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We are concerned with an investment and consumption problem with stochastic interest rate and stochastic volatility, in which
interest rate dynamic is described by the Cox-Ingersoll-Ross (CIR) model and the volatility of the stock is driven by Heston’s
stochastic volatility model. We apply stochastic optimal control theory to obtain the Hamilton-Jacobi-Bellman (HJB) equation for
the value function and choose power utility and logarithm utility for our analysis. By using separate variable approach and variable
change technique, we obtain the closed-formexpressions of the optimal investment and consumption strategy. Anumerical example
is given to illustrate our results and to analyze the effect ofmarket parameters on the optimal investment and consumption strategies.

1. Introduction

The first treatment of the investment and consumption prob-
lem in a continuous-time framework originated in the semi-
nal papers of Merton [1, 2]. Merton used dynamic program-
ming principle to construct an explicit optimal portfolio for
power and logarithm utility. Later on, this problem attracted
more and more attention and inspired literally hundreds
of extensions and applications. For example, Fleming and
Zariphopoulou [3] and Vila and Zariphopoulou [4] studied
optimal consumption and portfolio decisions with borrow-
ing constraints to maximize the total expected discounted
utility coming from consumption; Duffie et al. [5] investi-
gated the optimal investment and consumption strategy in
incomplete markets; Dumas and Luciano [6], Shreve and
Soner [7], Liu and Loewenstein [8], and Dai et al. [9] focused
on the investment and consumption problem with trans-
action costs under different market assumptions. But these
models were investigated under the assumption that risk-free
interest rate and the volatility of the stockwere supposed to be
constants.

However, two aspects are worthy to be further explored
based on the above-mentioned literature. On the one hand,

risk-free interest rate in most of the above-mentioned lit-
erature is assumed to be constant, which is contrary to the
fact. Interest rate is not always fixed in our real life. There
is much literature documenting the term structure of in-
terest rate, such as Ho and Lee [10], Vasicek [11], and Cox
et al. [12]. Therefore, many investors find that the optimal
portfolios with stochastic interest rates are more practical.
In recent years, many scholars have studied the portfolio
selection problemunder stochastic interest ratemodels. Korn
and Kraft [13] and Grasselli [14] considered the optimal
portfolios under Ho-Lee model and Vasicek model and CIR
interest rate dynamics, respectively, and obtained the explicit
solutions under the expected utility criterion. Deelstra et al.
[15], Josa-Fombellida and Rincón-Zapatero [16], and Gao
[17] investigated the investment strategies for pension funds
with stochastic interest rate in different situations. Deelstra
et al. [18] analyzed the optimal investment problem in a
CIR framework and derived the closed-form solution of the
optimal investment and consumption strategy by assuming
the completeness of financial markets. Fleming and Pang [19]
applied stochastic optimal control theory to an investment
and consumption problem with stochastic interest rate and
wished to maximize the total expected discounted utility of
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consumption but have no ways to obtain the explicit expres-
sions and only prove the existence of solution by using subsu-
persolution method. Munk and Sørensen [20] characterized
the solution to the investment and consumption problem
with stochastic changes in the opportunity set and suggested
that the hedge portfolio is more sensitive to the form of the
term structure than to the dynamics of interest rate.

On the other hand, there is more andmore attention paid
to the portfolio selection problem with stochastic volatility
(SV). Stochastic volatility has been recognized as an impor-
tant factor of stock dynamics and can demonstrate many
well-known empirical features, such as volatility smile and
volatility clustering. Heston’s SV model [21] is the simplest
but important one. Kraft [22] studied the optimal portfolio
with stochastic volatility and obtained the closed-form solu-
tion. Fleming and Hernández-Hernández [23] and Chacko
and Viceira [24] analyzed an investment and consumption
problem with SV in different market models, respectively.
Li et al. [25] considered SV model in the insurance market
and obtained the closed-form solution to the optimal in-
vestment and insurance strategies in a mean-variance frame-
work. Sasha and Zariphopoulou [26], Castañeda-leyva and
Hernández-Hernández [27], and Liu [28] applied different
methods to investigate an investment and consumptionmod-
el in different stochastic environments, where interest rate
and return rate and volatility are supposed to be stochastic.
Michelbrink and Le [29] proposed a martingale approach
to tackle a consumption model with jump diffusions and
obtained the optimal investment and consumption strategies.
Li and Wu [30] assumed that risk-free interest rate is driven
by the CIR model and the volatility of the stock is described
by Heston’s SV model and obtained the optimal investment
strategy to maximize the power utility of terminal wealth.
Noh and Kim [31] investigated an investment and con-
sumption model with stochastic interest rate and stochastic
volatility, where interest rate model and the volatility model
are correlated with the stock price. Noh and Kim analyzed
the existence of the optimal portfolio, but did not obtain
the closed-form solution. This paper considers one optimal
consumption problem based on Li and Wu’s model and uses
the same approach as Liu [28] to solve corresponding non-
linear partial different equation. In addition, we obtain the
explicit expressions of the optimal investment and consump-
tion strategy in the power and logarithm utility cases.

As far as we know, there is little work in the literature
on the investment and consumption problem with stochastic
interest rate and stochastic volatility, and only Noh and Kim
[31] studied this problem so far and choose the total expected
discounted utility coming from consumption as the objective
function. Therefore, in this paper, we assume that risk-free
interest rate is driven by the CIR model and the volatility
of stock is described by Heston’s stochastic volatility model.
Our objective is to maximize the expected discounted utility
of consumption and terminal wealth. Firstly, we use dynamic
programming principle to obtain the HJB equation for the
value function and choose power utility and logarithm util-
ity as our analysis. Secondly, by applying separate variable ap-
proach and variable change technique, we obtain the closed-
form solutions to the optimal investment and consumption

strategy. A numerical example is given to illustrate the results
obtained and analyze the impact of market parameters on
the optimal investment and consumption strategy.This paper
has three main contributions: (i) the optimal investment and
consumption strategies under stochastic interest rate model
and stochastic volatility model are studied, which is the more
important extension of the work of Li and Wu [30]; (ii)
the expected discounted utility of consumption and terminal
wealth is chosen as the objective function, which is different
from Noh and Kim [31], and our objective function is more
practical; (iii) we use the same approach as Liu [28] to solve
the nonlinear second-order partial different equation such
that the closed-form solutions are obtained, which is themost
important innovation of this paper.

The remainder of this paper is organized as follows. The
financial market and wealth process and optimization crite-
rion are presented in Section 2. In Section 3, we use dynamic
programming principle to derive the HJB equation for the
value function and obtain the closed-form solutions to the
optimal investment and consumption strategy in the power
and logarithm cases. In Section 4, we propose numerical
illustration and sensitivity analysis. Section 5 concludes the
paper.

2. Problem Formulation

Assume that there are no transaction costs or taxes in
the financial market and all assets can be traded continu-
ously. (𝑊

1
(𝑡),𝑊

2
(𝑡)) is a two-dimensional well-defined and

independent adapted Brownian motion in a given filtered
complete probability space (Ω,F, {F

𝑡
}
𝑡∈[0,𝑇]

, 𝑃), where 𝑇 is
a positive constant representing fixed and finite investment
horizon; {F

𝑡
}
𝑡∈[0,𝑇]

is an information filtration generated by
(𝑊
1
(𝑡),𝑊

2
(𝑡)).

