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SIR epidemic models with distributed delay are proposed. Firstly, the dynamical behaviors of the model without vaccination are
studied. Using the Jacobian matrix, the stability of the equilibrium points of the system without vaccination is analyzed. The basic
reproduction number R is got. In order to study the important role of vaccination to prevent diseases, the model with distributed
delay under impulsive vaccination is formulated. And the sufficient conditions of globally asymptotic stability of “infection-
free” periodic solution and the permanence of the model are obtained by using Floquet’s theorem, small-amplitude perturbation
skills, and comparison theorem. Lastly, numerical simulation is presented to illustrate our main conclusions that vaccination has
significant effects on the dynamical behaviors of the model. The results can provide effective tactic basis for the practical infectious
disease prevention.

1. Introduction

Infectious diseases have always been the problem that people
have to face. Emerging diseases pose a continual threat to
public health such as SARS and avian influenza. It is very
necessary to establish and study mathematical models which
can reflect the spread of the infectious diseases. A famous
model in which the population is partitioned into three
classes, the susceptible, infectious and recovered, with sizes
denoted by 𝑆, 𝐼, and 𝑅, respectively, that could be used to
describe an influenza epidemic was developed early in the
20th century by Kermack and McKendrick [1]. This model
known as the susceptible-infectious-recovered (SIR) model
is as follows:

𝑆
󸀠

(𝑡) = Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡) ,

𝐼
󸀠

(𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑟𝐼 (𝑡) − 𝜇𝐼 (𝑡) ,

𝑅
󸀠

(𝑡) = 𝑟𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆(𝑡) denotes the number of members of a population
susceptible to the disease, 𝐼(𝑡) denotes the total population of
infectives with some virus at time 𝑡, 𝑅(𝑡) denotes the number
of members who have been removed from the possibility

of infection through a temporal immunity. In the model,
parameters 𝜇, 𝛽, 𝑟, and Λ are positive constants, where 𝜇

represents the death rates of susceptibles, infectives, and
recovered. 𝛽 is the contact rate and 𝑟 is the recovery rate from
the infected compartment. Λ is the recruitment rate of the
susceptible population. The SIR infectious disease model is
a basic but important biologic model and has been studied
by many authors [1–17]. Many diseases have the incubation
period, such as rabies; the incubation period in rabies ranges
from about two weeks to several months, and rarely even to
years [18–21]. Diseases with incubation period always lead
to time delay in the epidemic models, so delay differential
equation is widely used in the epidemic mathematical model,
such as [2, 7, 8, 10, 12–16, 22]. Based on model (1), a new
epidemic model with distributed delay is as follows:

𝑆
󸀠

(𝑡) = Λ − 𝛽𝐼 (𝑡) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − 𝜇𝑆 (𝑡) ,

𝐼
󸀠

(𝑡) = 𝛽𝐼 (𝑡) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − 𝑟𝐼 (𝑡) − 𝜇𝐼 (𝑡) ,

𝑅
󸀠

(𝑡) = 𝑟𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(2)

where the function 𝐹(𝑡) = 𝑎𝑒
−𝑎𝑡

, 𝑎 > 0, ∫
+∞

0
𝐹(𝜏)𝑑𝜏 = 1.



2 Journal of Applied Mathematics

As is known to all, one of strategies to control infectious
diseases is vaccination. Then a number of epidemic models
in ecology can be formulated as dynamical systems of
differential equations with vaccination [23–26]. Based on
ODE, systems with sudden perturbations lead to impulsive
differential equations. The theory of impulsive differential
equations has been studied intensively and systematically
in [27–34]. Compared to continuous constant vaccination,
pulse vaccination seems more reasonable in the real world.
Pulse vaccination, the repeated application of vaccine over
a defined age range, is gaining prominence as a strategy
for the elimination of childhood viral infections such as
measles hepatitis, parotitis, smallpox, and phthisis. Under the
pulse vaccination strategy (PVS) [9, 11, 17, 28, 35–41], what
we are interested is how large a fraction of the population
should we keep vaccinated in order to prevent the agent
from establishing; that is, it is very important for us to
investigate the conditions under which a given agent can
invade a partially vaccinated population. Thus, we also need
to consider the following epidemic model with distributed
delay and pulse vaccination strategy at fixed moments, which
is more realistic as

𝑆
󸀠

(𝑡) = Λ − 𝛽𝐼 (𝑡) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝐼
󸀠

(𝑡) = 𝛽𝐼 (𝑡) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − 𝑟𝐼 (𝑡) − 𝜇𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑅
󸀠

(𝑡) = 𝑟𝐼 (𝑡) − 𝜇𝑅 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡
+
) = (1 − 𝛿) 𝑆 (𝑡) , 𝑡 = 𝑛𝑇,

𝐼 (𝑡
+
) = 𝐼 (𝑡) , 𝑡 = 𝑛𝑇,

𝑅 (𝑡
+
) = 𝑅 (𝑡) + 𝛿𝑆 (𝑡) , 𝑡 = 𝑛𝑇,

(3)

where 𝛿 (with 0 < 𝛿 < 1) is the proportion of those vaccinated
successfully to all of the susceptibles and 𝑇 is a fixed positive
constant and denotes the period of the impulsive effect, 𝑛 =

{1, 2, . . .}.
The organization of this paper is as follows. In Section 2,

we will show the boundedness of the SIR system and give the
transformation of models and some lemmas. In Section 3, we
will analyze the local stability of equilibrium of system (7)
and give the basic reproduction number. In Section 4.1, we
will prove the existence and globally asymptotical stability of
the periodic solution of the “infection-free” model. In Sec-
tion 4.2, we obtain sufficient condition for the permanence of
the epidemic model with pulse vaccination. Finally, we give
numerical analysis and biological conclusions to show our
main results.

2. Transformation of Models and Prerequisites

For system (2), the total population size 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) +

𝑅(𝑡) satisfies 𝑁
󸀠
(𝑡) = Λ − 𝜇𝑁(𝑡) and lim

𝑡→∞
𝑁(𝑡) = Λ/𝜇.

Hence it is sufficient to consider system (2) with respect to

𝐷 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅
3

+
| 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤ (Λ/𝜇) + 𝜖}. Note

that the variable 𝑅 does not appear in the first and second
equations of system (2); hence, we only need to consider the
subsystem of (2) as follows:

𝑆
󸀠

(𝑡) = Λ − 𝛽𝐼 (𝑡) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − 𝜇𝑆 (𝑡) ,

𝐼
󸀠

(𝑡) = 𝛽𝐼 (𝑡) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − 𝑟𝐼 (𝑡) − 𝜇𝐼 (𝑡) .

