability and accuracy of the scheme [5]. Usually, compact
schemes of order higher than four require formation of
auxiliary equations due to boundary conditions. This results
in large bandwidth matrices which are not symmetric [6].
Furthermore, the schemes can get fairly complicated formore
complex equations.

Some of the current findings on higher-order methods
include the work by Sulaiman et al. [7] who suggested
a fourth-order quarter sweep modified successive over-
relaxation (QSMSOR) iterative method for solving a one-
dimensional parabolic equation. It is found to be superior in
terms of rate of convergence and execution time as compared
to other SOR methods. Jha [8] formulated the six-order
accurate quarter sweep alternating group explicit (QSAGE)
iterative finite difference method for solving nonlinear sin-
gular two-point boundary value problems. The method can
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be implemented in parallel and is found to be superior
to the corresponding full sweep alternating group explicit
(AGE) and SOR methods. Jin et al. [9] proposed an AGE
iteration method of the fourth-order accuracy by integrating
the grouping explicit method with numerical boundary con-
ditions.Themethod was used to solve initial-boundary value
problem of convection equations. Fu and Tan [10] showed
that an unconditionally stable split-step FDTD method with
higher-order spatial accuracy is more accurate than the
lower-order methods. The dispersion error of the proposed
method is comparable with the higher-order ADI-FDTD
method.

Higher-order methods are also studied by Mohebbi and
Deghan [11] who applied a compact finite difference approx-
imation of fourth-order and the cubic C1 spline colloca-
tion method to some one-dimensional heat and advection-
diffusion equations. The scheme has fourth-order accuracy
in both space and time and unconditionally stable. Liao
[12] proposed an efficient and high-order accuracy of the
fourth-order compact finite difference method to solve one-
dimensional Burgers’ equation. Tian and Ge [13] studied a
stable fourth-order compact ADI method for solving two-
dimensional unsteady convection diffusion problems. The
method is temporally second-order and spatially fourth-
order accurate, which requires only a regular five-point 2D
stencil similar to that in the standard second-order methods.
Chun [14] solved some nonlinear equations by applying the
fourth-order iterative methods containing the King’s fourth-
order family. It was observed that the proposed method
has at least equal performance compared to other methods
of the same order. Zhu et al. [15] presented a high-order
parallel finite difference algorithm based on the domain
decomposition strategy. The study used the classical explicit
scheme to calculate the interface values between subdomains
and the fourth-order compact schemes for the interior values.
The method has high accuracy and is convergent and stable.
Gao and Xie [16] devised a fourth-order alternating direction
implicit compact finite difference schemes for the solution
of two-dimensional Schrödinger equations. The method is
highly competitive as compared to other existing methods,
and it achieves the expected convergence rate.

This study develops a higher-order finite difference algo-
rithm, with noncompact stencils, that is capable of delivering
highly accurate solutions for a one-dimensional heat equa-
tion with Dirichlet boundary conditions. The study focuses
on modifying the unconditionally stable and convergent
second-order iterative alternating decomposition explicit
(IADE) method of Mitchell and Fairweather (IADEMF2).
The IADEMF2, which was originally proposed by Sahimi
et al. [17], employs the fractional splitting of the Mitchell and
Fairweather (MF) variant that has an accuracy of the order
𝑂((Δ𝑡)

2

+ (Δ𝑥)
4

). The scheme executes a two-stage process
involving the solution of sets of tridiagonal equations along
lines parallel to the first and second time steps, respectively.
It is found to be unconditionally stable, convergent, andmore
accurate than the classical AGE class of methods, namely, the
AGE method based on the Peaceman and Rachford variant
(AGE-PR), whose spatial accuracy is of second order, and

the AGEmethod based on the Douglas and Rachford variant
(AGE-DR), whose temporal accuracy is only of first order.
The detailed derivation of the IADEMF2 can be obtained
from [17].

In this paper, a fourth-order Crank-Nicolson (CN) dif-
ference approximation is applied to the spatial derivative in
the heat equation, and the MF variant is employed, leading
to the formation of the fourth-order IADEMF (IADEMF4)
numerical algorithm. The convergence of the IADEMF4
is analyzed and proven. Numerical experiments verify the
potential of the IADEMF4 in enhancing the accuracy of
the IADEMF2. The results of the proposed higher-order
scheme are also compared with the benchmarked fourth-
order classical iterative methods, such as the fourth-order
Gauss-Seidel (GS4), the fourth-order Jacobi (JAC4), and the
fourth-order successive over-relaxation (SOR4) methods.

This paper is organized as follows. Section 2 discusses the
implementation and stability of the fourth-order CN approx-
imation on the heat equation. In Section 3, the IADEMF4
algorithm is formulated. Section 4 analyses the convergence
of the IADEMF4. Section 5 provides the equations for the
benchmarked fourth-order classical iterative methods. The
computational complexity of the methods considered in this
paper is given in Section 6, while the pseudocode for the
IADEMF4 sequential algorithm is presented in Section 7.The
experiments conducted are given in Section 8. Sections 9
and 10 provide some discussion and conclusion based on the
obtained numerical results.

2. Fourth-Order Crank-Nicolson
Approximation to the Spatial Derivative
in the Heat Equation

Consider the following one-dimensional parabolic heat equa-
tion (1) that has been suitably assumed to be nondimensiona-
lised. It models the flow of heat in a homogeneous unchang-
ing medium of finite extent in the absence of heat source

𝜕𝑈

𝜕𝑡
=
𝜕
2

𝑈

𝜕𝑥2
(1)

subject to given initial and Dirichlet boundary conditions

𝑈 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑈 (0, 𝑡) = 𝑔 (𝑡) , 0 < 𝑡 ≤ 𝑇,

𝑈 (1, 𝑡) = ℎ (𝑡) , 0 < 𝑡 ≤ 𝑇.

(2)

For the problem in (1), the finite difference approach dis-
cretizes the time-space domain by placing a rectangular grid
over the domain, with grid spacing ofΔ𝑡 andΔ𝑥 in the 𝑡- and
𝑥-directions, respectively. The grid consists of the set of lines
parallel to the 𝑡-axis given by 𝑥

𝑖
= 𝑖Δ𝑥, 𝑖 = 0, 1, . . . , 𝑚,𝑚 + 1

and a set of lines parallel to the 𝑥-axis given by 𝑡
𝑘
= 𝑘Δ𝑡, 𝑘 =

0, 1, . . . , 𝑛, 𝑛+1. For simplicity, the grid spacing is taken to be
uniform, so thatΔ𝑥 = 1/(𝑚+1), andΔ𝑡 = 𝑇/(𝑛+1). At a grid-
point𝑃(𝑥

𝑖
, 𝑡
𝑘
) in the solution domain, the dependent variable

𝑈(𝑥, 𝑡) which represents the nondimensional temperature at
time 𝑡 and at position 𝑥 is approximated by 𝑢𝑘

𝑖
.
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At the grid-point 𝑃(𝑥
𝑖
, 𝑡
𝑘+1/2

), the IADEMF4 scheme
replaces the spatial derivative in the heat equation with a
higher-order, particularly the fourth-order Crank-Nicolson
(CN) difference approximation [18]. This is shown in the
expression given in (3), with the central difference operators
defined as 𝛿2

𝑥
𝑢
𝑘

𝑖
= 𝑢
𝑘

𝑖−1
− 2𝑢
𝑘

𝑖
+ 𝑢
𝑘

𝑖+1
and 𝛿

2

𝑥
𝑢
𝑘+1

𝑖
= 𝑢
𝑘+1

𝑖−1
−

2𝑢
𝑘+1

𝑖
+ 𝑢
𝑘+1

𝑖+1
. The approach gives the fourth-order scheme a

spatial truncation error of the order 𝑂(Δ𝑥)4. It enhances the
accuracy of its second-order counterpart, which has a larger
error of the order 𝑂(Δ𝑥)2

1

Δ𝑡
(𝑢
𝑘+1

𝑖
− 𝑢
𝑘

𝑖
) =

1

2(Δ𝑥)
2
(𝛿
2

𝑥
−

1

12
𝛿
4

𝑥
) (𝑢
𝑘+1

𝑖
+ 𝑢
𝑘

𝑖
) . (3)

To determine the stability of (3), the von Neumann sta-
bility analysis can be applied. Let 𝜆 = Δ𝑡/(Δ𝑥)

2, and since
𝛿
4

𝑥
𝑢
𝑘

𝑖
= 𝛿
2

𝑥
(𝛿
2

𝑥
𝑢
𝑘

𝑖
), the discretization of (3) becomes

𝑢
𝑘+1

𝑖
− 𝑢
𝑘

𝑖
=
𝜆

2
(−

1

12
𝑢
𝑘+1

𝑖−2
+
4

3
𝑢
𝑘+1

𝑖−1

−
5

2
𝑢
𝑘+1

𝑖
+
4

3
𝑢
𝑘+1

𝑖+1
−

1

12
𝑢
𝑘+1

𝑖+2

−
1

12
𝑢
𝑘

𝑖−2
+
4

3
𝑢
𝑘

𝑖−1
−
5

2
𝑢
𝑘

𝑖

+
4

3
𝑢
𝑘

𝑖+1
−

1

12
𝑢
𝑘

𝑖+2
) .