2.1. The Financial Market. Assume that the financial market
is composed of two assets: one risk-free asset (e.g., a bank
account) and one risky asset (e.g., a stock). The price process
of the risk-free asset at time 𝑡 is denoted by 𝐵(𝑡), which
satisfies

𝑑𝐵 (𝑡) = 𝑟 (𝑡) 𝐵 (𝑡) 𝑑𝑡, (1)

where 𝑟(𝑡) is the stochastic process and is supposed to be
driven by the CIR model

𝑑𝑟 (𝑡) = (𝜃 − 𝑐𝑟 (𝑡)) 𝑑𝑡 + 𝜎
0
√𝑟 (𝑡)𝑑𝑊

1
(𝑡) ,

𝑟 (0) = 𝑟
0
> 0,

(2)

where 𝜃, 𝑐, and 𝜎
0
are positive constants satisfying 2𝜃 > 𝜎2

0
. It

is well known that 𝑟(𝑡) > 0 for all 𝑡 ≥ 0 (see Cox et al. [12]).
The price process 𝑆(𝑡) of the risky asset is as follows:

𝑑𝑆 (𝑡) = 𝑆 (𝑡) [(𝑟 (𝑡) + 𝑘𝜂 (𝑡)) 𝑑𝑡 + 𝜎
1
√𝜂 (𝑡)𝑑𝑊

2
(𝑡)] ,

𝑆 (0) = 𝑠
0
> 0,

(3)
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where 𝑘 and 𝜎
1
are positive constants, and 𝜂(𝑡) is driven by

another CIR model

𝑑𝜂 (𝑡) = (𝑏 − 𝑎𝜂 (𝑡)) 𝑑𝑡 + 𝜎
2
√𝜂 (𝑡)𝑑𝑊

2
(𝑡) ,

𝜂 (0) = 𝜂
0
> 0,

(4)

where 𝑏, 𝑎, and 𝜎
2
are positive constants satisfying 2𝑏 > 𝜎2

2
.

We have also 𝜂(𝑡) > 0 for all 𝑡 ≥ 0.

2.2. The Wealth Process. During the time horizon [0, 𝑇], we
suppose that the initial wealth of an investor is denoted by
𝑥
0
> 0, and the wealth process at time 𝑡 is denoted by 𝑋(𝑡).

A trading strategy is a pair of stochastic processes denoted by
(𝜋(𝑡), 𝐶(𝑡)), where 𝜋(𝑡) is the amount invested in the stock,
and𝐶(𝑡) is the consumption rate.The amount invested in the
risk-free asset is𝑋(𝑡)−𝜋(𝑡).Therefore, wealth process evolves
according to the following stochastic differential equation:

𝑑𝑋 (𝑡) = (𝑋 (𝑡) − 𝜋 (𝑡))
𝑑𝐵 (𝑡)

𝐵 (𝑡)
+ 𝜋
𝑡

𝑑𝑆 (𝑡)

𝑆 (𝑡)
− 𝐶 (𝑡) 𝑑𝑡,

𝑋 (0) = 𝑥
0
> 0.

(5)

Considering (1) and (3), we get
𝑑𝑋 (𝑡) = (𝑟 (𝑡)𝑋 (𝑡) + 𝜋 (𝑡) 𝑘𝜂 (𝑡) − 𝐶 (𝑡)) 𝑑𝑡

+ 𝜋 (𝑡) 𝜎
1
√𝜂 (𝑡)𝑑𝑊

2
(𝑡) , 𝑋 (0) = 𝑥

0
> 0.

(6)

2.3. The Optimization Criterion

Definition 1 (admissible strategy). An investment and con-
sumption strategy (𝜋(𝑡), 𝐶(𝑡)) is said to be admissible if the
following conditions are satisfied.

(i) (𝜋(𝑡), 𝐶(𝑡)) is progressively measurable.

(ii) 𝐸[∫𝑇
0
(𝜋(𝑡)𝜎

1
√𝜂(𝑡))

2
𝑑𝑡] < ∞.

(iii) For all initial conditions (𝑡
0
, 𝑟
0
, 𝜂
0
, 𝑥
0
) ∈ [0, 𝑇] ×

(0,∞)
3, the wealth process 𝑋(𝑡) with 𝑋(0) = 𝑥

0
> 0

has a pathwise unique solution.

Assume that the set of all admissible strategies is denoted
by Γ = {(𝜋(𝑡), 𝐶(𝑡)) : 𝑡 ∈ [0, 𝑇]}. The investor wishes to
maximize the expected discounted utility of the intermediate
consumption and terminalwealth.Mathematically, the objec-
tive function is expressed as

Maximize
(𝜋(𝑡),𝐶(𝑡))∈Γ

𝐸[𝛼∫
𝑇

0

𝑒
−𝛽𝑡
𝑈
1
(𝐶 (𝑡)) 𝑑𝑡

+ (1 − 𝛼) 𝑒
−𝛽𝑇
𝑈
2
(𝑋 (𝑇)) ] ,

(7)

where 𝑈
1
(⋅) and 𝑈

2
(⋅) are all utility functions, which sat-

isfy the following conditions: the first-order derivative is
greater than zero and the second-order derivative is less
than zero. The parameter 𝛽 is the subjective discount rate
and 𝛼 determines the relative importance of the intermediate
consumption and the bequest. When 𝛼 = 0, the expected
utility only depends on the terminal wealth and the problem
(7) is reduced to an asset allocation problem.

3. The Optimal Portfolios

In this section, we apply dynamic programming principle
to obtain the HJB equation of the value function and study
the optimal investment and consumption strategy under
power utility and logarithmutility function. By using variable
change technique, we obtain the closed-form solutions of the
optimal portfolios.

The value function is defined as
𝐻(𝑡, 𝑟, 𝜂, 𝑥)

= Sup
(𝜋
𝑡
,𝐶
𝑡
)∈Γ

𝐸[𝛼∫
𝑇

0

𝑒
−𝛽𝑡
𝑈
1
(𝐶 (𝑡)) 𝑑𝑡

+ (1 − 𝛼) 𝑒
−𝛽𝑇
𝑈
2
(𝑋 (𝑇)) |

𝑋 (𝑡) = 𝑥, 𝑟 (𝑡) = 𝑟, 𝜂 (𝑡) = 𝜂]

(8)

with boundary condition𝐻(𝑇, 𝑟, 𝜂, 𝑥) = (1 − 𝛼)𝑒−𝛽𝑇𝑈
2
(𝑥).

Dynamic programming principle leads to the following
HJB equation for𝐻(𝑡, 𝑟, 𝜂, 𝑥):

Sup
(𝜋
𝑡
,𝐶
𝑡
)∈Γ

{𝐻
𝑡
+ (𝑟𝑥 + 𝜋 (𝑡) 𝑘𝜂 − 𝐶 (𝑡))𝐻

𝑥

+
1

2
𝜋
2
(𝑡) 𝜎
2

1
𝜂𝐻
𝑥𝑥
+ (𝜃 − 𝑐𝑟)𝐻

𝑟

+
1

2
𝜎
2

0
𝑟𝐻
𝑟𝑟
+ (𝑏 − 𝑎𝜂)𝐻

𝜂
+
1

2
𝜎
2

2
𝜂𝐻
𝜂𝜂

+𝜋 (𝑡) 𝜎
1
𝜎
2
𝐻
𝑥𝜂
+ 𝛼𝑒
−𝛽𝑡
𝑈
1
(𝐶 (𝑡))} = 0,

(9)

where𝐻
𝑡
,𝐻
𝑥
,𝐻
𝑥𝑥
,𝐻
𝑟
,𝐻
𝑟𝑟
,𝐻
𝜂
,𝐻
𝜂𝜂
, and𝐻

𝑥𝜂
denote partial

derivatives of first-order and second-order with respect to the
time 𝑡, wealth process 𝑋(𝑡), interest rate 𝑟(𝑡), and volatility
𝜂(𝑡). We also use similar notation for higher derivatives and
the derivatives of other functions.