(4)

In order to study the system, we can use the chain transfor-
mation 𝑍(𝑡) = ∫

𝑡

−∞
𝐹(𝑡 − 𝜏)𝑆(𝜏)𝑑𝜏. Since

∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑑𝜏 = lim
𝐴→−∞

∫

𝑡

𝐴

𝑎𝑒
−𝑎(𝑡−𝜏)

𝑑𝜏 = 1 (5)

and ∫
𝑡

−∞
𝐹(𝑡 − 𝜏)𝑆(𝜏)𝑑𝜏 is convergent, then

Δ𝑍 (𝑡) = ∫

𝑡
+

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 − ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 = 0.

(6)

Hence, system (4) becomes

𝑆
󸀠

(𝑡) = Λ − 𝛽𝐼 (𝑡) 𝑍 (𝑡) − 𝜇𝑆 (𝑡) ,

𝐼
󸀠

(𝑡) = 𝛽𝐼 (𝑡) 𝑍 (𝑡) − 𝑟𝐼 (𝑡) − 𝜇𝐼 (𝑡) ,

𝑍
󸀠

(𝑡) = 𝑎 (𝑆 (𝑡) − 𝑍 (𝑡)) .

(7)

We understand the relationship between the two systems as
follows. If (𝑆, 𝐼) : [0, +∞) → 𝑅

2 is the solution of system (4)
corresponding to continuous and bounded initial function
𝑆(0) = 𝑆

0
, 𝐼(0) = 𝐼

0
, then (𝑆, 𝐼, 𝑍) : [0, +∞) → 𝑅

3 is a
solution of system (7) with 𝑆(0) = 𝑆

0
, 𝐼(0) = 𝐼

0
, 𝑍(0) = 𝑍

0
,

and 𝑍(0) = ∫
0

−∞
𝐹(−𝜏)𝑆(𝜏)𝑑𝜏 = ∫

0

−∞
𝑎𝑒
𝑎𝜏
𝑆(𝜏)𝑑𝜏. Conversely,

if (𝑆, 𝐼, 𝑍) is any solution of system (7) defined on the entire
real line and bounded on (−∞, 0], then 𝑍 is given by 𝑍(𝑡) =

∫
𝑡

−∞
𝐹(𝑡 − 𝜏)𝑆(𝜏)𝑑𝜏, and so (𝑆, 𝐼) satisfies system (4).
System (7) will be analyzed with the following initial

conditions 𝑆(0) = 𝑆
0
> 0, 𝐼(0) = 𝐼

0
> 0, 𝑍(0) = 𝑍

0
> 0.

By the mean value theorem of integrals, there exists 𝜍 ∈

(−∞, 𝑡), such that

𝑍 (𝑡) = ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑑𝜏 = 𝑆 (𝜍) ∫

𝑡

−∞

𝐹 (𝑡 − 𝜏) 𝑑𝜏. (8)

We know that 𝑆(𝑡) < (Λ/𝜇)+ 𝜀 and ∫
𝑡

−∞
𝐹(𝑡− 𝜏)𝑑𝜏 = 1; hence

we get 𝑍(𝑡) < (Λ/𝜇) + 𝜀.
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By the same transformation, from system (3), we have

𝑆
󸀠

(𝑡) = Λ − 𝛽𝐼 (𝑡) 𝑍 (𝑡) − 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝐼
󸀠

(𝑡) = 𝛽𝐼 (𝑡) 𝑍 (𝑡) − 𝑟𝐼 (𝑡) − 𝜇𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑍
󸀠

(𝑡) = 𝑎 (𝑆 (𝑡) − 𝑍 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡
+
) = (1 − 𝛿) 𝑆 (𝑡) , 𝑡 = 𝑛𝑇,

𝐼 (𝑡
+
) = 𝐼 (𝑡) , 𝑡 = 𝑛𝑇,

𝑍 (𝑡
+
) = 𝑍 (𝑡) , 𝑡 = 𝑛𝑇.

(9)

Motivated by the application of systems (9) to population
dynamics (refer to [27]), we assume that solutions of systems
(9) satisfy the initial conditions 𝜙 ∈ 𝐶

+

ℎ
, and 𝜙(0) ≥ 0 lie in

𝐶
+

ℎ
= {𝜙 = (𝜙

1
(𝑠), 𝜙
2
(𝑠), 𝜙
3
(𝑠)) ∈ 𝐶

ℎ
: 𝜙
𝑖
(0) ≥ 0 (𝑖 = 1, 2, 3)},

where 𝜙
𝑖
(𝑠) is positive, bounded, and continuous function for

𝑠 ∈ [0, +∞).
We would like to have the following definitions first.

Definition 1. Let 𝑅+ = [0,∞). The map 𝑉 : 𝑅
+
× 𝑅
3

+
→ 𝑅
+
is

said to belong to class 𝑉
0
if

(i) 𝑉 is continuous in (𝑘𝑇, (𝑘 + 1)𝑇] ×𝑅
3

+
, 𝑘 ∈ 𝑁, and for

each 𝑥 ∈ 𝑅
3

+
, lim
(𝑡,𝑧)→ (𝑘𝑇

+
,𝑥)

𝑉(𝑡, 𝑧) = 𝑉(𝑘𝑇
+
, 𝑥) exist,

(ii) 𝑉 is locally Lipschitzian in 𝑥.

Also we have the following lemmas.

Lemma 2 (see [31]). Let 𝑉 : 𝑅
+
× 𝑅
3

+
→ 𝑅
+
, and 𝑉 ∈ 𝑉

0
.