(4)

The discretized equation in (4) is assumed to have a solu-
tion in the form of a Fourier harmonic function; that is, 𝑢𝑘

𝑖
=

𝜌
𝑘

𝑒
𝑠𝛽𝑖Δ𝑥, where 𝜌 is referred to as the amplification factor, 𝛽 is

an arbitrary constant, and 𝑠 = √−1. The amplification factor
represents the time dependence of the solution. If the Fourier
function is substituted into (4) and then solve for 𝜌, the result
will be

𝜌 =

1 − (𝜆/6) ((cos𝛽 − 4)
2

− 9)

1 + (𝜆/6) ((cos𝛽 − 4)
2

− 9)

, with 𝛽 = 𝛽Δ𝑥. (5)

Since |𝜌| ≤ 1, then the fourth-order CN approximation is
unconditionally stable for any choice of 𝛽, Δ𝑡, and Δ𝑥.

3. The Formulation of the IADEMF4

The IADEMF4 is firstly developed based on the execution of
the unconditionally stable fourth-order CN approximation
(3) on the heat equation.

Equation (4) can also be expressed as in (6), using the
definitions of the constants given in (7)

𝑎𝑢
𝑘+1

𝑖−2
+ 𝑏𝑢
𝑘+1

𝑖−1
+ 𝑐𝑢
𝑘+1

𝑖
+ 𝑑𝑢
𝑘+1

𝑖+1
+ 𝑒𝑢
𝑘+1

𝑖+2

= −𝑎𝑢
𝑘

𝑖−2
− 𝑏𝑢
𝑘

𝑖−1
+ 𝑐𝑢
𝑘

𝑖
− 𝑑𝑢
𝑘

𝑖+1
− 𝑒𝑢
𝑘

𝑖+2
,

𝑖 = 2, 3, . . . , 𝑚 − 1,

(6)

𝑎 =
𝜆

24
, 𝑏 = −

2𝜆

3
, 𝑐 =

4 + 5𝜆

4
,

𝑑 = −
2𝜆

3
, 𝑒 =

𝜆

24
, 𝑐 =

4 − 5𝜆

4
.

(7)

The approximation in (6) can be displayed in a matrix form
such as 𝐴u = f (8), where 𝐴 is a sparse pentadiagonal
coefficient matrix and u = (𝑢

2
, 𝑢
3
, . . . , 𝑢

𝑚−2
, 𝑢
𝑚−1

)
𝑇 is the

columnvector containing the unknownvalues of𝑢 at the time
level 𝑘 + 1. The column vector f = (𝑓

2
, 𝑓
3
, . . . , 𝑓

𝑚−2
, 𝑓
𝑚−1

)
𝑇

consists of boundary values and known 𝑢 values at the
previous time level 𝑘. The definitions for every entry in f are
given in (9)

𝐴u = f

[
[
[
[
[
[
[
[
[

[

𝑐 𝑑 𝑒

𝑏 𝑐 𝑑 𝑒 O
𝑎 𝑏 𝑐 𝑑 𝑒

d d d d
𝑎 𝑏 𝑐 𝑑 𝑒

O 𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐

]
]
]
]
]
]
]
]
]

](𝑚−2)×(𝑚−2)

[
[
[
[
[
[

[

𝑢
2

𝑢
3

...
𝑢
𝑚−2

𝑢
𝑚−1

]
]
]
]
]
]

]𝑘+1

=

[
[
[
[
[
[

[

𝑓
2

𝑓
3

...
𝑓
𝑚−2

𝑓
𝑚−1

]
]
]
]
]
]

]

,

(8)

𝑓
2
= −𝑏 (𝑢

𝑘

1
+ 𝑢
𝑘+1

1
) + 𝑐𝑢

𝑘

2
− 𝑑𝑢
𝑘

3
− 𝑒𝑢
𝑘

4
,

𝑓
3
= −𝑎 (𝑢

𝑘

1
+ 𝑢
𝑘+1

1
) − 𝑏𝑢

𝑘

2
+ 𝑐𝑢
𝑘

3
− 𝑑𝑢
𝑘

4
− 𝑒𝑢
𝑘

5
,

𝑓
𝑖
= −𝑎𝑢

𝑘

𝑖−2
− 𝑏𝑢
𝑘

𝑖−1
+ 𝑐𝑢
𝑘

𝑖
− 𝑑𝑢
𝑘

𝑖+1
− 𝑒𝑢
𝑘

𝑖+2

for 𝑖 = 4, 5, . . . , 𝑚 − 3,

𝑓
𝑚−2

= −𝑎𝑢
𝑘

𝑚−4
− 𝑏𝑢
𝑘

𝑚−3
+ 𝑐𝑢
𝑘

𝑚−2

− 𝑑𝑢
𝑘

𝑚−1
− 𝑒 (𝑢

𝑘

𝑚
+ 𝑢
𝑘+1

𝑚
) ,

𝑓
𝑚−1

= −𝑎𝑢
𝑘

𝑚−3
− 𝑏𝑢
𝑘

𝑚−2
+ 𝑐𝑢
𝑘

𝑚−1
− 𝑑 (𝑢

𝑘

𝑚
+ 𝑢
𝑘+1

𝑚
) .

(9)

The evaluations of 𝑓
2
, 𝑓
3
, 𝑓
𝑚−2

, and 𝑓
𝑚−1

require the
values of 𝑢 at the boundaries 𝑖 = 1 and 𝑖 = 𝑚. However,
these values cannot be obtained numerically because their
computations involve nodes at 𝑖 = −1 and 𝑖 = 𝑚 + 2,
which are exterior to the considered solution domain. If
the exact solutions of 𝑢 are available at 𝑖 = 1 and 𝑖 =

𝑚, then it is appropriate to consider them as the required
boundary values. Otherwise, the boundary conditions have
to be formulated, bearing in mind that they should be of
comparable accuracy [1].

The IADEMF4 scheme secondly employs the higher-
order accuracy formula of MF [19]. The variant, whose accu-
racy is of the order 𝑂((Δ𝑡)2 + (Δ𝑥)

4

), is as given in (10) and
(11)

(𝑟𝐼 + 𝐺
1
) u(𝑝+1/2) = (𝑟𝐼 − 𝑔𝐺

2
) u(𝑝) + f , (10)

(𝑟𝐼 + 𝐺
2
) u(𝑝+1) = (𝑟𝐼 − 𝑔𝐺

1
) u(𝑝+1/2) + 𝑔f , (11)

where 𝑟, 𝑝, and 𝐼 represent an acceleration parameter, the
iteration index, and an identity matrix, respectively. 𝐺

1
and

𝐺
2
are two constituent matrices. The vectors u(𝑝+1) and

u(𝑝+1/2) represent the required solution at the iteration level
(𝑝 + 1) and at some intermediate level (𝑝 + 1/2), respectively.
The relation of 𝑔 and 𝑟 is given by 𝑔 = (6 + 𝑟)/6, 𝑟 > 0.
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Substitute the following expression obtained from (10)
into (11)

u(𝑝+1/2) = (𝑟𝐼 + 𝐺
1
)
−1

[(𝑟𝐼 − 𝑔𝐺
2
) u(𝑝) + f] , (12)

and then simplify to obtain

(𝑟𝐼 + 𝐺
2
) u(𝑝+1) = (𝑟𝐼 − 𝑔𝐺

1
) (𝑟𝐼 + 𝐺

1
)
−1

(𝑟𝐼 − 𝑔𝐺
2
) u(𝑝),

+ [ (𝑟𝐼 − 𝑔𝐺
1
) (𝑟𝐼 − 𝑔𝐺

1
)
−1

+ 𝑔] f .
(13)

As 𝑝 in (13) becomes sufficiently large, the temperature
solution reaches a steady state that is, as 𝑝 → ∞, then
u(𝑝+1) → u and u(𝑝) → u. Simplify the equation, and then
multiply by (𝑟𝐼+𝐺

1
). After some algebraicmanipulations, the

following expression is obtained:

[𝑟 (𝐺
1
+ 𝐺
2
) (1 + 𝑔) + (1 − 𝑔

2

)𝐺
1
𝐺
2
] u = 𝑟 (1 + 𝑔) f . (14)

Multiply (14) by 1/𝑟(1 + 𝑔), and use the definition of 𝑔 to
finally obtain the following form:

[ (𝐺
1
+ 𝐺
2
) −

1

6
𝐺
1
𝐺
2
] u = f . (15)

The comparison between the expression 𝐴u = f in (8)
and the form given in (15) suggests that the coefficient matrix
𝐴 for the IADEMF4 can be decomposed into

𝐴 = 𝐺
1
+ 𝐺
2
−
1

6
𝐺
1
𝐺
2
. (16)

The IADEMF4 requires the constituentmatrices𝐺
1
and𝐺

2
in

(16) to be in the form of lower and upper tridiagonalmatrices,
respectively, in order to retain the pentadiagonal structure of
𝐴. Thus,

𝐺
1
=

[
[
[
[
[
[
[

[

1

𝑙
1

1 𝑂

𝑚̂
1

𝑙
2

d
𝑚̂
2
d d
d 𝑙
𝑚−4

1

𝑂 𝑚̂
𝑚−4

𝑙
𝑚−3

1

]
]
]
]
]
]
]

](𝑚−2)×(𝑚−2)

,

𝐺
2
=

[
[
[
[
[
[
[

[

𝑒
1
𝑢̂
1

V̂
1

𝑒
2

𝑢̂
2

V̂
2

𝑂

d d d
𝑂 𝑒

𝑚−4
𝑢̂
𝑚−4

V̂
𝑚−4

𝑒
𝑚−3

𝑢̂
𝑚−3

𝑒
𝑚−2

]
]
]
]
]
]
]

](𝑚−2)×(𝑚−2)

.

(17)

By substituting 𝐺
1
and 𝐺

2
in (17) into the formula for the

decomposition of 𝐴, the entries of the resultant matrix are
compared with the entries of 𝐴 in (8), yielding the following
definitions:

𝑒
1
=
6 (𝑐 − 1)

5
, 𝑢̂

1
=
6𝑑

5
, 𝑙

1
=

6𝑏

6 − 𝑒
1

,

𝑒
2
=
6 (𝑐 − 1) + 𝑙

1
𝑢̂
1

5
, V̂

𝑖
=
6𝑒

5
for 𝑖 = 1, 2, . . . , 𝑚 − 4.

(18)

And for 𝑖 = 2, 3, . . . , 𝑚 − 3,

𝑢̂
𝑖
=
6𝑑 + 𝑙

𝑖−1
V̂
𝑖−1

5
, 𝑚̂

𝑖−1
=

6𝑎

6 − 𝑒
𝑖−1

,

𝑙
𝑖
=
6𝑏 + 𝑚̂

𝑖−1
𝑢̂
𝑖−1

6 − 𝑒
𝑖

, 𝑒
𝑖+1

=
6 (𝑐 − 1) + 𝑙

𝑖
𝑢̂
𝑖
+ 𝑚̂
𝑖−1

V̂
𝑖−1

5
.

(19)

Since𝐺
1
and𝐺

2
are three bandedmatrices, then (𝑟𝐼+𝐺

1
)

and (𝑟𝐼+𝐺
2
) can be inverted easily.The equations in (10) and

(11) are rearranged as in (20) and (21), respectively,

u(𝑝+1/2) = (𝑟𝐼 + 𝐺
1
)
−1

(𝑟𝐼 − 𝑔𝐺
2
) u(𝑝)

+ (𝑟𝐼 + 𝐺
1
)
−1f ,

(20)

u(𝑝+1) = (𝑟𝐼 + 𝐺
2
)
−1

(𝑟𝐼 − 𝑔𝐺
1
) u(𝑝+1/2)

+ 𝑔(𝑟𝐼 + 𝐺
2
)
−1f .

(21)

The above two equations are computed and simplified,
leading to the computational formulae at each of the half
iteration levels as given in (22) and (23).

(i) At the (𝑝 + 1/2) iteration level,

𝑢
(𝑝+1/2)

𝑖
=

1

𝑅
(𝐸
𝑖−1

𝑢
(𝑝)

𝑖
+𝑊
𝑖−1

𝑢
(𝑝)

𝑖+1
+ 𝑉
𝑖−1

𝑢
(𝑝)

𝑖+2

−𝑚̂
𝑖−3

𝑢
(𝑝+1/2)

𝑖−2
− 𝑙
𝑖−2

𝑢
(𝑝+1/2)

𝑖−1
+ 𝑓
𝑖
) ,

𝑖 = 2, 3, . . . , 𝑚 − 2,𝑚 − 1

(22)

(ii) At the (𝑝 + 1) iteration level,

𝑢
(𝑝+1)

𝑖
=

1

𝑍
𝑖−1

(𝑆
𝑖−3

𝑢
(𝑝+1/2)

𝑖−2
+ 𝑄
𝑖−2

𝑢
(𝑝+1/2)

𝑖−1
+ 𝑃𝑢
(𝑝+1/2)

𝑖

−𝑢̂
𝑖−1

𝑢
(𝑝+1)

𝑖+1
− V̂
𝑖−1

𝑢
(𝑝+1)

𝑖+2
+ 𝑔𝑓
𝑖
) ,

𝑖 = 𝑚 − 1, 𝑚 − 2, . . . , 3, 2

(23)

with

𝑚̂
−1

= 𝑚̂
0
= 𝑙
0
= 𝑉
𝑚−2

= 𝑉
𝑚−3

= 𝑊
𝑚−2

= 𝑢̂
𝑚−2

= V̂
𝑚−2

= V̂
𝑚−3

= 𝑄
0
= 𝑆
−1

= 𝑆
0
= 0,

𝑅 = 1 + 𝑟, 𝑃 = 𝑟 − 𝑔,

𝐸
𝑖
= 𝑟 − 𝑔𝑒

𝑖
, 𝑍
𝑖
= 𝑟 + 𝑒

𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 2,

𝑊
𝑖
= −𝑔𝑢̂

𝑖
, 𝑄
𝑖
= −𝑔𝑙

𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 3,

𝑉
𝑖
=−𝑔V̂
𝑖
, 𝑆
𝑖
= −𝑔𝑚̂

𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 4.

(24)

The IADEMF4 algorithm is regarded as a two-stage
process involving two iteration levels, (𝑝 + 1/2) and (𝑝 + 1).
It is completed explicitly by using the required equations at
the two levels in alternate sweeps along all the grid points
in the interval (0, 1) until convergence is reached. In (22),
the calculation to determine the unknown 𝑢

(𝑝+1/2)

𝑖
begins at

the left boundary and then moves to the right. In a similar
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manner, 𝑢(𝑝+1)
𝑖

in (23) is calculated by proceeding from the
right boundary towards the left (Figure 1).

The computational molecules are depicted in Figures 2
and 3.

At each level of iteration, the computational molecules
involve two known grid points at the new level and another
three known ones at the old level. Clearly, the method is
explicit.

4. Convergence Analysis of the IADEMF4

This section proves the convergence of the IADEMF4. Since
𝜆 > 1will not guarantee an accurate approximation for 𝜕𝑈/𝜕𝑡
[18], the values of 𝜆 that are considered appropriate for the
proof are 0 < 𝜆 ≤ 1.

From the definitions in ((18) and (19)), the following
results are obtained:

𝑒
1
=
6 (𝑐 − 1)

5
=
3𝜆

2
, implying that 0 < 𝑒

1
≤
3

2
,

𝑢̂
1
=
6𝑑

5
<0, 𝑙

1
=

6𝑏

6 − 𝑒
1

<0, V̂
𝑖
=
6𝑒

5
> 0

for 𝑖 = 1, 2, . . . , 𝑚 − 4,

𝑢̂
2
=
6𝑑 + 𝑙

1
V̂
1

5
= 𝑢̂
1
+
𝑙
1
V̂
1

5
< 𝑢̂
1
, since 𝑙

1
V̂
1
< 0,

𝑒
2
=
6 (𝑐 − 1) + 𝑙

1
𝑢̂
1

5
= 𝑒
1
+
𝑙
1
𝑢̂
1

5
> 𝑒
1
, since 𝑙

1
𝑢̂
1
> 0.

(25)

Simple computation shows that 𝑙
1
𝑢̂
1
/5 < 1. Clearly, 𝑒

2
< 6.

Lemma 1. 𝑒
𝑖
in ((18) and (19)) is such that, 0 < 𝑒

𝑖
< 6, for all

𝑖 = 1, 2, 3, . . . , 𝑚 − 2.