The first-order maximizing conditions for the optimal
investment and consumption strategy are

𝜋
∗
(𝑡) = −

𝑘

𝜎2
1

⋅
𝐻
𝑥

𝐻
𝑥𝑥

−
𝜎
2

𝜎
1

⋅
𝐻
𝑥𝜂

𝐻
𝑥𝑥

,

𝑈
󸀠

1
(𝐶
∗
(𝑡)) =

𝐻
𝑥

𝛼𝑒−𝛽𝑡
.

(10)

Putting (10) in (9), we obtain the HJB equation as follows:

𝐻
𝑡
+ 𝑟𝑥𝐻

𝑥
+ (𝜃 − 𝑐𝑟)𝐻

𝑟

+
1

2
𝜎
2

0
𝑟𝐻
𝑟𝑟
+ (𝑏 − 𝑎𝜂)𝐻

𝜂

+
1

2
𝜎
2

2
𝜂𝐻
𝜂𝜂
−
𝑘2𝜂

2𝜎2
1

⋅
𝐻2
𝑥

𝐻
𝑥𝑥

−
𝑘𝜂𝜎
2

𝜎
1

⋅
𝐻
𝑥
𝐻
𝑥𝜂

𝐻
𝑥𝑥

−
1

2
𝜎
2

2
𝜂
𝐻2
𝑥𝜂

𝐻
𝑥𝑥

− 𝐶
∗
(𝑡)𝐻
𝑥
+ 𝛼𝑒
−𝛽𝑡
𝑈
1
(𝐶
∗
(𝑡)) = 0.

(11)
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In the following subsection, we choose power utility and
logarithm utility function as our analysis and apply variable
change technique to solve (11).

3.1. Power Utility. Power utility is given by

𝑈
1
(𝑥) = 𝑈

2
(𝑥) =

𝑥
𝛿

𝛿
, 𝛿 < 1, 𝛿 ̸= 0, (12)

where 𝛿 is the risk aversion factor.
We conjecture a solution to (11) with the following form:

𝐻(𝑡, 𝑟, 𝜂, 𝑥) = 𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
𝑓 (𝑡, 𝑟, 𝜂) , 𝑓 (𝑇, 𝑟, 𝜂) = 1 − 𝛼.

(13)

Then the partial derivatives are as follows:

𝐻
𝑡
= −𝛽𝑒

−𝛽𝑡 𝑥
𝛿

𝛿
𝑓 + 𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
𝑓
𝑡
,

𝐻
𝑥𝑥
= (𝛿 − 1) 𝑒

−𝛽𝑡
𝑥
𝛿−2
𝑓,

𝐻
𝑥
= 𝑒
−𝛽𝑡
𝑥
𝛿−1
𝑓,

𝐻
𝑟
= 𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
𝑓
𝑟
,

𝐻
𝑟𝑟
= 𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
𝑓
𝑟𝑟
,

𝐻
𝜂
= 𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
𝑓
𝜂
,

𝐻
𝜂𝜂
= 𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
𝑓
𝜂𝜂
,

𝐻
𝑥𝜂
= 𝑒
−𝛽𝑡
𝑥
𝛿−1
𝑓
𝜂
.

(14)

Therefore, the optimal consumption strategy is given by

𝐶
∗
(𝑡) = 𝛼

−1/(𝛿−1)
𝑓
1/(𝛿−1)

𝑥. (15)

Introducing (14) and (15) into (11), we obtain

𝑒
−𝛽𝑡 𝑥
𝛿

𝛿
[𝑓
𝑡
+ (𝑟𝛿 − 𝛽 −

𝛿𝑘2𝜂

2 (𝛿 − 1) 𝜎2
1

)𝑓

+ (𝜃 − 𝑐𝑟) 𝑓
𝑟
+
1

2
𝜎
2

0
𝑟𝑓
𝑟𝑟

+ (𝑏 − 𝑎𝜂 −
𝛿𝑘𝜂𝜎
2

(𝛿 − 1) 𝜎
1

)𝑓
𝜂

+
1

2
𝜎
2

2
𝜂𝑓
𝜂𝜂
−
𝛿𝜎2
2
𝜂

2 (𝛿 − 1)

𝑓2
𝜂

𝑓

+ (1 − 𝛿) 𝛼
1/(𝛿−1)

𝑓
𝛿/(𝛿−1)

] = 0.

(16)

Eliminating the dependence on 𝑥, we get

𝑓
𝑡
+ (𝑟𝛿 − 𝛽 −

𝛿𝑘2𝜂

2 (𝛿 − 1) 𝜎2
1

)𝑓 + (𝜃 − 𝑐𝑟) 𝑓
𝑟

+ (𝑏 − 𝑎𝜂 −
𝛿𝑘𝜂𝜎
2

(𝛿 − 1) 𝜎
1

)𝑓
𝜂
+
1

2
𝜎
2

0
𝑟𝑓
𝑟𝑟

+
1

2
𝜎
2

2
𝜂𝑓
𝜂𝜂
−
𝛿𝜎
2

2
𝜂

2 (𝛿 − 1)

𝑓2
𝜂

𝑓

+ (1 − 𝛿) 𝛼
1/(𝛿−1)

𝑓
𝛿/(𝛿−1)

= 0.

(17)

Suppose that the solution structure of (17) is of the form

𝑓 (𝑡, 𝑟, 𝜂) = 𝑔(𝑡, 𝑟, 𝜂)
1−𝛿

, 𝑔 (𝑇, 𝑟, 𝜂) = (1 − 𝛼)
1/(𝛿−1)

.

(18)

Then, we have

𝑓
𝑡
= (1 − 𝛿) 𝑔

−𝛿
𝑔
𝑡
,

𝑓
𝑟
= (1 − 𝛿) 𝑔

−𝛿
𝑔
𝑟
,

𝑓
𝜂
= (1 − 𝛿) 𝑔

−𝛿
𝑔
𝜂
,

𝑓
𝑟𝑟
= (1 − 𝛿) (−𝛿) 𝑔

−𝛿−1
𝑔
2

𝑟
+ (1 − 𝛿) 𝑔

−𝛿
𝑔
𝑟𝑟
,

𝑓
𝜂𝜂
= (1 − 𝛿) (−𝛿) 𝑔

−𝛿−1
𝑔
2

𝜂
+ (1 − 𝛿) 𝑔

−𝛿
𝑔
𝜂𝜂
.