Assume that

𝐷
+
𝑉 (𝑡, 𝑧 (𝑡)) ≤ (≥) 𝑔 (𝑡, 𝑉 (𝑡, 𝑧 (𝑡))) , 𝑡 ̸= 𝑛𝑇,

𝑉 (𝑡, 𝑧 (𝑡
+
)) ≤ (≥)Ψ

𝑛
(𝑉 (𝑡, 𝑧 (𝑡))) , 𝑡 = 𝑛𝑇,

(10)

where 𝑔 : 𝑅
+
× 𝑅
+

→ 𝑅 is continuous in (𝑛𝑇, (𝑛 + 1)𝑇] × 𝑅
+

and for each 𝑥 ∈ 𝑅
+
, 𝑛 ∈ 𝑁, lim

(𝑡,𝑦)→ ((𝑛𝑇)
+
,𝑥)

𝑔(𝑡, 𝑦) =

𝑔((𝑛𝑇)
+
, 𝑥) exist; Ψ

𝑛
: 𝑅
+

→ 𝑅
+
is nondecreasing. Let

𝑟(𝑡) = 𝑟(𝑡, 0, 𝑢
0
) be the maximal (minimal) solution of the

scalar impulsive differential equation

𝑢
󸀠
= 𝑔 (𝑡, 𝑢) , 𝑡 ̸= 𝑛𝑇,

𝑢 (𝑡
+
) = Ψ
𝑛
(𝑢 (𝑡)) , 𝑡 = 𝑛𝑇,

𝑢 (0
+
) = 𝑢
0
,

(11)

existing on [0,∞). Then 𝑉(0
+
, 𝑧
0
) ≤ (≥) 𝑢

0
implies that 𝑉(𝑡,

𝑧(𝑡)) ≤ (≥)𝑟(𝑡), 𝑡 ≥ 0, where 𝑧(𝑡) = 𝑧(𝑡, 0, 𝑧
0
) is any solution

of (9) existing on [0,∞).

Lemma 3. Consider the following system:

𝑥
󸀠

(𝑡) = Λ − 𝜇𝑥 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑦
󸀠

(𝑡) = 𝑎 (𝑥 (𝑡) − 𝑦 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡
+
) = (1 − 𝛿) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇,

𝑦 (𝑡
+
) = 𝑦 (𝑡) , 𝑡 = 𝑛𝑇.

(12)

Then system (12) has a unique positive 𝑇-periodic solution
𝑥
∗
(𝑡), 𝑦
∗
(𝑡) as

𝑥
∗

(𝑡) =
Λ

𝜇
(1 −

𝛿𝑒
−𝜇(𝑡−𝑛𝑇)

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑦
∗

(𝑡)

=
Λ

𝜇
(1 + 𝑎𝛿

𝑒
−𝑎(𝑡−𝑛𝑇)

(1 − 𝑒
−𝜇𝑇

) − 𝑒
−𝜇(𝑡−𝑛𝑇)

(1 − 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) ,

𝑥
∗
(0
+
) =

Λ

𝜇
(1 −

𝛿

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑦
∗
(0
+
) =

Λ

𝜇
(1 −

𝑎𝛿 (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) ,

(13)

and for each solution, 𝑥(𝑡) → 𝑥
∗
(𝑡), 𝑦(𝑡) → 𝑥

∗
(𝑡) as 𝑡 →

∞.

Proof. Solving the first equation of system (12), we have

𝑥 (𝑡) = 𝑥 (𝑛𝑇
+
) 𝑒
−𝜇(𝑡−𝑛𝑇)

+
Λ

𝜇
(1 − 𝑒

−𝜇(𝑡−𝑛𝑇)
) , 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇.

(14)

Substituting 𝑥(𝑡) into the second equation of (12), we inte-
grate both sides in interval (𝑛𝑇, (𝑛 + 1)𝑇], and we get

𝑦 (𝑡) = 𝑦 (𝑛𝑇
+
) 𝑒
−𝑎(𝑡−𝑛𝑇)

+
𝑎

𝑎 − 𝜇
(𝑥 (𝑛𝑇

+
) −

Λ

𝜇
) (𝑒
−𝜇(𝑡−𝑛𝑇)

− 𝑒
−𝑎(𝑡−𝑛𝑇)

)

+
Λ

𝜇
(1 − 𝑒

−𝑎(𝑡−𝑛𝑇)
) .

(15)
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By using stroboscopic map of difference equation, we have

𝑥 ((𝑛 + 1) 𝑇
+
) = (1 − 𝛿) 𝑥 ((𝑛 + 1) 𝑇)

= (1 − 𝛿) 𝑥 (𝑛𝑇
+
) 𝑒
−𝜇𝑇

+
Λ

𝜇
(1 − 𝛿) (1 − 𝑒

−𝜇𝑇
) ,

𝑦 ((𝑛 + 1) 𝑇
+
) = 𝑦 ((𝑛 + 1) 𝑇)

= 𝑦 (𝑛𝑇
+
) 𝑒
−𝑎𝑇

+
𝑎

𝑎 − 𝜇
(𝑥 (𝑛𝑇

+
) −

Λ

𝜇
)

× (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

) +
Λ

𝜇
(1 − 𝑒

−𝑎𝑇
) .

(16)

The fixed point of the above mapping is

𝑥
∗
=

Λ

𝜇
(1 −

𝛿

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑦
∗
=

Λ

𝜇
(1 −

𝑎𝛿 (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) .

(17)

Therefore, we can get the following 𝑇-periodic solution
(𝑥
∗
(𝑡), 𝑦
∗
(𝑡)) of system (12):

𝑥
∗

(𝑡) =
Λ

𝜇
(1 −

𝛿𝑒
−𝜇(𝑡−𝑛𝑇)

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) , 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇,

𝑦
∗

(𝑡)

=
Λ

𝜇
(1 + 𝑎𝛿

(1 − 𝑒
−𝜇𝑇

) 𝑒
−𝑎(𝑡−𝑛𝑇)

− (1 − 𝑒
−𝑎𝑇

) 𝑒
−𝜇(𝑡−𝑛𝑇)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) ,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇.

(18)

Next, we will prove the attractivity of periodic solutions. Let
(𝑥(𝑡), 𝑦(𝑡)) be an any solution of the system (12); then, for 𝑡 ∈

(𝑛𝑇, (𝑛 + 1)𝑇], we have

𝑥 (𝑡) = 𝑥
∗

(𝑡) + (𝑥 (𝑛𝑇
+
) − 𝑥
∗
) 𝑒
−𝜇(𝑡−𝑛𝑇)

,

𝑦 (𝑡) = 𝑦
∗

(𝑡) + (𝑦 (𝑛𝑇
+
) − 𝑦
∗
) 𝑒
−𝑎(𝑡−𝑛𝑇)

+
𝑎

𝑎 − 𝜇
(𝑥 (𝑛𝑇

+
) − 𝑥
∗
) (𝑒
−𝜇(𝑡−𝑛𝑇)

− 𝑒
−𝑎(𝑡−𝑛𝑇)

) .