Proof. The results in (25) show that 6 > 𝑒
2
> 𝑒
1
> 0. Assume

it is true that 6 > 𝑒
𝑘
> 𝑒
𝑘−1

> 0 for all 𝑘 = 3, 4, 5, . . . , 𝑚 − 3.
Since the assumption implies that 6 > 𝑒

𝑘−1
> 𝑒
𝑘−2

> 0, then
𝑚̂
𝑘−1

= 6𝑎/(6 − 𝑒
𝑘−1

) > 𝑚̂
𝑘−2

= 6𝑎/(6 − 𝑒
𝑘−2

) > 0. Therefore,
𝑚̂
𝑘−1

V̂
𝑘−1

> 𝑚̂
𝑘−2

V̂
𝑘−2

.
It has also been shown that 𝑢̂

2
< 𝑢̂
1
< 0. Assume it is true

that 𝑢̂
𝑗
< 𝑢̂
𝑗−1

< 0 for all 𝑗 = 3, 4, . . . , 𝑚 − 4. The assumption
implies that 𝑢̂

𝑗−1
< 𝑢̂
𝑗−2

< 0. Thus, 𝑚̂
𝑗−1

𝑢̂
𝑗−1

< 𝑚̂
𝑗−2

𝑢̂
𝑗−2

< 0

𝑢̂
𝑗+1

=
6𝑑 + 𝑙

𝑗
V̂
𝑗

5
= 𝑢̂
1
+
𝑙
𝑗
V̂
𝑗

5
= 𝑢̂
1
+

(6𝑏 + 𝑚̂
𝑗−1

𝑢̂
𝑗−1

) V̂
𝑗

5 (6 − 𝑒
𝑗
)

< 𝑢̂
1
+

(6𝑏 + 𝑚̂
𝑗−2

𝑢̂
𝑗−2

) V̂
𝑗−1

5 (6 − 𝑒
𝑗−1

)

= 𝑢̂
1
+
𝑙
𝑗−1

V̂
𝑗−1

5
= 𝑢̂
𝑗
< 0.

(26)

Since it is true that, for 𝑗 + 1, 𝑢̂
𝑗+1

< 𝑢̂
𝑗
< 0, then, by

induction, the assumption 𝑢̂
𝑗
< 𝑢̂
𝑗−1

< 0 is true for all 𝑗. An

0

u
(p+1/2)

i

u
(p+1)

i

i i− 1 i + 1 m + 1

Figure 1: The two-stage IADEMF4 algorithm.The directions of the
sweeps at the (𝑝 + 1/2) and (𝑝 + 1) iteration levels.

i i− 1i − 2 i + 1 i + 2

(p + 1/2)

(p)

Figure 2: Computational molecule of the IADEMF4 at the (𝑝+1/2)
iteration level.

i i− 1i − 2 i + 1 i + 2

(p + 1/2)

(p + 1)

Figure 3: Computational molecule of the IADEMF4 at the (𝑝 + 1)

iteration level.

equivalent to the preceding statement would be 𝑢̂
𝑘
< 𝑢̂
𝑘−1

< 0

for all 𝑘 = 3, 4, 5, . . . , 𝑚 − 3. It follows that

𝑙
𝑘
𝑢̂
𝑘
=
(6𝑏 + 𝑚̂

𝑘−1
𝑢̂
𝑘−1

) 𝑢̂
𝑘

6 − 𝑒
𝑘

>
(6𝑏 + 𝑚̂

𝑘−2
𝑢̂
𝑘−2

) 𝑢̂
𝑘−1

6 − 𝑒
𝑘−1

= 𝑙
𝑘−1

𝑢̂
𝑘−1

,

𝑒
𝑘+1

=
6 (𝑐 − 1) + 𝑙

𝑘
𝑢̂
𝑘
+ 𝑚̂
𝑘−1

V̂
𝑘−1

5
= 𝑒
1
+
𝑙
𝑘
𝑢̂
𝑘
+ 𝑚̂
𝑘−1

V̂
𝑘−1

5

> 𝑒
1
+
𝑙
𝑘−1

𝑢̂
𝑘−1

+ 𝑚̂
𝑘−2

V̂
𝑘−2

5
= 𝑒
𝑘
> 0.

(27)

Since it is true that, for 𝑘+1, 𝑒
𝑘+1

> 𝑒
𝑘
> 0, then, by induction,

𝑒
𝑘
> 𝑒
𝑘−1

> 0 is also true for all 𝑘.
Suppose there is a 𝑘 such that 𝑒

𝑘
> 6. Then,

𝑒
𝑘+1

= 𝑒
1
+
𝑙
𝑘
𝑢̂
𝑘
+ 𝑚̂
𝑘−1

V̂
𝑘−1

5

= 𝑒
1
+

6𝑏 + 𝑢̂
𝑘

5 (6 − 𝑒
𝑘
)
+
𝑚̂
𝑘−1

5
(
𝑢̂
𝑘−1

𝑢̂
𝑘

6 − 𝑒
𝑘

+ V̂
𝑘−1

) < 𝑒
1
.

(28)

This is a contradiction since 𝑒
𝑘+1

> 𝑒
1
. This verifies that 6 >

𝑒
𝑘
> 𝑒
𝑘−1

> 0, 𝑘 = 3, 4, 5, . . . , 𝑚 − 3. Let 𝑖 = 2, 3, 4, . . . , 𝑚 − 2,
and then 6 > 𝑒

𝑖
> 𝑒
𝑖−1

> 0. Therefore, 0 < 𝑒
𝑖
< 6, 𝑖 =

1, 2, 3, . . . , 𝑚 − 2. Lemma 1 is proved.
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Lemma 2. If 𝑟 > 0 and 𝑔 = (6+ 𝑟)/6, thenmax |(𝑟 −𝑔𝑒
𝑖
)/(𝑟 +

𝑒
𝑖
)| < 1, i = 1, 2, 3, . . . , 𝑚 − 2.

Proof. Let max |(𝑟 − 𝑔𝑒
𝑖
)/(𝑟 + 𝑒

𝑖
)| = |(𝑟 − 𝑔𝑒

𝑗
)/(𝑟 + 𝑒

𝑗
)| for

some 𝑗.
Assume |(𝑟 − 𝑔𝑒

𝑗
)/(𝑟 + 𝑒

𝑗
)| ≥ 1. Since 𝑟 > 0 and 𝑒

𝑗
> 0,

then 𝑟 + 𝑒
𝑗
> 0.

If (𝑟 − 𝑔𝑒
𝑗
)/(𝑟 + 𝑒

𝑗
) ≥ 1, then −((6 + 𝑟)/6)𝑒

𝑗
≥ 𝑒
𝑗
, which

implies that 𝑟 ≤ −12. This contradicts the fact that 𝑟 > 0.
If (𝑟 − 𝑔𝑒

𝑗
)/(𝑟 + 𝑒

𝑗
) ≤ −1, then 2𝑟 − ((6 + 𝑟)/6)𝑒

𝑗
≤ −𝑒
𝑗
,

which implies that 𝑒
𝑗
≥ 12. This contradicts Lemma 1.

So, the assumption that |(𝑟 − 𝑔𝑒
𝑗
)/(𝑟 + 𝑒

𝑗
)| ≥ 1 is false.

Hence, max |(𝑟 − 𝑔𝑒
𝑖
)/(𝑟 + 𝑒

𝑖
)| = |(𝑟 − 𝑔𝑒

𝑗
)/(𝑟 + 𝑒

𝑗
)| < 1.

Proposition 3. ‖(𝑟𝐼 − 𝑔𝐺
1
)(𝑟𝐼 + 𝐺

1
)
−1

‖
2
< 1.

Proof. Let 𝐹 = (𝑟𝐼 − 𝑔𝐺
1
)(𝑟𝐼 + 𝐺

1
)
−1; that is,

𝐹 =

[
[
[
[
[
[
[
[
[
[

[

𝑟 − 𝑔

𝑑

d
𝑟 − 𝑔

𝑑
𝑂

d d d
...