(19)

Substituting (19) into (17), after some simplification, we
have

(1 − 𝛿) 𝑔
−𝛿
[𝑔
𝑡
+ (
𝛿𝑟 − 𝛽

1 − 𝛿
+

𝛿

(𝛿 − 1)
2
⋅
𝑘2𝜂

2𝜎2
1

)𝑔

+ (𝜃 − 𝑐𝑟) 𝑔
𝑟
+
1

2
𝜎
2

0
𝑟𝑔
𝑟𝑟
−
1

2
𝜎
2

0
𝑟𝛿
𝑔2
𝑟

𝑔

+ (𝑏 − 𝑎𝜂 −
𝛿

𝛿 − 1
⋅
𝑘𝜂𝜎
2

𝜎
1

)𝑔
𝜂
+
1

2
𝜎
2

2
𝜂𝑔
𝜂𝜂

+𝛼
1/(1−𝛿)

] = 0.

(20)

This leads to another equation for 𝑔 as

𝑔
𝑡
+ (
𝛿𝑟 − 𝛽

1 − 𝛿
+

𝛿

(𝛿 − 1)
2
⋅
𝑘2𝜂

2𝜎2
1

)𝑔

+ (𝜃 − 𝑐𝑟) 𝑔
𝑟
+
1

2
𝜎
2

0
𝑟𝑔
𝑟𝑟
−
1

2
𝜎
2

0
𝑟𝛿
𝑔2
𝑟

𝑔

+ (𝑏 − 𝑎𝜂 −
𝛿

𝛿 − 1
⋅
𝑘𝜂𝜎
2

𝜎
1

)𝑔
𝜂

+
1

2
𝜎
2

2
𝜂𝑔
𝜂𝜂
+ 𝛼
1/(1−𝛿)

= 0.

(21)
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Equation (21) is a nonlinear second-order partial differ-
ential equation which is difficult to solve directly, for there
exists the term 𝛼1/(1−𝛿). Inspired by the paper of Liu [28], we
assume that 𝑔 is of the following form:

𝑔 (𝑡, 𝑟, 𝜂) = 𝛼
1/(1−𝛿)

∫
𝑇

𝑡

𝑔 (𝑢, 𝑟, 𝜂) 𝑑𝑢

+ (1 − 𝛼)
1/(1−𝛿)

𝑔 (𝑡, 𝑟, 𝜂) .

(22)

One can prove that (21) is reduced to

𝑔
𝑡
+ (
𝛿𝑟 − 𝛽

1 − 𝛿
+

𝛿

(𝛿 − 1)
2
⋅
𝑘2𝜂

2𝜎2
1

)𝑔

+ (𝜃 − 𝑐𝑟) 𝑔
𝑟
+
1

2
𝜎
2

0
𝑟𝑔
𝑟𝑟
−
1

2
𝜎
2

0
𝑟𝛿
𝑔2
𝑟

𝑔

+ (𝑏 − 𝑎𝜂 −
𝛿

𝛿 − 1
⋅
𝑘𝜂𝜎
2

𝜎
1

)𝑔
𝜂

+
1

2
𝜎
2

2
𝜂𝑔
𝜂𝜂
= 0, 𝑔 (𝑇, 𝑟, 𝜂) = 1.

(23)

In fact, if we define a differential operator ∇ on any func-
tion 𝑔 by

∇𝑔 = (
𝛿𝑟 − 𝛽

1 − 𝛿
+

𝛿

(𝛿 − 1)
2
⋅
𝑘2𝜂

2𝜎2
1

)𝑔 + (𝜃 − 𝑐𝑟) 𝑔
𝑟

+
1

2
𝜎
2

0
𝑟𝑔
𝑟𝑟
−
1

2
𝜎
2

0
𝑟𝛿
𝑔2
𝑟

𝑔

+ (𝑏 − 𝑎𝜂 −
𝛿

𝛿 − 1
⋅
𝑘𝜂𝜎
2

𝜎
1

)𝑔
𝜂

+
1

2
𝜎
2

2
𝜂𝑔
𝜂𝜂
.

(24)

Then (23) can be rewritten as
𝜕𝑔

𝜕𝑡
+ ∇𝑔 = 0, 𝑔 (𝑇, 𝑟, 𝜂) = 1. (25)

Furthermore, we find
𝜕𝑔

𝜕𝑡
+ ∇𝑔 =

𝜕

𝜕𝑡
(𝛼
1/(1−𝛿)

∫
𝑇

𝑡

𝑔 (𝑢, 𝑟, 𝜂) 𝑑𝑢)

+ ∇(𝛼
1/(1−𝛿)

∫
𝑇

𝑡

𝑔 (𝑢, 𝑟, 𝜂) 𝑑𝑢)

+ (1 − 𝛼)
1/(1−𝛿)

(
𝜕

𝜕𝑡
𝑔 (𝑡, 𝑟, 𝜂) + ∇𝑔 (𝑡, 𝑟, 𝜂)) .

(26)
Taking (25) into consideration, we have

𝜕𝑔

𝜕𝑡
+ ∇𝑔 = − 𝛼

1/(1−𝛿)
𝑔 (𝑡, 𝑟, 𝜂)

+ 𝛼
1/(1−𝛿)

∫
𝑇

𝑡

∇𝑔 (𝑢, 𝑟, 𝜂) 𝑑𝑢

= − 𝛼
1/(1−𝛿)

𝑔 (𝑡, 𝑟, 𝜂)

− 𝛼
1/(1−𝛿)

∫
𝑇

𝑡

𝜕𝑔 (𝑢, 𝑟, 𝜂)

𝜕𝑢
𝑑𝑢

= − 𝛼
1/(1−𝛿)

𝑔 (𝑡, 𝑟, 𝜂)

− 𝛼
1/(1−𝛿)

[𝑔 (𝑇, 𝑟, 𝜂) − 𝑔 (𝑡, 𝑟, 𝜂)]

= − 𝛼
1/(1−𝛿)

.

(27)
Therefore, we obtain
𝜕𝑔

𝜕𝑡
+ ∇𝑔 + 𝛼

1/(1−𝛿)
= 0, 𝑔 (𝑇, 𝑟, 𝜂) = (1 − 𝛼)

1/(1−𝛿)
.

(28)

This is to say that (21) holds.
For (23), we can fit a solution of the following form:

𝑔 (𝑡, 𝑟, 𝜂) = exp {𝜙 (𝑡) 𝜂 + ℎ (𝑡) 𝑟 + Ψ (𝑡)} (29)
with boundary condition 𝜙(𝑇) = ℎ(𝑇) = Ψ(𝑇) = 0.

Introducing (29) into (23) yields

𝑔{𝜂[𝜙
󸀠
(𝑡) +

𝛿

(𝛿 − 1)
2
⋅
𝑘2

2𝜎2
1

−(𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)𝜙 (𝑡) +
1

2
𝜎
2

2
𝜙
2
(𝑡) ]

+ 𝑟 [ℎ
󸀠
(𝑡) +

𝛿

1 − 𝛿
− 𝑐ℎ (𝑡) +

1

2
(1 − 𝛿) 𝜎

2

0
ℎ
2
(𝑡)]

+Ψ
󸀠
(𝑡) + 𝑏𝜙 (𝑡) + 𝜃ℎ (𝑡) −

𝛽

1 − 𝛿
} = 0.