(19)

On the one hand, by the recurrence formula, we have

𝑥 ((𝑛 + 1) 𝑇
+
) = (1 − 𝛿) 𝑒

−𝜇𝑇
𝑥 (𝑛𝑇

+
) +

Λ

𝜇
(1 − 𝛿) (1 − 𝑒

−𝜇𝑇
) .

(20)

Thus

𝑥 (𝑛𝑇
+
) = (1 − 𝛿)

𝑛
𝑒
−𝑛𝜇𝑇

𝑥 (0
+
)

+ [1 + (1 − 𝛿) 𝑒
−𝜇𝑇

+ ⋅ ⋅ ⋅ + (1 − 𝛿)
𝑛−1

𝑒
−(𝑛−1)𝜇𝑇

]

×
Λ

𝜇
(1 − 𝛿) (1 − 𝑒

−𝜇𝑇
)

= (1 − 𝛿)
𝑛
𝑒
−𝑛𝜇𝑇

𝑥 (0
+
)

+
Λ

𝜇
(1 − 𝛿) (1 − 𝑒

−𝜇𝑇
)
1 − (1 − 𝛿)

𝑛
𝑒
−𝑛𝜇𝑇

1 − (1 − 𝛿) 𝑒−𝜇𝑇

󳨀→ 𝑥
∗

(𝑛 󳨀→ ∞) ,

(21)

and then we have 𝑥(𝑡) → 𝑥
∗
(𝑡) (𝑛 → ∞).

On the other hand,

𝑦 ((𝑛 + 1) 𝑇
+
) = 𝑦 ((𝑛 + 1) 𝑇)

= 𝑦 (𝑛𝑇
+
) 𝑒
−𝑎𝑇

+
𝑎

𝑎 − 𝜇
(𝑥 (𝑛𝑇

+
) −

Λ

𝜇
)

× (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

) +
Λ

𝜇
(1 − 𝑒

−𝑎𝑇
) ,

(22)

and lim
𝑛→∞

𝑥(𝑛𝑇
+
) = 𝑥

∗, for 𝑛 large enough we have the
following approximate recursive formula:

𝑦 ((𝑛 + 1) 𝑇
+
) = 𝑦 (𝑛𝑇

+
) 𝑒
−𝑎𝑇

+
𝑎

𝑎 − 𝜇
(𝑥
∗
−

Λ

𝜇
)

× (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

) +
Λ

𝜇
(1 − 𝑒

−𝑎𝑇
)

= 𝑦 (𝑛𝑇
+
) 𝑒
−𝑎𝑇

+

𝑎𝛿Λ (𝑒
−𝑎𝑇

− 𝑒
−𝜇𝑇

)

𝜇 (𝑎 − 𝜇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)

+
Λ

𝜇
(1 − 𝑒

−𝑎𝑇
) .

(23)

Thus, for any𝑚 ∈ 𝑁
+, we get

𝑦 ((𝑚 + 𝑁)𝑇
+
)

= 𝑦 (𝑁𝑇
+
) 𝑒
−𝑚𝑎𝑇

+ [1 + 𝑒
−𝑎𝑇

+ ⋅ ⋅ ⋅ + 𝑒
−(𝑚−1)𝑎𝑇

]

× (

𝑎𝛿Λ (𝑒
−𝑎𝑇

− 𝑒
−𝜇𝑇

)

𝜇 (𝑎 − 𝜇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
+

Λ

𝜇
(1 − 𝑒

−𝑎𝑇
))



Journal of Applied Mathematics 5

= 𝑦 (𝑁𝑇
+
) 𝑒
−𝑚𝑎𝑇

+
1 − 𝑒
−𝑚𝑎𝑇

1 − 𝑒−𝑎𝑇

× (

𝑎𝛿Λ (𝑒
−𝑎𝑇

− 𝑒
−𝜇𝑇

)

𝜇 (𝑎 − 𝜇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
+

Λ

𝜇
(1 − 𝑒

−𝑎𝑇
))

󳨀→
Λ

𝜇
(1 −

𝑎𝛿 (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
)

(𝑚 󳨀→ ∞) .

(24)

Then we have lim
𝑛→∞

𝑦(𝑛𝑇
+
) = 𝑦

∗, thus 𝑦(𝑡) → 𝑦
∗
(𝑡)

(𝑡 → ∞). The proof is completed.

3. The Stability of Equilibrium of System (7)
and the Basic Reproduction Number

In this section, we will consider the local stability of equilib-
rium of system (7) and give the basic reproduction number.
Obviously, the system (7) has a disease-free equilibrium
𝐸
0
(Λ/𝜇, 0, Λ/𝜇) and an endemic equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑍
∗
),

where 𝑆
∗

= (𝜇 + 𝑟)/𝛽, 𝐼
∗

= (𝛽Λ − 𝜇(𝜇 + 𝑟))/𝛽(𝜇 + 𝑟), 𝑍
∗

=

(𝜇+𝑟)/𝛽. Let𝑅 = 𝛽Λ/𝜇(𝜇+𝑟); we have the following theorem.

Theorem 4. System (7) always has a disease-free equilibrium
𝐸
0
. If and only if 𝑅 > 1, system (7) has an endemic equilibrium

𝐸
∗.

3.1. Local Stability of Disease-Free Equilibrium 𝐸
0
. We calcu-

late the Jacobianmatrix of system (7) evaluated at𝐸
0
; one gets

the following matrix:

𝐽 (𝐸
0
) = (

−𝜇 −𝛽
Λ

𝜇
0

0 𝛽
Λ

𝜇
− 𝜇 − 𝑟 0

𝑎 0 −𝑎

). (25)

Obviously, 𝐸
0
is locally asymptotically stable if 𝛽(Λ/𝜇) − 𝜇 −

𝑟 < 0 which implies that 𝑅 < 1, and unstable if 𝑅 > 1.
Then 𝑅 = 𝛽Λ/𝜇(𝜇 + 𝑟) can be used as the basic reproductive
number. Thus, we obtain the following result.

Theorem 5. If 𝑅 < 1, then disease-free equilibrium 𝐸
0
of

system (7) is locally asymptotically stable and unstable if𝑅 > 1.

3.2. Local Stability of Endemic Equilibrium 𝐸
∗. About the

local stability of endemic equilibrium 𝐸
∗, we have the

following theorem.