... d d

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑟 − 𝑔

𝑑

]
]
]
]
]
]
]
]
]
]

]

. (29)

𝐹 is a lower triangular matrix, with all the diagonal entries
(whence the eigenvalues of 𝐹) equal to (𝑟 − 𝑔)/𝑑, where 𝑑 =

𝑟 + 1. Denote all the eigenvalues of 𝐹 by 𝜆
𝐹
. If 𝜌[𝐹] is defined

as the spectral radius of 𝐹, then

𝜌 [𝐹] = max 󵄨󵄨󵄨󵄨𝜆𝐹
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜆𝐹
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟 − 𝑔

𝑟 + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐹‖

2
. (30)

But, by definition of 2-norm,

‖𝐹‖
2
= max
‖x‖2 ̸= 0

‖𝐹x‖
2

‖x‖
2

= max
‖y‖
2
=1

󵄩󵄩󵄩󵄩𝐹y
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩y
󵄩󵄩󵄩󵄩2

= max
‖y‖
2
=1

󵄩󵄩󵄩󵄩𝐹y
󵄩󵄩󵄩󵄩2

≤ max
‖w‖2=1

‖𝐹w‖
2
= max
‖w‖2=1

󵄩󵄩󵄩󵄩𝜆𝐹w
󵄩󵄩󵄩󵄩2.

(31)

Since all the eigenvalues of 𝐹 are equal, then

‖𝐹‖
2
≤
󵄨󵄨󵄨󵄨𝜆𝐹

󵄨󵄨󵄨󵄨 max
‖w‖2=1

‖w‖
2
=
󵄨󵄨󵄨󵄨𝜆𝐹

󵄨󵄨󵄨󵄨 = 𝜌 [𝐹] . (32)

Thus, from (30) and (32), ‖𝐹‖
2
= |𝜆
𝐹
| = |(𝑟 − 𝑔)/(𝑟 + 1)|.

By Lemma 2 with 𝑒
𝑗
replaced by 1, |(𝑟 − 𝑔)/(𝑟 + 1)| < 1

is obtained, leading to the result of Proposition 3, which is
‖𝐹‖
2
= ‖(𝑟𝐼 − 𝑔𝐺

1
)(𝑟𝐼 + 𝐺

1
)
−1

‖
2
< 1.

Proposition 4. ‖(𝑟𝐼 − 𝑔𝐺
2
)(𝑟𝐼 + 𝐺

2
)
−1

‖
2
< 1.

Proof. Let 𝐾 = (𝑟𝐼 − 𝑔𝐺
2
)(𝑟𝐼 + 𝐺

2
)
−1; that is,

𝐾 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑟 − 𝑔𝑒
1

𝑧
1

d ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑟 − 𝑔𝑒
2

𝑧
2

d ⋅ ⋅ ⋅
...

d
...

...

𝑂 d d
...

𝑟 − 𝑔𝑒
𝑚

𝑧
𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (33)

𝐾 is an upper triangular matrix, with all the diagonal entries
equal to (𝑟 − 𝑔𝑒

𝑖
)/𝑧
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 2, where 𝑧

𝑖
= 𝑟 + 𝑒

𝑖
.

Since all the eigenvalues of𝐾 are distinct, then𝐾 is similar to
a diagonal matrix𝐷.

By the Schur triangularization theorem [20], there is an
orthogonal matrix 𝑂 such that 𝑂𝑇𝐾𝑂 = 𝐷. The diagonal
entries of𝐷 are the eigenvalues of𝐾

‖𝐾‖
2
=
󵄩󵄩󵄩󵄩󵄩
𝑂
𝑇

𝐾𝑂
󵄩󵄩󵄩󵄩󵄩2

= ‖𝐷‖
2

= √maximum eigenvalue of 𝐷𝑇𝐷

= √maximum eigenvalue of 𝐷2

= √𝜌 (𝐷2) = √𝜌 (𝐾2) = 𝜌 (𝐾) .

(34)

By Lemma 2,

‖𝐾‖
2
= 𝜌 (𝐾) = max

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟 − 𝑔𝑒
𝑖

𝑟 + 𝑒
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟 − 𝑔𝑒
𝑗

𝑟 + 𝑒
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (35)

for some 𝑗. Hence, this proves Proposition 4.

From (20) and (21),

u(𝑝+1) = (𝑟𝐼 + 𝐺
2
)
−1

(𝑟𝐼 − 𝑔𝐺
1
)

× [(𝑟𝐼 + 𝐺
1
)
−1

(𝑟𝐼 − 𝑔𝐺
2
) u(𝑝) + (𝑟𝐼 + 𝐺

1
)
−1f]

+ 𝑔 (𝑟𝐼 + 𝐺
2
)
−1f .

(36)

Let

𝑀(𝑟) = (𝑟𝐼 + 𝐺
2
)
−1

(𝑟𝐼 − 𝑔𝐺
1
) (𝑟𝐼 + 𝐺

1
)
−1

(𝑟𝐼 − 𝑔𝐺
2
) ,

(37)

And let

𝑞 (𝑟) = [(𝑟𝐼 + 𝐺
2
)
−1

(𝑟𝐼 − 𝑔𝐺
1
) (𝑟𝐼 + 𝐺

1
)
−1

+𝑔(𝑟𝐼 + 𝐺
2
)
−1

] f .
(38)

Then, u(𝑝+1) = 𝑀(𝑟)u(𝑝) + 𝑞(𝑟).

Theorem 5. The IADEMF4 is convergent if 𝜌[𝑀(𝑟)] < 1, for
𝑟 > 0.
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Proof. Define 𝑀̃(𝑟) = (𝑟𝐼 + 𝐺
2
)𝑀(𝑟)(𝑟𝐼 + 𝐺

2
)
−1; then

𝑀̃ (𝑟) = (𝑟𝐼 − 𝑔𝐺
1
) (𝑟𝐼 + 𝐺

1
)
−1

(𝑟𝐼 − 𝑔𝐺
2
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2
)
−1

.

(39)

Thus, by similarity,𝑀(𝑟) and 𝑀̃(𝑟) have the same set of eigen-
values. Therefore,

𝜌 [𝑀 (𝑟)]

= 𝜌 [𝑀̃ (𝑟)] ≤
󵄩󵄩󵄩󵄩󵄩
𝑀̃ (𝑟)

󵄩󵄩󵄩󵄩󵄩 2

=
󵄩󵄩󵄩󵄩󵄩
(𝑟𝐼 − 𝑔𝐺

1
) (𝑟𝐼 + 𝐺

1
)
−1

(𝑟𝐼 − 𝑔𝐺
2
) (𝑟𝐼 + 𝐺

2
)
−1󵄩󵄩󵄩󵄩󵄩 2

≤
󵄩󵄩󵄩󵄩󵄩
(𝑟𝐼 − 𝑔𝐺

1
) (𝑟𝐼 + 𝐺

1
)
−1󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
(𝑟𝐼 − 𝑔𝐺

2
) (𝑟𝐼 + 𝐺

2
)
−1󵄩󵄩󵄩󵄩󵄩 2

< 1.

(40)

The last inequality is due to Propositions 3 and 4.The proven
Theorem 5 assures the convergence of the IADEMF4.

5. The Fourth-Order Classical
Iterative Methods

The system of linear equations in (8) may also be solved
by using the classical iterative methods of the fourth order.
They include the JAC4, the GS4, and the SOR4 methods.
These iterative methods are capable of exploiting the sparse
structure of the pentadiagonal matrix.

The JAC4 algorithm can be represented by

𝑢
(𝑝+1)

𝑖
=

(𝑓
𝑖
−𝑎𝑢
(𝑝)

𝑖−2
− 𝑏𝑢
(𝑝)

𝑖−1
− 𝑑𝑢
(𝑝)

𝑖+1
− 𝑒𝑢
(𝑝)

𝑖+2
)

𝑐
,

𝑖 = 2, 3, . . . , 𝑚 − 1.

(41)

The approximation of 𝑢(𝑝+1)
𝑖

at the (𝑝 + 1)th iteration level is
computed using the relevant values in the 𝑝th iteration.

The GS4 method uses the most recent values of 𝑢(𝑝+1)
𝑖−2

and 𝑢
(𝑝+1)

𝑖−1
to update the approximation value of 𝑢(𝑝+1)

𝑖
. The

algorithm for the GS4 is as expressed in (42)

𝑢
(𝑝+1)

𝑖
=

(𝑓
𝑖
−𝑎𝑢
(𝑝+1)

𝑖−2
− 𝑏𝑢
(𝑝+1)

𝑖−1
− 𝑑𝑢
(𝑝)

𝑖+1
− 𝑒𝑢
(𝑝)

𝑖+2
)

𝑐
,

𝑖 = 2, 3, . . . , 𝑚 − 1.

(42)

The SOR4 iterative method accelerates the convergence
rate of the GS4. If 𝜔 is a relaxation parameter, then for any
𝜔 ̸= 0, (42) can be rewritten as

𝑢
(𝑝+1)

𝑖
= (1 − 𝜔) 𝑢

(𝑝)

𝑖

+

𝜔 (𝑓
𝑖
− 𝑎𝑢
(𝑝+1)

𝑖−2
− 𝑏𝑢
(𝑝+1)

𝑖−1
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(𝑝)

𝑖+1
− 𝑒𝑢
(𝑝)

𝑖+2
)

𝑐
,

𝑖 = 2, 3, . . . , 𝑚 − 1.