(30)

We can decompose (30) into the following three equations in
order to eliminate the dependence on 𝑟 and 𝜂:

𝜙
󸀠
(𝑡) +

𝛿

(𝛿 − 1)
2
⋅
𝑘2

2𝜎2
1

− (𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)𝜙 (𝑡)

+
1

2
𝜎
2

2
𝜙
2
(𝑡) = 0, 𝜙 (𝑇) = 0,

(31)

ℎ
󸀠
(𝑡) +

𝛿

1 − 𝛿
− 𝑐ℎ (𝑡) +

1

2
(1 − 𝛿) 𝜎

2

0
ℎ
2
(𝑡) = 0, ℎ (𝑇) = 0,

(32)

Ψ
󸀠
(𝑡) + 𝑏𝜙 (𝑡) + 𝜃ℎ (𝑡) −

𝛽

1 − 𝛿
= 0, Ψ (𝑇) = 0. (33)

Rewritting (31), we have

𝜙
󸀠
(𝑡) = −

1

2
𝜎
2

2
[𝜙
2
(𝑡) −

2

𝜎2
2

(𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)𝜙 (𝑡)

+
2

𝜎2
2

⋅
𝛿

(𝛿 − 1)
2
⋅
𝑘2

2𝜎2
1

] .

(34)
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Let Δ
𝜙
denote the discriminant of the quadratic equation

𝜙
2
(𝑡) −

2

𝜎2
2

(𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)𝜙 (𝑡)

+
2

𝜎2
2

⋅
𝛿

(𝛿 − 1)
2
⋅
𝑘2

2𝜎2
1

= 0

(35)

and then we have

Δ
𝜙
=
4

𝜎4
2

[
−𝑎2

𝛿 − 1
+
𝛿

𝛿 − 1
(𝑎 +

𝑘𝜎
2

𝜎
1

)

2

] . (36)

Suppose that Δ
𝜙
> 0, that is,

𝛿 <
𝑎
2

(𝑎 + (𝑘𝜎
2
/𝜎
1
))
2
< 1. (37)

Under the condition (37), integrating (34) on both sides
with respect to 𝑡, we obtain

1

𝜆
1
− 𝜆
2

∫
𝑇

𝑡

(
1

𝜙 (𝑡) − 𝜆
1

−
1

𝜙 (𝑡) − 𝜆
2

)𝑑𝜙 (𝑡)=−
1

2
𝜎
2

2
(𝑇 − 𝑡) ,

(38)

where 𝜆
1
and 𝜆

2
are two real roots of (35), namely,

𝜆
1,2
=
1

𝜎2
2

(𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)

±
1

𝜎2
2

√
−𝑎2

𝛿 − 1
+
𝛿

𝛿 − 1
(𝑎 +

𝑘𝜎
2

𝜎
1

)

2

.

(39)

Solving (38) with boundary condition 𝜙(𝑇) = 0, we derive

𝜙 (𝑡) =
𝜆
1
𝜆
2
(1 − exp {− (1/2) 𝜎2

2
(𝜆
1
− 𝜆
2
) (𝑇 − 𝑡)})

𝜆
1
− 𝜆
2
exp {− (1/2) 𝜎2

2
(𝜆
1
− 𝜆
2
) (𝑇 − 𝑡)}

.

(40)

For (32), using the same analysis as 𝜙(𝑡), we obtain

ℎ (𝑡) =
𝜆
3
𝜆
4
(1 − exp {− ((1 − 𝛿) /2) 𝜎2

0
(𝜆
3
− 𝜆
4
) (𝑇 − 𝑡)})

𝜆
3
− 𝜆
4
exp {− ((1 − 𝛿) /2) 𝜎2

0
(𝜆
3
− 𝜆
4
) (𝑇 − 𝑡)}

(41)

under the condition

𝛿 <
𝑐
2

2𝜎2
0

, (42)

where 𝜆
3
and 𝜆

4
are two real roots of the equation

ℎ
2
(𝑡) −

2𝑐

(1 − 𝛿) 𝜎2
0

ℎ (𝑡) +
𝛿

1 − 𝛿
⋅

2

(1 − 𝛿) 𝜎2
0

= 0. (43)

Easy calculation leads to

𝜆
3,4
=

1

(1 − 𝛿) 𝜎2
0

±
√𝑐2 − 2𝛿𝜎2

0

(1 − 𝛿) 𝜎2
0

. (44)

For (33), we have

Ψ (𝑡) = 𝑏∫
𝑇

𝑡

𝜙 (𝑠) 𝑑𝑠 + 𝜃∫
𝑇

𝑡

ℎ (𝑠) 𝑑𝑠 −
𝛽

1 − 𝛿
(𝑇 − 𝑡) .

(45)

Combining (37)with (42), we find that the risk aversion factor
𝛿 should satisfy

𝛿 < Min{
𝑎2𝜎2
1

(𝑎𝜎
1
+ 𝑘𝜎
2
)
2
,
𝑐2

2𝜎2
0

} , 𝛿 ̸= 0. (46)

According to (14) and (19), we have

𝐻
𝑥

𝐻
𝑥𝑥

=
1

𝛿 − 1
𝑥,

𝐻
𝑥𝜂

𝐻
𝑥𝑥

= −
𝑔
𝜂

𝑔
𝑥. (47)

Finally, taking (10) and (15) into consideration, we obtain
the optimal investment and consumption strategy under the
power utility function.

Proposition 2. If utility function 𝑈
1
(𝑥) = 𝑈

2
(𝑥) = 𝑥𝛿/𝛿,

with the conditions 𝛿 < Min{𝑎2𝜎2
1
/(𝑎𝜎
1
+ 𝑘𝜎
2
)
2
, 𝑐2/2𝜎2

0
} and

𝛿 ̸= 0, the optimal investment and consumption strategy of the
problem (7) is given by

𝜋
∗

𝑡
=

𝑘

(1 − 𝛿) 𝜎2
1

𝑋
𝑡
+
𝜎
2

𝜎
1

⋅
𝑔
𝜂

𝑔
𝑋
𝑡
,

𝐶
∗
(𝑡) = 𝛼

1/(1−𝛿)
𝑔
−1
𝑋
𝑡
,

(48)

where

𝑔 = 𝑔 (𝑡, 𝑟, 𝜂)

= 𝛼
1/(1−𝛿)

∫
𝑇

𝑡

exp {𝜙 (𝑠) 𝜂 + ℎ (𝑠) 𝑟 + Ψ (𝑠)} 𝑑𝑠

+ (1 − 𝛼)
1/(1−𝛿) exp {𝜙 (𝑡) 𝜂 + ℎ (𝑡) 𝑟 + Ψ (𝑡)} .

(49)

In addition, 𝜙(𝑡), ℎ(𝑡), and Ψ(𝑡) are determined by (40), (41)
and (45), respectively.

In order to compare the results obtained by Proposition 2
with those in the existing literatures, we consider the follow-
ing five special cases in the power utility case.