Theorem 6. If 𝑅 > 1 and 𝑎 ≥ 𝑟 or 1 < 𝑅 < (𝑟 + 𝜇)/(𝑟 − 𝑎), the
equilibrium 𝐸

∗ of system (7) is locally asymptotically stable.

Proof. The Jacobian matrix of system (7) evaluated at 𝐸∗ is

𝐽 (𝐸
∗
) = (

−𝜇 −𝛽𝑍
∗

−𝛽𝐼
∗

0 0 𝛽𝐼
∗

𝑎 0 −𝑎

) . (26)

Let 𝜆
𝑖
(𝑖 = 1, 2, 3) be its eigenvalues with Re 𝜆

1
≤ Re 𝜆

2
≤

Re 𝜆
3
. After a simple calculation, it follows that

det 𝐽 (𝐸
∗
) = −𝑎𝛽

2
𝐼
∗
𝑍
∗
< 0. (27)

For det 𝐽(𝐸∗) = 𝜆
1
𝜆
2
𝜆
3
< 0, there are two cases as follows:

(i) Re 𝜆
𝑖
< 0 for 𝑖 = 1, 2, 3;

(ii) Re 𝜆
1
< 0 ≤ Re 𝜆

2
≤ Re 𝜆

3
.

Now we prove that the case (ii) is not true. Note that
det 𝐽(𝐸∗) = −𝑎𝛽

2
𝐼
∗
𝑍
∗

< 0; one gets tr 𝐽(𝐸∗) < 0, that is,
𝜆
1
+ 𝜆
2
+ 𝜆
3
< 0. If the case (ii) is true, we have that Re(𝜆

1
+

𝜆
2
) < 0 and Re(𝜆

1
+ 𝜆
3
) < 0. The second additive compound

matrix [6] of 𝐽(𝐸∗) (see the Appendix) is as follows:

𝐽
[2]

(𝐸
∗
) = (

−𝜇 𝛽𝐼
∗

𝛽𝐼
∗

0 −𝜇 − 𝑎 −𝛽𝑍
∗

−𝑎 0 −𝑎

) ,

det 𝐽[2] (𝐸∗) = −𝑎 ((𝛽𝐼
∗
+ 𝜇) (𝜇 + 𝑎) − 𝛽

2
𝐼
∗
𝑍
∗
)

= −𝑎𝜇 (𝑅 (𝑎 − 𝑟) + (𝜇 + 𝑟)) ,

(28)

where 𝑆
∗

= (𝜇 + 𝑟)/𝛽, 𝐼
∗

= (𝛽Λ − 𝜇(𝜇 + 𝑟))/𝛽(𝜇 + 𝑟), and
𝑍
∗
= (𝜇 + 𝑟)/𝛽 is used. Notice that 𝑅 > 1, and two cases will

happen as follows:

(a) if 𝑎 ≥ 𝑟, then det 𝐽[2](𝐸∗) < 0;
(b) if 𝑎 < 𝑟, but 1 < 𝑅 < (𝑟+𝜇)/(𝑟−𝑎), then det 𝐽[2](𝐸∗) <

0.

According to the property of the second additive compound
matrix [6], the eigenvalues of 𝐽[2](𝐸∗) are 𝜆

𝑖
+𝜆
𝑗
, 1 ≤ 𝑖 < 𝑗 ≤

3. Then, we have

(𝜆
1
+ 𝜆
2
) (𝜆
1
+ 𝜆
3
) (𝜆
2
+ 𝜆
3
) < 0. (29)

Notice that Re(𝜆
1
+ 𝜆
2
) < 0 and Re(𝜆

1
+ 𝜆
3
) < 0, then we get

Re(𝜆
2
+ 𝜆
3
) < 0, which contradicts with case (ii). Therefore,

Re 𝜆
𝑖
< 0 for 𝑖 = 1, 2, 3. So 𝐸

∗ is locally asymptotically stable
for 𝑅 > 1 and 𝑎 ≥ 𝑟 or 1 < 𝑅 < (𝑟+𝜇)/(𝑟 − 𝑎). This completes
the proof.

3.3. Analysis at 𝑅 = 1. In this section, we consider the
stability of system (7) under 𝑅 = 1 using the center manifold
theory, as described in [42, Theorem 4.1] . To apply this
method, the following simplification and change of variables
are made first. Let 𝑆 = 𝑥

1
, 𝐼 = 𝑥

2
, 𝑍 = 𝑥

3
, and the system (7)

becomes

𝑥̇
1
= Λ − 𝛽𝑥

2
𝑥
3
− 𝜇𝑥
1
= 𝑓
1
,

𝑥̇
2
= 𝛽𝑥
2
𝑥
3
− 𝑟𝑥
2
− 𝜇𝑥
2
= 𝑓
2
,

𝑥̇
3
= 𝑎 (𝑥

1
− 𝑥
3
) = 𝑓
3
,

(30)
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with 𝑅 = 1 corresponding to 𝛽 = 𝛽
∗
= 𝜇(𝜇+ 𝑟)/Λ. The virus-

free equilibrium is 𝐸
0
(Λ/𝜇, 0, Λ/𝜇). The linearization matrix

of system (7) around the infection-free equilibrium 𝐸
0
when

𝛽 = 𝛽
∗ is

𝐽 (𝑓) = (

−𝜇 −
𝛽
∗
Λ

𝜇
0

0
𝛽
∗
Λ

𝜇
− (𝜇 + 𝑟) 0

𝑎 0 −𝑎

)

= (

−𝜇 − (𝜇 + 𝑟) 0

0 0 0

𝑎 0 −𝑎

) .

(31)

Thematrix 𝐽(𝑓)has eigenvalues (0, −𝜇, −𝑎)𝑇, whichmeets the
requirement of a simple zero eigenvalue and others having
negative real part. A right eigenvector 𝜂 corresponding to the
zero eigenvalue is 𝜂 = (−(𝜇 + 𝑟)/𝜇, 1, −(𝜇 + 𝑟)/𝜇)

𝑇 and the left
eigenvector satisfying 𝜉𝜂 = 1 is 𝜉 = (0, 1, 0). For the system
(7), we can get

𝑎 =

3

∑

𝑖,𝑗,𝑘=1

𝜉
𝑘
𝜂
𝑖
𝜂
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(
Λ

𝜇
, 0,

Λ

𝜇
) = −

2

Λ
(𝜇 + 𝑟)

2

< 0,

𝑏 =

3

∑

𝑖,𝑘=1

𝜉
𝑘
𝜂
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝛽

(
Λ

𝜇
, 0,

Λ

𝜇
) =

Λ

𝜇
> 0.