(43)

i i− 1i − 2 i + 1 i + 2

(p + 1)

(p)

Figure 4: Computational molecule of the JAC4.

i i− 1i − 2 i + 1 i + 2

(p + 1)

(p)

Figure 5: Computational molecule of the GS4/SOR4.

Table 1: Sequential arithmetic operations per iteration (𝑚: problem
size).

Method Number of
additions

Number of
multiplications

Total operation
count

IADEMF4 10(𝑚 − 2) 13(𝑚 − 2) 23(𝑚 − 2)

IADEMF2 6𝑚 9𝑚 15𝑚

JAC4/GS4 4(𝑚 − 2) 5(𝑚 − 2) 9(𝑚 − 2)

SOR4 5(𝑚 − 2) 7(𝑚 − 2) 12(𝑚 − 2)

The SOR4 algorithm reduces to the GS4 if 𝜔 = 1. Except
for very special cases, it is difficult to obtain the analytic
expression for 𝜔. According to Young [21], the precise deter-
mination of the optimal 𝜔 in the SOR is only known for a
small class of matrices. The value of 𝜔 generally lies in the
range of 1 < 𝜔 < 2.

The computational molecules for the JAC4 and the GS4
are as illustrated in Figures 4 and 5, respectively. The SOR4
has the same form as the GS4.

6. Computational Complexity

The cost of implementing an algorithm can be assessed
by examining its computational complexity. The number of
arithmetic operations such as additions (including subtrac-
tions) andmultiplications (including divisions) that is needed
to perform by the algorithm can be straightforwardly count-
ed. Table 1 gives the number of sequential arithmetic opera-
tions per iteration that is required to evaluate the algorithms.

For the higher-order schemes, trade-offbetween accuracy
and speed usually happens. The computational complexity
has an effect on the efficiency of a particular scheme. Thus,
this factor will be taken into account when discussing the
results of the numerical experiments conducted in this study.

7. The Pseudocode of the IADEMF4
Sequential Algorithm

Algorithm 1 illustrates the pseudocode of the IADEMF4
sequential algorithm. This algorithm can also be generalized
and applied to other methods discussed in this paper.



8 Journal of Applied Mathematics

begin
determine the parameters𝑚, 𝑟, Δ𝑡, Δ𝑥, 𝜆, 𝜀, 𝑇

determine initial conditions 𝑢(𝑝)
𝑖

determine exact solutions 𝑈
𝑖
at time level 𝑇

while (time level < 𝑇)
determine boundary conditions
for 𝑖 = 2 to 𝑖 = 𝑚 − 1

compute 𝑓
𝑖
(refer to (9))

end-for
set iteration = 0
while (convergence conditions are not satisfied)

for 𝑖 = 2 to 𝑖 = 𝑚 − 1

compute 𝑢(𝑝+1/2)
𝑖

(refer to (22))
end-for
for 𝑖 = 2 to 𝑖 = 𝑚 − 1

compute 𝑢(𝑝+1)
𝑖

(refer to (23))
end-for
test for convergence:
compute 𝑒

𝑖
←

󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑝+1)

𝑖
− 𝑢
(𝑝)

𝑖

󵄨󵄨󵄨󵄨󵄨
if (max󵄨󵄨󵄨󵄨𝑒𝑖

󵄨󵄨󵄨󵄨 < 𝜀)
then 𝑢

(𝑝)

𝑖
← 𝑢
(𝑝+1)

𝑖

add 1 to iteration (if necessary)
end-while

end-while
for 𝑖 = 2 to 𝑖 = 𝑚 − 1

determine average absolute error, root mean
square error and maximum error

end-for
end

Algorithm 1: The IADEMF4 sequential algorithm.

8. Numerical Experiments

Two experiments were conducted to test the sequential
numerical performance of the proposed IADEMF4 method
against those of the benchmarked classical iterative methods,
namely, the JAC4, theGS4, and the SOR4. Comparison is also
made with the corresponding IADE method of the second
order.

Experiment 1. This problem was taken from Saulev [22]

𝜕𝑈

𝜕𝑡
=
𝜕
2

𝑈

𝜕𝑥
2
, 0 ≤ 𝑥 ≤ 1 (44)

subject to the initial condition

𝑈 (𝑥, 0) = 4𝑥 (1 − 𝑥) , 0 ≤ 𝑥 ≤ 1 (45)

and the boundary conditions

𝑈 (0, 𝑡) = 𝑈 (1, 𝑡) = 0, 𝑡 ≥ 0. (46)

The exact solution to the given problem is given by

𝑈 (𝑥, 𝑡) =
32

𝜋3

∞

∑

𝑘=1,(2)

1

𝑘3
𝑒
−𝜋
2
𝑘
2
𝑡 sin (𝑘𝜋𝑥) . (47)

Experiment 2. This problem was taken from Johnson and
Reiss [23],

𝜕𝑈

𝜕𝑡
=
𝜕
2

𝑈

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 1 (48)

subject to the initial condition

𝑈 (𝑥, 0) = sin (𝜋𝑥) (1 + 6 cos (𝜋𝑥)) , 0 ≤ 𝑥 ≤ 1 (49)

and the boundary conditions

𝑈 (0, 𝑡) = 𝑈 (1, 𝑡) = 0, 𝑡 ≥ 0. (50)

The exact solution to the given problem is given by

𝑈 (𝑥, 𝑡) = sin (𝜋𝑥) 𝑒−𝜋
2
𝑡

+ 3 sin (2𝜋𝑥) 𝑒−4𝜋
2
𝑡

. (51)



Journal of Applied Mathematics 9

9. Results and Discussion

In each experiment, the exact solutions at 𝑖 = 1 and 𝑖 = 𝑚

were taken as boundary values for the IADEMF4 and the
other fourth-order classical iterative methods. The conver-
gence criterion used in the testing of each method was taken
as ‖𝑢(𝑝+1) − 𝑢

(𝑝)

‖
∞

≤ 𝜀, where 𝜀 is the convergence tolerance.
The selections of the optimum 𝑟 or 𝜔 were determined by
experiments. As for the IADEMF2, the CN scheme with 𝜃 =

1/2 was employed.
Figures 6, 7, 8, and 9 visualize the behavior of the one-

dimensional parabolic heat solutions for both experiments.
By using𝑚 = 10 and a tolerance requirement of 𝜀 = 10

−4, two
different mesh sizes, 𝜆 = 0.5 and 𝜆 = 1.0, were considered
in each experiment. The exact solutions are compared with
the IADEMF4 and the IADEMF2 numerical solutions. The
optimum value of 𝑟 chosen for each method, as well as their
corresponding outcome of the number of iterations, 𝑛, is
stated in the legend of each figure. Every figure reveals that
the IADEMF4 is more accurate than the IADEMF2 and
the former converges with fewer numbers of iterations in
comparison to the latter. The numerical solutions of the
IADEMF4 seem to be in very good agreement with the
exact solutions. For example, in Figure 7, at 𝑥 = 0.5, the
difference between the exact solution and the numerical
solution using the IADEMF2 and using the IADEMF4 is
about 3.6% and 0%, respectively. These results imply that
the accuracy and convergence rate of the second-order IADE
method are enhanced by the implementation of the fourth-
order CN approximation that leads to the formation of the
corresponding fourth-order IADE scheme.

Figure 10 displays the graph of log (RMSE) versus log(Δ𝑥)
for decreasing values of Δ𝑥 implemented on Experiment 2.
By considering 𝜀 = 10

−4 and fixing Δ𝑡 = 0.0001, the value of
Δ𝑥 was initially taken as Δ𝑥 = 0.125. It was then successively
halved into Δ𝑥/2, Δ𝑥/4, and Δ𝑥/8.

The figure shows that amongst the tested methods, the
root mean square error (RMSE) of the IADEMF4 and the
IADEMF2 decreases linearly as the values of Δ𝑥 decreases.
The slope of the IADEMF4 is approximately equal to 4,
which corresponds to its fourth-order spatial accuracy. The
IADEMF2 with a second-order spatial accuracy has a slope
that is approximately equal to 2. It is clear that the IADEMF4
is always more accurate than the IADEMF2, for the different
considered mesh sizes. The graphs of the SOR4 (𝜔 = 1.05),
the GS4, and the JAC4 show that their accuracies of fourth
order tend to lack as Δ𝑥 decreases, largely due to the effect of
increasing round-off errors as the value of𝑚 increases.