Special Case 1. If 𝜃 = 𝑐 = 𝜎
0
= 0, this is to say that risk-free

interest rate 𝑟(𝑡) will become a constant. Then the problem
(7) is degenerated into an investment and consumption
problem with stochastic volatility. After easy calculation, we
obtain

𝜋
∗

𝑡
=

𝑘

(1 − 𝛿) 𝜎2
1

𝑋
𝑡
+
𝜎
2

𝜎
1

⋅
𝑔
𝜂

𝑔
𝑋
𝑡
,

𝐶
∗
(𝑡) = 𝛼

1/(1−𝛿)
𝑔
−1
𝑋
𝑡

(50)
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under the conditions 𝛿 < 𝑎2𝜎2
1
/(𝑎𝜎
1
+ 𝑘𝜎
2
)
2 and 𝛿 ̸= 0, where

𝜆
1,2
=
1

𝜎2
2

(𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)

±
1

𝜎2
2

√
−𝑎2

𝛿 − 1
+
𝛿

𝛿 − 1
(𝑎 +

𝑘𝜎
2

𝜎
1

)

2

,

𝜙 (𝑡) =
𝜆
1
𝜆
2
(1 − exp {− (1/2) 𝜎2

2
(𝜆
1
− 𝜆
2
) (𝑇 − 𝑡)})

𝜆
1
− 𝜆
2
exp {− (1/2) 𝜎2

2
(𝜆
1
− 𝜆
2
) (𝑇 − 𝑡)}

,

ℎ (𝑡) =
𝛿

1 − 𝛿
(𝑇 − 𝑡) ,

Ψ (𝑡) = 𝑏∫
𝑇

𝑡

𝜙 (𝑠) 𝑑𝑠 −
𝛽

1 − 𝛿
(𝑇 − 𝑡) ,

𝑔 = 𝑔 (𝑡, 𝑟, 𝜂)

= 𝛼
1/(1−𝛿)

∫
𝑇

𝑡

exp {𝜙 (𝑠) 𝜂 + ℎ (𝑠) 𝑟 + Ψ (𝑠)} 𝑑𝑠

+ (1 − 𝛼)
1/(1−𝛿) exp {𝜙 (𝑡) 𝜂 + ℎ (𝑡) 𝑟 + Ψ (𝑡)} .

(51)

Special Case 2. If 𝑎 = 𝑏 = 𝜎
2
= 0, namely, volatility term

𝜂(𝑡) reduces to a constant, then the problem (7) becomes an
investment and consumption problem with stochastic inter-
est rate. Therefore, we have

𝜋
∗

𝑡
=

𝑘

(1 − 𝛿) 𝜎2
1

𝑋
𝑡
, 𝐶

∗
(𝑡) = 𝛼

1/(1−𝛿)
𝑔
−1
𝑋
𝑡 (52)

under the conditions 𝛿 < Min{𝑐2/2𝜎2
0
, 1} and 𝛿 ̸= 0, where

𝑔 = 𝑔 (𝑡, 𝑟, 𝜂)

= 𝛼
1/(1−𝛿)

∫
𝑇

𝑡

exp {𝜙 (𝑠) 𝜂 + ℎ (𝑠) 𝑟 + Ψ (𝑠)} 𝑑𝑠

+ (1 − 𝛼)
1/(1−𝛿) exp {𝜙 (𝑡) 𝜂 + ℎ (𝑡) 𝑟 + Ψ (𝑡)}

(53)

with

𝜙 (𝑡) =
𝛿

(𝛿 − 1)
2
⋅
𝑘2

2𝜎2
1

(𝑇 − 𝑡) ,

Ψ (𝑡) = 𝜃∫
𝑇

𝑡

ℎ (𝑠) 𝑑𝑠 −
𝛽

1 − 𝛿
(𝑇 − 𝑡) ,

𝜆
3,4
=

1

(1 − 𝛿) 𝜎2
0

±
√𝑐2 − 2𝛿𝜎2

0

(1 − 𝛿) 𝜎2
0

,

ℎ (𝑡) =
𝜆
3
𝜆
4
(1 − exp {− ((1 − 𝛿) /2) 𝜎2

0
(𝜆
3
− 𝜆
4
) (𝑇 − 𝑡)})

𝜆
3
− 𝜆
4
exp {− ((1 − 𝛿) /2) 𝜎2

0
(𝜆
3
− 𝜆
4
) (𝑇 − 𝑡)}

.

(54)

Special Case 3. If 𝜃 = 𝑐 = 𝜎
0
= 0 and 𝑎 = 𝑏 = 𝜎

2
= 0, that is,

risk-free interest rate 𝑟(𝑡) and volatility term 𝜂(𝑡) of the stock
become the constants, then the problem (7) is reduced to an
investment and consumption problem with constant interest
rate and constant volatility rate. In addition, we get

𝜋
∗

𝑡
=

𝑘

(1 − 𝛿) 𝜎2
1

𝑋
𝑡
, 𝐶

∗
(𝑡) = 𝛼

1/(1−𝛿)
𝑔
−1
𝑋
𝑡 (55)

under the conditions 𝛿 < 1 and 𝛿 ̸= 0, where

𝑔 = 𝑔 (𝑡, 𝑟, 𝜂)

= 𝛼
1/(1−𝛿) 𝑒

𝜔(𝑇−𝑡) − 1

𝜔
+ (1 − 𝛼)

1/(1−𝛿)
𝑒
𝜔(𝑇−𝑡)

,

𝜔 =
𝛿𝜂

(𝛿 − 1)
2
⋅
𝑘2

2𝜎2
1

+
𝛿𝑟

1 − 𝛿
−
𝛽

1 − 𝛿
.

(56)

Special Case 4. If 𝛼 = 0 and 𝛽 = 0, the problem (7) is
degenerated into a dynamic asset allocation problem with
stochastic interest rate and stochastic volatility.Therefore, the
optimal investment strategy is given by

𝜋
∗

𝑡
=

𝑘

(1 − 𝛿) 𝜎2
1

𝑋
𝑡
+
𝜎
2

𝜎
1

⋅ 𝜙 (𝑡)𝑋
𝑡 (57)

with the conditions 𝛿 < Min{𝑎2𝜎2
1
/(𝑎𝜎
1
+ 𝑘𝜎
2
)
2
, 𝑐
2
/2𝜎
2

0
} and

𝛿 ̸= 0, where

𝜆
1,2
=
1

𝜎2
2

(𝑎 +
𝛿

𝛿 − 1
⋅
𝑘𝜎
2

𝜎
1

)

±
1

𝜎2
2

√
−𝑎2

𝛿 − 1
+
𝛿

𝛿 − 1
(𝑎 +

𝑘𝜎
2

𝜎
1

)

2

,

𝜙 (𝑡) =
𝜆
1
𝜆
2
(1 − exp {− (1/2) 𝜎2

2
(𝜆
1
− 𝜆
2
) (𝑇 − 𝑡)})

𝜆
1
− 𝜆
2
exp {− (1/2) 𝜎2

2
(𝜆
1
− 𝜆
2
) (𝑇 − 𝑡)}

.

(58)

Special Case 5. If 𝛿 = 0, power utility will degenerate into a
logarithmic utility. After easy calculation, we get

𝜙 (𝑡) = 0, ℎ (𝑡) = 0, Ψ (𝑡) = −𝛽 (𝑇 − 𝑡) ,

𝑔 = 𝑔 (𝑡, 𝑟, 𝜂) =
𝛼

𝛽
(1 − 𝑒

−𝛽(𝑇−𝑡)
) + (1 − 𝛼) 𝑒

−𝛽(𝑇−𝑡)
.

(59)

As a result, the optimal investment and consumption
strategy of the problem (7) in the logarithm utility case is
given by

𝜋
∗

𝑡
=
𝑘

𝜎2
1

𝑋
𝑡
,

𝐶
∗
(𝑡) =

𝛼

(𝛼/𝛽) (1 − 𝑒−𝛽(𝑇−𝑡)) + (1 − 𝛼) 𝑒−𝛽(𝑇−𝑡)
𝑋
𝑡
.