(32)

Thus, 𝑎 < 0, 𝑏 > 0, by item (iv) ofTheorem 4.1 in [42]; we can
give the following result.

Theorem 7. The disease-free equilibrium 𝐸
0
for system (7) is

locally asymptotically stable for 𝑅 near 1.

4. Disease Impulsive Control for System (9)
4.1. The Existence and Globally Asymptotical Stability of the
“Infection-Free” Periodic Solution of System (9). We demon-
strate the expression of the infectives-free solution of the
system (9) firstly, in which the infectives are entirely absent
from the population permanently. Consider the infectives-
free subsystem of system (9) in the form

𝑆
󸀠

(𝑡) = Λ − 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑍
󸀠

(𝑡) = 𝑎 (𝑆 (𝑡) − 𝑍 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡
+
) = (1 − 𝛿) 𝑆 (𝑡) , 𝑡 = 𝑛𝑇,

𝑍 (𝑡
+
) = 𝑍 (𝑡) , 𝑡 = 𝑛𝑇.

(33)

By Lemma 3, system (33) has a unique positive 𝑇-periodic
solution (𝑆

∗
(𝑡), 𝑍
∗
(𝑡)) given by

𝑆
∗

(𝑡) =
Λ

𝜇
(1 −

𝛿𝑒
−𝜇(𝑡−𝑛𝑇)

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) , 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇,

𝑍
∗

(𝑡)

=
Λ

𝜇
(1 + 𝑎𝛿

𝑒
−𝑎(𝑡−𝑛𝑇)

(1 − 𝑒
−𝜇𝑇

) − 𝑒
−𝜇(𝑡−𝑛𝑇)

(1 − 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) ,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇,

𝑆
∗
(0
+
) =

Λ

𝜇
(1 −

𝛿

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑍
∗
(0
+
) =

Λ

𝜇
(1 −

𝑎𝛿 (𝑒
−𝜇𝑇

− 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) ,

(34)

and for each solution, 𝑆(𝑡) → 𝑆
∗
(𝑡), 𝑍(𝑡) → 𝑍

∗
(𝑡) as 𝑡 →

∞. Hence, we haveTheorem 8.

Theorem 8. The system (9) has an “infection-free” periodic
solution (𝑆

∗
(𝑡), 0, 𝑍

∗
(𝑡)) for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ 𝑁.

In next section, we will prove that “infection-free”
periodic solution (𝑆

∗
(𝑡), 0, 𝑍

∗
(𝑡)) is globally asymptotically

stable.

Theorem 9. Let (𝑆(𝑡), 𝐼(𝑡), 𝑍(𝑡)) be any solution of (9), and
then (𝑆

∗
(𝑡), 0, 𝑍

∗
(𝑡)) is globally asymptotically stable provided

R < 1, where R = ((𝛽Λ/𝜇)(𝑇 − 𝛿(1 − 𝑒
−𝜇𝑇

)/𝜇(1 − (1 −

𝛿)𝑒
−𝜇𝑇

)))/(𝜇 + 𝑟)𝑇.

Proof. Firstly, we will prove the local stability. The local sta-
bility of periodic solution (𝑆

∗
(𝑡), 0, 𝑍

∗
(𝑡))may be determined

by considering the behavior of small amplitude perturbations
of the solution. This may be written as

(

𝑢 (𝑡)

V (𝑡)
𝑤 (𝑡)

) = Φ (𝑡)(

𝑢 (0)

V (0)
𝑤 (0)

) , 0 ≤ 𝑡 < 𝑇, (35)

where Φ satisfies

𝑑Φ (𝑡)

𝑑𝑡
= (

−𝜇 −𝛽𝑍
∗
(𝑡) 0

0 𝛽𝑍
∗
(𝑡) − 𝜇 − 𝑟 0

𝑎 0 −𝑎

)Φ (𝑡) , (36)

and Φ(0) = 𝐸, the identity matrix. Hence, the fundamental
solution matrix is

Φ (𝑡) = (

𝑒
−𝜇𝑡

𝐴 0

0 𝑒
∫
𝑡

0
(𝛽𝑍
∗
(𝑠)−𝜇−𝑟)𝑑𝑠

0

𝐶 0 𝑒
−𝑎𝑡

). (37)
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There is no need to calculate the exact form of𝐴,𝐶 as it is not
required in the analysis that follows. The linearization of the
fourth, fifth, and sixth equations of system (9) becomes

(

𝑢 (𝑛𝑇
+
)

V (𝑛𝑇+)
𝑤 (𝑛𝑇

+
)

) = (

1 − 𝛿 0 0

0 1 0

0 0 1

)(

𝑢 (𝑛𝑇)

V (𝑛𝑇)

𝑤 (𝑛𝑇)

) . (38)

The stability of the periodic solution (𝑆
∗
(𝑡), 0, 𝑍

∗
(𝑡)) is

determined by the eigenvalues of

𝑀 = (

1 − 𝛿 0 0

0 1 0

0 0 1

)Φ (𝑇) , (39)

which are

𝜆
1
= (1 − 𝛿) 𝑒

−𝜇𝑇
< 1, 𝜆

2
= 𝑒
−𝑎𝑇

< 1,

𝜆
3
= 𝑒
∫
𝑇

0
(𝛽𝑍
∗
(𝑡)−𝜇−𝑟)𝑑𝑡

.

(40)

According to Floquet theory (see [43]), (𝑆
∗
(𝑡), 0, 𝑍

∗
(𝑡)) is

locally stable if |𝜆
3
| < 1.

Denote

R =

(𝛽Λ/𝜇) (𝑇 − 𝛿 (1 − 𝑒
−𝜇𝑇

) /𝜇 (1 − (1 − 𝛿) 𝑒
−𝜇𝑇

))

(𝜇 + 𝑟) 𝑇
,

(41)

ForR < 1, we have

∫

𝑇

0

(𝛽𝑍
∗

(𝑡) − 𝜇 − 𝑟) 𝑑𝑡 < 0, (42)

which leads to |𝜆
3
| < 1. Thus the periodic solution (𝑆

∗
(𝑡), 0,

𝑍
∗
(𝑡)) is locally stable.
In the following, we prove the global attractivity. Since

R < 1 holds, we have

𝛽Λ

𝜇
(𝑇 −

𝛿 (1 − 𝑒
−𝜇𝑇

)

𝜇 (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) − (𝜇 + 𝑟) 𝑇 < 0. (43)

We can choose a 𝜀 > 0 small enough such that

𝜂 = 𝛽
Λ

𝜇
((1 + 2𝜀) 𝑇 −

𝛿 (1 − 𝑒
−𝜇𝑇

)

𝜇 (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
)

− (𝜇 + 𝑟) 𝑇 < 0.