Tables 2, 3, 4, 5, 6, 7, 8, and 9 provide numerical results in
terms of the average absolute error (AAE), root mean square
error (RMSE), maximum error (ME), number of iterations
(𝑛), and execution time (ET) measured in seconds (s). The
results are obtained from both experiments for two different
values of 𝑚 and mesh size, 𝜆. It is generally observed that
when 𝑚 = 700, 𝜆 = 0.5, and 𝜀 = 10

−6, the IADEMF4
has the least average absolute error, root mean square error,
and maximum error in comparison with the other methods
under consideration (Tables 2–5). When the size of 𝑚 was
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Figure 6: Numerical and exact solutions for Experiment 1. 𝜆 = 0.5,
Δ𝑥 = 0.1, Δ𝑡 = 0.005, 𝑡 = 0.25, and 𝜀 = 10

−4.
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Figure 7: Numerical and exact solutions for Experiment 1. 𝜆 = 1.0,
Δ𝑥 = 0.1, Δ𝑡 = 0.01, 𝑡 = 0.5, and 𝜀 = 10

−4.

ten times bigger (𝑚 = 7000) and a more stringent tolerance
criterion was set (𝜀 = 10

−10

), the accuracy of the IADEMF4
clearly outperforms the other methods for a mesh size of
𝜆 = 0.5 (Tables 6 and 8). However, the difference in the errors
amongst the tested methods is not so obvious for the case of
𝜆 = 1.0 (Tables 7 and 9).The achievement of the fourth-order
IADEmethod in Experiments 1 and 2 can be clearly seen from
the results in Tables 2 and 8, respectively, where it has caused a
huge 94% reduction of RMSE from its corresponding second-
order IADE method.

The IADEMF4 has the advantage of featuring higher
accuracy due to the execution of the fourth-order CNapprox-
imation coupled with the fourth-order accurate MF variant.
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Figure 8: Numerical and exact solutions for Experiment 2. 𝜆 = 0.5,
Δ𝑥 = 0.1, Δ𝑡 = 0.005, 𝑡 = 0.25, and 𝜀 = 10

−4.
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Figure 9: Numerical and exact solutions for Experiment 2. 𝜆 = 1.0,
Δ𝑥 = 0.1, Δ𝑡 = 0.01, 𝑡 = 0.5, and 𝜀 = 10

−4.

The IADEMF2 is only derived from the second-order CN
approximation, but its combination with its corresponding
fourth-order MF variant managed to produce errors which
are better than theGS4, JAC4, and the SOR4. Even though the
classical iterative methods are also derived from the fourth-
order accurate CN type approximation, they are lacking
in accuracy due to the round-off errors that have been
accumulated from the time the execution starts till it ends.

With regards to the rate of convergence, the results
from each table demonstrate that the number of iterations
produced by the IADEMF2 and the fourth-order classical
iterative methods is greater than or at least equal to that of
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Figure 10: Log(RMSE) versus Log(Δ𝑥) Experiment 2. Δ𝑡 = 0.0001,
𝑡 = 0.002, and 𝜀 = 10

−4.

Table 2: Experiment 1. 𝑚 = 700, 𝜆 = 0.5, Δ𝑥 = 1.43 × 10
−3, Δ𝑡 =

1.02 × 10
−6, 𝑡 = 5.09 × 10

−5, and 𝜀 = 10
−6.

Method AAE RMSE ME 𝑛 ET (s)
IADEMF4
(𝑟 = 0.7) 2.67𝑒 − 9 3.30𝑒 − 9 2.12𝑒 − 8 100 4.40𝑒 − 2

IADEMF2
(𝑟 = 0.8) 1.88𝑒 − 8 4.95𝑒 − 8 3.23𝑒 − 7 100 6.35𝑒 − 3

SOR4
(𝜔 = 1.2) 5.40𝑒 − 7 5.44𝑒 − 7 5.52𝑒 − 7 108 4.60𝑒 − 2

GS4 5.40𝑒 − 6 5.43𝑒 − 6 3.32𝑒 − 6 150 4.72𝑒 − 2

JAC4 2.28𝑒 − 5 2.29𝑒 − 5 2.32𝑒 − 5 150 4.73𝑒 − 2

Table 3: Experiment 1. 𝑚 = 700, 𝜆 = 1.0, Δ𝑥 = 1.43 × 10
−3, Δ𝑡 =

2.04 × 10
−6, 𝑡 = 5.09 × 10

−5, and 𝜀 = 10
−6.

Method AAE RMSE ME 𝑛 ET (s)
IADEMF4
(𝑟 = 1.0) 2.97𝑒 − 7 3.01𝑒 − 7 3.01𝑒 − 7 50 2.01𝑒 − 2

IADEMF2
(𝑟 = 0.9) 5.57𝑒 − 7 5.59𝑒 − 7 8.48𝑒 − 7 50 3.17𝑒 − 3

SOR4
(𝜔 = 1.2) 3.29𝑒 − 6 3.31𝑒 − 6 3.35𝑒 − 6 76 2.25𝑒 − 2

GS4 8.95𝑒 − 6 9.00𝑒 − 6 9.00𝑒 − 6 100 2.38𝑒 − 2

JAC4 2.14𝑒 − 5 2.15𝑒 − 5 2.17𝑒 − 5 125 2.50𝑒 − 2

the IADEMF4. The convergence rate of the latter surpasses
the others in the case of 𝑚 = 7000 and 𝜀 = 10

−10 (Tables
6–8). Even though the operational count of the IADEMF4
is relatively quite large (Table 1), due to its higher level of
accuracy, its increasing number of correct digits at each
iteration causes it to converge at a faster rate. The IADEMF2
has the advantage of having less mathematical operations;
thus, it is competitive in terms of convergence rate but at
the expense of accuracy. The application of the fourth-order
CN approximation on the heat equation proves that the
three classical iterative methods also converge, with JAC4
appearing to be the slowest and the least accurate amongst all.
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Table 4: Experiment 2. 𝑚 = 700, 𝜆 = 0.5, Δ𝑥 = 1.43 × 10
−3, Δ𝑡 =

1.02 × 10
−6, 𝑡 = 5.09 × 10

−5, and 𝜀 = 10
−6.

Method AAE RMSE ME n ET (s)
IADEMF4
(𝑟 = 0.7) 2.07𝑒 − 8 2.31𝑒 − 8 3.45𝑒 − 8 100 9.03𝑒 − 3

IADEMF2
(𝑟 = 0.8) 1.06𝑒 − 7 1.75𝑒 − 7 1.75𝑒 − 7 100 6.47𝑒 − 3

SOR4
(𝜔 = 1.1) 1.54𝑒 − 6 1.71𝑒 − 6 2.55𝑒 − 6 200 1.10𝑒 − 2

GS4 2.94𝑒 − 6 3.27𝑒 − 6 4.87𝑒 − 6 250 1.18𝑒 − 2

JAC4 1.24𝑒 − 5 1.38𝑒 − 5 2.06𝑒 − 5 300 1.27𝑒 − 2

Table 5: Experiment 2. 𝑚 = 700, 𝜆 = 1.0, Δ𝑥 = 1.43 × 10
−3, Δ𝑡 =

2.04 × 10
−6, 𝑡 = 5.09 × 10

−5, and 𝜀 = 10
−6.

Method AAE RMSE ME 𝑛 ET (s)
IADEMF4
(𝑟 = 0.9) 1.38𝑒 − 6 1.54𝑒 − 6 2.29𝑒 − 6 75 6.50𝑒 − 3

IADEMF2
(𝑟 = 0.5) 1.87𝑒 − 6 2.07𝑒 − 6 3.09𝑒 − 6 75 4.72𝑒 − 3

SOR4
(𝜔 = 1.2) 3.12𝑒 − 6 3.47𝑒 − 6 5.17𝑒 − 6 125 9.06𝑒 − 3

GS4 6.67𝑒 − 6 7.42𝑒 − 6 1.11𝑒 − 5 175 9.32𝑒 − 3

JAC4 1.26𝑒 − 5 1.41𝑒 − 5 2.10𝑒 − 5 250 1.05𝑒 − 2

Table 6: Experiment 1. 𝑚 = 7000, 𝜆 = 0.5, Δ𝑥 = 1.43 × 10
−4, Δ𝑡 =

1.02 × 10
−8, 𝑡 = 5.10 × 10

−7, and 𝜀 = 10
−10.