(60)

The above results are in accordance with those under the
logarithm utility maximizing criterion in the following sub-
section.
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3.2. Logarithm Utility. Assume that the logarithm utility is
given by

𝑈
1
(𝑥) = 𝑈

2
(𝑥) = ln𝑥. (61)

Then we conjecture a solution to (11) with the following form;

𝐻(𝑡, 𝑟, 𝜂, 𝑥) = 𝑢 (𝑡) 𝑒
−𝛽𝑡 ln𝑥 + V (𝑡, 𝑟, 𝜂) , (62)

where boundary conditions are given by 𝑢(𝑇) = 1 − 𝛼 and
V(𝑇, 𝑟, 𝜂) = 0.

Putting (62) in (11), we get

𝑒
−𝛽𝑥 ln𝑥 (𝑢󸀠 (𝑡) − 𝛽𝑢 (𝑡) + 𝛼) + V

𝑡

+ 𝑟𝑢 (𝑡) 𝑒
−𝛽𝑡
+ (𝜃 − 𝑐𝑟) V

𝑟
+
1

2
𝜎
2

0
𝑟V
𝑟𝑟

+ (𝑏 − 𝑎𝜂) V
𝜂
+
1

2
𝜎
2

2
𝜂V
𝜂𝜂

+
𝑘2𝜂

2𝜎2
1

𝑢 (𝑡) 𝑒
−𝛽𝑡
+ (ln𝛼 − 1) 𝛼𝑒−𝛽𝑡

− 𝛼𝑒
−𝛽𝑡 ln 𝑢 (𝑡) = 0.

(63)

Eliminating the dependence on 𝑥, we have

𝑢
󸀠
(𝑡) − 𝛽𝑢 (𝑡) + 𝛼 = 0, 𝑢 (𝑇) = 1 − 𝛼, (64)

V
𝑡
+ 𝑟𝑢 (𝑡) 𝑒

−𝛽𝑡
+ (𝜃 − 𝑐𝑟) V

𝑟

+
1

2
𝜎
2

0
𝑟V
𝑟𝑟
+ (𝑏 − 𝑎𝜂) V

𝜂
+
1

2
𝜎
2

2
𝜂V
𝜂𝜂

+
𝑘2𝜂

2𝜎2
1

𝑢 (𝑡) 𝑒
−𝛽𝑡
+ (ln𝛼 − 1) 𝛼𝑒−𝛽𝑡

− 𝛼𝑒
−𝛽𝑡 ln 𝑢 (𝑡) = 0.

(65)

Solving (64), we get

𝑢 (𝑡) = (1 − 𝛼) 𝑒
−𝛽(𝑇−𝑡)

−
𝛼

𝛽
(𝑒
−𝛽(𝑇−𝑡)

− 1) . (66)

Suppose that the solution to (65) is of the structure

V (𝑡, 𝑟, 𝜂) = 𝐷 (𝑡) + 𝐸 (𝑡) 𝑟 + 𝐹 (𝑡) 𝜂,

𝐷 (𝑇) = 𝐸 (𝑇) = 𝐹 (𝑇) = 0.
(67)

Putting (67) in (65), we derive

𝑟 [𝐸
󸀠
(𝑡) − 𝑐𝐸 (𝑡) + 𝑢 (𝑡) 𝑒

−𝛽𝑡
]

+ 𝜂 [𝐹
󸀠
(𝑡) − 𝑎𝐹 (𝑡) +

𝑘
2

2𝜎2
1

𝑢 (𝑡) 𝑒
−𝛽𝑡
]

+ 𝐷
󸀠
(𝑡) + 𝜃𝐸 (𝑡) + 𝑏𝐹 (𝑡) + (ln𝛼 − 1) 𝛼𝑒−𝛽𝑡

− 𝛼𝑒
−𝛽𝑡 ln 𝑢 (𝑡) = 0.

(68)

By matching coefficients, we obtain the following three equa-
tions:

𝐸
󸀠
(𝑡) − 𝑐𝐸 (𝑡) + 𝑢 (𝑡) 𝑒

−𝛽𝑡
= 0, 𝐸 (𝑇) = 0, (69)

𝐹
󸀠
(𝑡) − 𝑎𝐹 (𝑡) +

𝑘
2

2𝜎2
1

𝑢 (𝑡) 𝑒
−𝛽𝑡
= 0, 𝐹 (𝑇) = 0, (70)

𝐷
󸀠
(𝑡) + 𝜃𝐸 (𝑡) + 𝑏𝐹 (𝑡) + (ln𝛼 − 1) 𝛼𝑒−𝛽𝑡

− 𝛼𝑒
−𝛽𝑡 ln 𝑢 (𝑡) = 0, 𝐷 (𝑇) = 0.

(71)

Solving the above three equations (69)–(71), we obtain

𝐸 (𝑡) =
𝛼 + 𝛼𝛽 − 𝛽

𝛽𝑐
𝑒
−𝛽𝑇
(𝑒
−𝑐(𝑇−𝑡)

− 1)

−
𝛼

𝛽 (𝛽 + 𝑐)
𝑒
−𝛽𝑇
(𝑒
−𝑐(𝑇−𝑡)

− 𝑒
𝛽(𝑇−𝑡)

) ,

𝐹 (𝑡) =
𝑘2

2𝜎2
1

⋅
𝛼𝛽 + 𝛼 − 𝛽

𝑎𝛽
𝑒
−𝛽𝑇
(𝑒
−𝑎(𝑇−𝑡)

− 1)

−
𝑘2

2𝜎2
1

⋅
𝛼

(𝑎 + 𝛽) 𝛽
𝑒
−𝛽𝑇
(𝑒
−𝑎(𝑇−𝑡)

− 𝑒
𝛽(𝑇−𝑡)

) ,

𝐷 (𝑡) = 𝜃∫
𝑇

𝑡

𝐸 (𝑠) 𝑑𝑠 + 𝑏∫
𝑇

𝑡

𝐹 (𝑠) 𝑑𝑠

+ (ln𝛼 − 1) 𝛼∫
𝑇

𝑡

𝑒
−𝛽𝑠
𝑑𝑠 − 𝛼∫

𝑇

𝑡

𝑒
−𝛽𝑠 ln 𝑢 (𝑠) 𝑑𝑠.

(72)

Taking (62) into considering, we obtain

𝐻
𝑥

𝐻
𝑥𝑥

= −𝑥,
𝐻
𝑥𝜂

𝐻
𝑥𝑥

= 0, 𝐶
∗
(𝑡) =

𝛼

𝑢 (𝑡)
𝑥. (73)

Therefore, we can summarize the optimal investment and
consumption strategy in the logarithm utility case as the
following proposition.

Proposition 3. If utility function is given by 𝑈
1
(𝑥) = 𝑈

2
(𝑥) =

ln𝑥, the optimal investment and consumption strategy of the
problem (7) is

𝜋
∗
(𝑡) =

𝑘

𝜎2
1

𝑋
𝑡
,

𝐶
∗
(𝑡) =

𝛼

(1 − 𝛼) 𝑒−𝛽(𝑇−𝑡) − (𝛼/𝛽) (𝑒−𝛽(𝑇−𝑡) − 1)
𝑋
𝑡
.