(44)

Note that 𝑆󸀠(𝑡) ≤ Λ−𝜇𝑆(𝑡), by impulsive differential inequali-
ties, we have

𝑆 (𝑡) < 𝑆
∗

(𝑡) + 𝜀 (45)

for all 𝑡 large enough. For simplification, we may assume that
(45) holds for all 𝑡 ≥ 0. From the third equation of system (9)
and (45), we get

𝑍
󸀠

(𝑡) ≤ 𝑎 (𝑆
∗

(𝑡) + 𝜀 − 𝑍 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑍 (𝑡
+
) = 𝑍 (𝑡) , 𝑡 = 𝑛𝑇.

(46)

By impulsive differential inequalities, we have

𝑍 (𝑡) < 𝑃
∗

(𝑡) + 𝜀, (47)

where𝑃∗(𝑡) is the periodic solution of the following equation:

𝑃
󸀠

(𝑡) = 𝑎 (𝑆
∗

(𝑡) + 𝜀 − 𝑃 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑃 (𝑡
+
) = 𝑃 (𝑡) , 𝑡 = 𝑛𝑇,

𝑃
∗

(𝑡)

=
Λ

𝜇
(1 + 𝑎𝛿

𝑒
−𝑎(𝑡−𝑛𝑇)

(1 − 𝑒
−𝜇𝑇

) − 𝑒
−𝜇(𝑡−𝑛𝑇)

(1 − 𝑒
−𝑎𝑇

)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
)

+ 𝜀, 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇.

(48)

From the second and fifth equations of the system (9), we
have

𝐼
󸀠

(𝑡) ≤ 𝛽𝐼 (𝑡) (𝑃
∗

(𝑡) + 𝜀) − 𝜇𝐼 (𝑡) − 𝑟𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝐼 (𝑡
+
) = 𝐼 (𝑡) , 𝑡 = 𝑛𝑇,

(49)

which leads to

𝐼 ((𝑛 + 1) 𝑇)

≤ 𝐼 (𝑛𝑇
+
) exp∫

(𝑛+1)𝑇

𝑛𝑇

(𝛽 (𝑃
∗

(𝑡) + 𝜀) − (𝜇 + 𝑟)) 𝑑𝑡

= 𝐼 (𝑛𝑇) exp∫

(𝑛+1)𝑇

𝑛𝑇

(𝛽 (𝑃
∗

(𝑡) + 𝜀) − (𝜇 + 𝑟)) 𝑑𝑡

= 𝐼 (𝑛𝑇) 𝑒
𝜂
.

(50)

Hence 𝐼(𝑛𝑇) ≤ 𝐼(0)𝑒
𝑛𝜂 and 𝐼(𝑛𝑇) → 0 as 𝑛 → +∞.

Therefore, 𝐼(𝑡) → 0 as 𝑡 → +∞, since 𝐼(𝑡) ≤ 𝐼(𝑛𝑇) for
𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇.

Next, we prove that 𝑆(𝑡) → 𝑆
∗
(𝑡), 𝑍(𝑡) → 𝑍

∗
(𝑡) as 𝑡 →

+∞. For all 𝜀 > 0, there must exist a 𝑇
1

> 0 such that 0 ≤

𝐼(𝑡) < 𝜀 for 𝑡 > 𝑇
1
. Without loss of generality, we may assume

that 0 ≤ 𝐼(𝑡) < 𝜀 for all 𝑡 ≥ 0, and then from system (9), we
have

Λ −
𝛽Λ𝜀

𝜇
− 𝜇𝑆 (𝑡) ≤ 𝑆

󸀠

(𝑡) ≤ Λ − 𝜇𝑆 (𝑡) . (51)

Then we have 𝑞(𝑡) < 𝑆(𝑡) < 𝑆
∗
(𝑡) + 𝜀

1
and 𝑞(𝑡) → 𝑞

∗
(𝑡) as

𝑡 → +∞, where 𝑞(𝑡) is the solution of

𝑞
󸀠

(𝑡) = Λ −
𝛽Λ𝜀

𝜇
− 𝜇𝑞 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑞 (𝑡
+
) = (1 − 𝛿) 𝑞 (𝑡) , 𝑡 = 𝑛𝑇,

𝑞 (0
+
) = 𝑆 (0

+
) ,

𝑞
∗

(𝑡) =
Λ (𝜇 − 𝛽𝜀)

𝜇2
(1 −

𝛿𝑒
−𝜇(𝑡−𝑛𝑇)

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇.

(52)
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Therefore, for any 𝜀
1

> 0, there exists a 𝑇
2

> 0 such that
𝑞
∗
(𝑡) − 𝜀

1
< 𝑆(𝑡) < 𝑆

∗
(𝑡) + 𝜀

1
. Let 𝜀 → 0; we have 𝑆∗(𝑡) − 𝜀

1
≤

𝑆(𝑡) ≤ 𝑆
∗
(𝑡) + 𝜀

1
for 𝑡 large enough, which implies 𝑆(𝑡) →

𝑆
∗
(𝑡) as 𝑡 → +∞.
Similarly, 𝑍(𝑡) → 𝑍

∗
(𝑡) as 𝑡 → +∞ can be analyzed by

the same method as the above, so we omit it. This completes
the proof.

4.2. Permanence of System (9)

Theorem 10. If R > 1, then system (9) is permanent, that is,
there exist three positive constants 𝑚

1
, 𝑚
2
, and 𝑚

3
such that

𝑆(𝑡) ≥ 𝑚
1
, 𝐼(𝑡) ≥ 𝑚

2
, and 𝑍(𝑡) ≥ 𝑚

3
for 𝑡 large enough.

Proof. Suppose that the𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑍(𝑡)) is any positive
solution of system (9). From system (9), we can get

𝑆
󸀠

(𝑡) ≥ Λ −
𝛽Λ
2

𝜇2
− 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡
+
) = (1 − 𝛿) 𝑆 (𝑡) , 𝑡 = 𝑛𝑇.