Method AAE RMSE ME n ET (s)
IADEMF4
(𝑟 = 0.8) 3.67𝑒 − 10 4.33𝑒 − 10 3.66𝑒 − 9 173 1.46𝑒 − 1

IADEMF2
(𝑟 = 0.5) 3.75𝑒 − 10 4.35𝑒 − 10 3.76𝑒 − 9 200 1.24𝑒 − 1

SOR4
(𝜔 = 1.12) 4.55𝑒 − 10 5.07𝑒 − 10 3.67𝑒 − 9 257 1.47𝑒 − 1

GS4 1.10𝑒 − 9 1.11𝑒 − 9 3.76𝑒 − 9 300 1.60𝑒 − 1

JAC4 2.30𝑒 − 9 2.31𝑒 − 9 3.78𝑒 − 9 400 1.63𝑒 − 1

Table 7: Experiment 1. 𝑚 = 7000, 𝜆 = 1.0, Δ𝑥 = 1.43 × 10
−4, Δ𝑡 =

2.04 × 10
−8, 𝑡 = 5.1 × 10

−7, and 𝜀 = 10
−10.

Method AAE RMSE ME 𝑛 ET (s)
IADEMF4
(𝑟 = 1.0) 1.63𝑒 − 7 1.63𝑒 − 7 1.63𝑒 − 7 112 9.60𝑒 − 2

IADEMF2
(𝑟 = 1.2) 1.63𝑒 − 7 1.63𝑒 − 7 1.63𝑒 − 7 120 7.36𝑒 − 2

SOR4
(𝜔 = 1.15) 1.63𝑒 − 7 1.63𝑒 − 7 1.64𝑒 − 7 171 9.99𝑒 − 2

GS4 1.64𝑒 − 7 1.64𝑒 − 7 1.64𝑒 − 7 216 1.07𝑒 − 1

JAC4 1.65𝑒 − 7 1.65𝑒 − 7 1.65𝑒 − 7 312 1.11𝑒 − 1

It is found that the convergence rate of the fourth-order
and second-order methods improves with the application of
larger mesh size, that is, from 𝜆 = 0.5 to 𝜆 = 1.0. The
coarser meshes cause a reduction in the computational oper-
ations, thus giving better rate of convergence. However, a

Table 8: Experiment 2. 𝑚 = 7000, 𝜆 = 0.5, Δ𝑥 = 1.43 × 10
−4, Δ𝑡 =

1.02 × 10
−8, 𝑡 = 5.10 × 10

−7, and 𝜀 = 10
−10.

Method AAE RMSE ME 𝑛 ET (s)
IADEMF4
(𝑟 = 0.7) 5.67𝑒 − 13 3.21𝑒 − 12 1.30𝑒 − 10 150 1.31𝑒 − 1

IADEMF2
(𝑟 = 0.7) 1.99𝑒 − 11 4.60𝑒 − 11 1.82𝑒 − 9 200 1.27𝑒 − 1

SOR4
(𝜔 = 1.15) 2.45𝑒 − 10 2.73𝑒 − 10 3.99𝑒 − 10 260 1.51𝑒 − 1

GS4 3.98𝑒 − 10 4.43𝑒 − 10 6.61𝑒 − 10 400 1.71𝑒 − 1

JAC4 1.05𝑒 − 9 1.17𝑒 − 9 1.74𝑒 − 9 550 1.76𝑒 − 1

Table 9: Experiment 2. 𝑚 = 7000, 𝜆 = 1.0, Δ𝑥 = 1.43 × 10
−4, Δ𝑡 =

2.04 × 10
−8, 𝑡 = 5.1 × 10

−7, and 𝜀 = 10
−10.

Method AAE RMSE ME 𝑛 ET (s)
IADEMF4
(𝑟 = 1.0) 1.54𝑒 − 6 1.71𝑒 − 6 2.55𝑒 − 6 96 9.12𝑒 − 2

IADEMF2
(𝑟 = 1.0) 1.54𝑒 − 6 1.71𝑒 − 6 2.55𝑒 − 6 96 6.07𝑒 − 2

SOR4
(𝜔 = 1.2) 1.54𝑒 − 6 1.71𝑒 − 6 2.55𝑒 − 6 192 9.97𝑒 − 2

GS4 1.54𝑒 − 6 1.71𝑒 − 6 2.55𝑒 − 6 288 1.28𝑒 − 1

JAC4 1.54𝑒 − 6 1.72𝑒 − 6 2.56𝑒 − 6 408 1.46𝑒 − 1

more accurate solution is obtained by using finer mesh. For
example, Table 6 shows that, for 𝜆 = 0.5, the IADEMF4 has
RMSE = 4.33𝑒 − 10 and 𝑛 = 173, whereas Table 7 shows that,
for 𝜆 = 1.0, its RMSE = 1.63𝑒 − 7 and 𝑛 = 112. In general,
amongst all the testedmethods, the IADEMF4 still maintains
its greater accuracy characteristic, even with coarser meshes.

In terms of execution time, the results from every table
display shorter execution time for the IADEMF2 in compari-
son to the IADEMF4. This is expected, since the IADEMF2
has lower computational complexity (Table 1). Despite the
achievement in accuracy, the IADEMF4 has to performmore
computational work than the IADEMF2 since the former has
to utilize values of 𝑢 at two grid points on either side of the
point (𝑖Δ𝑥, 𝑘Δ𝑡) along the 𝑘th time level. Thus, if accuracy
is desired, then the preferred sequential numerical algorithm
would be the IADEMF4. On the other hand, if execution time
matters, then the choice would be the IADEMF2.

Amongst the fourth-order methods, the IADEMF4 exe-
cutes in the least amount of time. Even though its computa-
tional complexity is relatively large, it operates with the least
number of iterations, thus enabling it to be the most efficient.

10. Conclusion

This paper proposes the development of the novel fourth-
order IADEMF4 finite difference scheme. The higher-order
scheme is developed by representing the spatial derivative in
the heat equation with the fourth-order finite difference CN
approximation. This leads to the formation of pentadiagonal
matrices in the systems of linear equations with larger com-
putational stencils. The algorithm also employs the higher
accuracy of the Mitchell and Fairweather variant. Despite



12 Journal of Applied Mathematics

the fourth-order IADE scheme’s higher computational com-
plexity, this technique is proved to be valuable because
it enhances the accuracy of its second-order counterpart,
namely, the IADEMF2. In addition, the higher accuracy of
IADEMF4 is verified as a convergent and unconditionally
stable scheme and is superior in terms of rate of convergence.
It has also been proven to execute more efficiently in compar-
ison to the other benchmarked fourth-order classical iterative
methods, such as the GS4, the SOR4, and the JAC4. The in-
creasing number of correct digits at each iteration serves as an
advantage for the IADEMF4, thus yielding faster rate of con-
vergence with higher level of accuracy.

In conclusion, the proposed IADEMF4 scheme affords
users many advantages with respect to higher accuracy, sta-
bility, and rate of convergence, and it serves as an alternative,
efficient technique for the solution of a one-dimensional heat
equation with Dirichlet boundary conditions.

The proposed fourth-order scheme can be modified and
adapted to more general multidimensional linear and non-
linear parabolic, elliptic, and hyperbolic partial differential
equations, using different types of boundary conditions.
Besides, it can also be considered for applications in problems
that require higher-order accuracy with high resolution, such
as problems in nanocomputing that require the solution of
very large sparse systems of equation.

The explicit and high accuracy feature of the IADEMF4
can be exploited in two- and three-dimensional heat prob-
lems, by applying the scheme as pentadiagonal solvers for
the system of linear equations arising in the sweeps of a
higher-order alternating direction implicit (ADI) scheme.
The lower-order ADI scheme was initially proposed by
Peaceman and Rachford [24]. The higher space dimensions
are expected not to cause unsatisfactory performance for the
ADI-IADEMF4, as long as the proposed scheme is stable,
convergent, and efficient as the process of its implementa-
tion continues to advance from one-time step to another.
Pathirana et al. [25] implemented the ADI in developing a
two-dimensional model for incorporating flood damage in
urban drainage planning.The proposed model is found to be
stable, numerically accurate, and computationally efficient.
Mirzavand et al. [26] proposed the ADI-FDTD method
for the physical modeling of high-frequency semiconductor
devices. The approach is able to reduce significantly the full-
wave simulation time.

It is possible to parallelize the IADEMF4 algorithm since
the calculation of the new iteration only depends on the
known values from the last iteration (Figures 2 and 3). Future
work is to exploit the explicit computational properties and
efficiency of the IADEMF4 for parallelization and execution
on distributed parallel computing systems. The idea is to
speed up the execution time without compromising its accu-
racy, especially on problems involving very large linear sys-
tems of equations.
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