(74)

Remark 4. According to Proposition 3, we find the following.
(i) The parameters 𝜃, 𝑐, and 𝜎

1
in the stochastic interest

rate model have no influence on 𝜋∗(𝑡) and 𝐶∗(𝑡), (ii) The
parameters 𝑏, 𝑎, and 𝜎

2
in the stochastic volatility model

have no impact on 𝜋∗(𝑡) and 𝐶∗(𝑡) as well, (iii) The optimal
amount 𝜋∗(𝑡) invested in the stock depends only on the
parameters 𝑘 and 𝜎

1
. In addition, 𝜋∗(𝑡) increases with respect

to 𝑘 and decreases with respect to 𝜎
1
, (iv) The optimal
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Figure 1: The impact of 𝑘 and 𝑎 on the optimal investment strategy.
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Figure 2: The impact of 𝜎
2
and 𝛿 on the optimal investment strategy.

consumption rate 𝐶∗(𝑡) increases with respect to 𝛼, for we
can obtain
𝑑𝐶
∗
(𝑡)

𝑑𝛼
=

𝑒
−𝛽(𝑇−𝑡)

[(1 − 𝛼) 𝑒−𝛽(𝑇−𝑡) − (𝛼/𝛽) (𝑒−𝛽(𝑇−𝑡) − 1)]
2
𝑋
𝑡
> 0.

(75)

4. Numerical Analysis

In this section, we will provide a numerical example to il-
lustrate how market parameters affect the dynamic behavior
of the optimal investment and consumption strategy in the
power utility case.Throughout the numerical analysis, unless
otherwise stated, the basic parameters are given by 𝑐 = 0.15,
𝜎
0
= 0.2, 𝜃 = 0.25, 𝑟(0) = 0.05, 𝜎

1
= 1.2, 𝑘 = 0.6, 𝜂(0) = 0.36,

𝜎
2
= 0.8, 𝑏 = 1.0, 𝑎 = 0.6, 𝑡 = 0, 𝑇 = 1, 𝛼 = 0.4, 𝛽 = 0.1,

𝛿 = −1, and 𝑥
0
= 100.

4.1. The Impact on the Optimal Investment Strategy. It can be
seen from Figures 1 and 2 that we can summarize the effect
of market parameters on the optimal investment strategy and
provide some economic implications.

(a1) The optimal investment strategy 𝜋∗(𝑡) increases with
respect to the parameter 𝑘. Recalling (3), 𝑘𝜂(𝑡) can be
taken as the appreciation rate of the stock. Hence, as
the parameter 𝑘 increases, then the expected income
of the stock increases, which leads to the fact that the
investor wishes to invest more amount of his wealth
in the stock.

(a2) 𝜋∗(𝑡) increases with respect to the parameter 𝑎. The
larger the value of 𝑎, the smaller the expected value of
𝜂(𝑡). This leads to the fact that the expected apprecia-
tion rate of the stock becomes less and the volatility of
the stock will becomemuch smaller. Due to the much
less risk of the investment, the investor would invest
more money in the stock.

(a3) 𝜋∗(𝑡) is decreasing in𝜎
2
. In fact, the larger the value of

𝜎
2
, the higher the volatility termof 𝜂(𝑡), which leads to

that the volatility of the stock is increasing.Therefore,
the risk of investment is increasing accordingly and
the investor invests the less amount in the stock.

(a4) 𝜋∗(𝑡) is increasing in 𝛿. According to the condition of
Proposition 2, the value of 𝛿 should be less than 0.28.
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Figure 3: The impact of 𝑘 and 𝑎 on the optimal consumption strategy.
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Figure 4: The impact of 𝜎
2
and 𝛿 on the optimal consumption strategy.

In the power utility case, the coefficient of risk aver-
sion is denoted by 1 − 𝛿. It indicates that the investor
can take less risk as the parameter 𝛿 is increasing.
Therefore, the larger the value of 𝛿, the more amount
the investor wishes to invest in the stock. On the other
hand, when 𝛿 = 0, power utility is degenerated to
logarithm utility. Therefore, we can summarize that
the optimal investment strategy in the power utility
case will be less than that in the logarithm utility case
when 𝛿 < 0, while the optimal investment policy
for power utility will be more than that for logarithm
utility when 0 < 𝛿 < 0.28.

4.2. The Impact on the Optimal Consumption Strategy. From
Figures 3 and 4, we can summarize the following conclusions.

(b1) The optimal consumption strategy 𝐶∗(𝑡) increases
with respect to the parameter 𝑘. In fact, when the
value of 𝑘 becomes larger, the expected appreciation
of the stock becomes larger as well. Therefore, the
wealth of the investor will becomemuch larger, which

leads to the fact that the investor can consume the
more amount of the wealth.

(b2) 𝐶∗(𝑡) is slowly decreasing in 𝑎. As the value of 𝑎 is
increasing, the expected value of 𝜂(𝑡) is decreasing. It
leads to the fact that the expected value of the wealth
is decreasing.Therefore, the investor should consume
less money.

(b3) 𝐶∗(𝑡)will slowly decrease as the parameter𝜎
2
increas-

es. As a matter of fact, the bigger the value of 𝜎
2
, the

less the amount invested in the stock. It means that
the wealth of the investor is decreasing.Therefore, the
investor should keep less consumption.

(b4) 𝐶∗(𝑡) will decrease with the parameter 𝛿. That is to
say, the bigger the value of 𝛿, the less the risk aversion
the investor needs to take and the less the investor can
consume.Moreover, we conclude that the amount the
investor can consume in the power utility case ismore
than that in the logarithm utility case when 𝛿 < 0,
while the investor with power utility preference can
consume less amount than the one with logarithm
utility preference when 0 < 𝛿 < 0.28.
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5. Conclusions

In this paper, we investigate an investment and consumption
problem with stochastic interest rate and stochastic volatility,
in which interest rate dynamic is assumed to be driven by
the CIR model and the volatility of stock price is described
by Heston’s stochastic volatility model. The financial market
consists of one risk-free asset and one risky asset. Our ob-
jective is to maximize the expected discounted utility of con-
sumption and terminal wealth in the fixed finite investment
horizon. By applying dynamic programming principle, we
obtain the explicit expressions of the optimal investment and
consumption strategies in the power and logarithm utility
cases.Wehave also given a numerical example to illustrate the
results obtained and analyzed the effect of market parameters
on the optimal trading strategies.

In recent years, there has beenmuch attention to the port-
folio selection problems in stochastic environments. This is
due to the facts that risk-free interest rate and volatility of the
stock is not always fixed in most of real-world situations and
the optimal portfolios in stochastic environments will make
it more practical. Under some special assumptions, we obtain
the closed-form solutions of the optimal trading strategies
in stochastic interest rate and stochastic volatility situations.
These assumptions include the following: (i) interest rate
has no correlation with risky asset dynamics; (ii) Heston’s
stochastic volatility and risky asset dynamics are driven by the
same Brownian motion; (iii) stock price is assumed to follow
geometric Brownian motion, which is a special case of the
constant elasticity of variance (CEV) model. If we relax these
assumptions and consider some more general cases, it will
lead to more sophisticated HJB equations and will have no
ways to get the closed-form solutions of the optimal trading
strategy. In future research, we will explore new approaches
to tackle these problems.
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