(53)

Consider the following impulsive differential equation:

𝐺
󸀠

(𝑡) = Λ −
𝛽Λ
2

𝜇2
− 𝜇𝐺 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝐺 (𝑡
+
) = (1 − 𝛿)𝐺 (𝑡) , 𝑡 = 𝑛𝑇,

𝐺 (0
+
) = 𝑆 (0

+
) .

(54)

Then, we have 𝑆(𝑡) ≥ 𝐺(𝑡) > 𝐺
∗
(𝑡) − 𝜀, where

𝐺
∗

(𝑡) =
Λ − 𝛽Λ

2
/𝜇
2

𝜇
(1 −

𝛿𝑒
−𝜇(𝑡−𝑛𝑇)

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇,

𝐺
∗

0
=

(Λ − 𝛽Λ
2
/𝜇
2
) (1 − 𝛿) (1 − 𝑒

−𝜇𝑇
)

𝜇 (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
.

(55)

So we have

𝑆 (𝑡) ≥ 𝐺 (𝑡) > 𝐺
∗

(𝑡) − 𝜀 > 𝐺
∗

0
− 𝜀 = 𝑚

1
> 0 (56)

for 𝑡 large enough. From (56) and the third and sixth
equations of the system (9), we have

𝑍
󸀠

(𝑡) > 𝑎 (𝑚
1
− 𝑍 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑍 (𝑡
+
) = 𝑍 (𝑡) , 𝑡 = 𝑛𝑇.

(57)

Consider the following system:

𝐻
󸀠

(𝑡) = 𝑎 (𝑚
1
− 𝐻 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝐻 (𝑡
+
) = 𝑍 (𝑡) , 𝑡 = 𝑛𝑇.

(58)

Obviously, 𝐻(𝑡) → 𝑚
1
as 𝑡 → ∞, Then there exists 𝜀 > 0

such that

𝑍 (𝑡) > 𝑚
1
− 𝜀 = 𝑚

3
> 0. (59)

Next, we prove that there exists a constant 𝑚
2
> 0 such

that 𝐼(𝑡) ≥ 𝑚
2
for 𝑡 large enough.Wewill do it in the following

two steps.
Step (I). Since R > 1, we can choose 𝑚

4
, 𝜀 > 0 small

enough such that

𝜔 = 𝛽((
Λ − 𝛽𝑚

4

𝜇
− 2𝜀)𝑇 −

𝛿 (Λ − 𝛽𝑚
4
) (1 − 𝑒

−𝜇𝑇
)

𝜇2 (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
)

− (𝜇 + 𝑟) 𝑇 > 0.

(60)

We will prove that 𝐼(𝑡) < (𝜇/Λ)𝑚
4
cannot hold for all 𝑡 ≥ 0.

Otherwise,

𝑆
󸀠

(𝑡) ≥ Λ − 𝛽𝑚
4
− 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡
+
) = (1 − 𝛿) 𝑆 (𝑡) , 𝑡 = 𝑛𝑇.

(61)

So we have 𝑆(𝑡) ≥ 𝑚(𝑡) > 𝑚
∗
(𝑡) − 𝜀 for 𝑡 large enough, where

𝑚(𝑡) is the solution of

𝑚
󸀠

(𝑡) = Λ − 𝛽𝑚
4
− 𝜇𝑚 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑚 (𝑡
+
) = (1 − 𝛿)𝑚 (𝑡) , 𝑡 = 𝑛𝑇,

(62)

𝑚
∗

(𝑡) =
Λ − 𝛽𝑚

4

𝜇
(1 −

𝛿𝑒
−𝜇(𝑡−𝑛𝑇)

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) ,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇,

𝑚
∗
=

Λ − 𝛽𝑚
4

𝜇
(1 −

𝛿

1 − (1 − 𝛿) 𝑒−𝜇𝑇
) .

(63)

From the third and sixth equations of the system (9), we have

𝑍
󸀠

(𝑡) ≥ 𝑎 (𝑚
∗

(𝑡) − 𝜀 − 𝑍 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑍 (𝑡
+
) = 𝑍 (𝑡) , 𝑡 = 𝑛𝑇,

(64)

and 𝑍(𝑡) > ℎ
∗
(𝑡) − 𝜀, where

ℎ
∗

(𝑡) =
Λ − 𝛽𝑚

4

𝜇
+

Λ − 𝛽𝑚
4

𝜇
𝑎𝛿

× (

(1 − 𝑒
−𝜇𝑇

) 𝑒
−𝑎(𝑡−𝑛𝑇)

− (1 − 𝑒
−𝑎𝑇

) 𝑒
−𝜇(𝑡−𝑛𝑇)

(𝑎 − 𝜇) (1 − 𝑒−𝑎𝑇) (1 − (1 − 𝛿) 𝑒−𝜇𝑇)
) − 𝜀.

(65)

So we have

𝐼
󸀠

(𝑡) ≥ (𝛽 (ℎ
∗

(𝑡) − 𝜀) − 𝜇 − 𝑟) 𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝐼 (𝑡
+
) = 𝐼 (𝑡) , 𝑡 = 𝑛𝑇.

(66)

Integrating (66) on (𝑛𝑇, (𝑛 + 1)𝑇], we have

𝐼 (𝑛 + 1) 𝑇

≥ 𝐼 (𝑛𝑇
+
) exp∫

(𝑛+1)𝑇

𝑛𝑇

(𝛽 (ℎ
∗

(𝑡) − 𝜀) − 𝜇 − 𝑟) 𝑑𝑡

= 𝐼 (𝑛𝑇) 𝑒
𝜔
.

(67)
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Then 𝐼(𝑛𝑇) ≥ 𝐼(0)𝑒
𝑛𝜔

→ ∞ as 𝑛 → ∞, which is a con-
tradiction to the boundedness of 𝐼(𝑡). Hence, there exists a
𝑡
1

> 0 such that 𝐼(𝑡
1
) ≥ (𝜇/Λ)𝑚

4
. For the sake of simpli-

fication, we let (𝜇/Λ)𝑚
4
be 𝑚
4
.

Step (II). If 𝐼(𝑡) ≥ 𝑚
4
for all 𝑡 ≥ 𝑡

1
, and we let 𝑚

2
= 𝑚
4
,

then our aim is obtained. Otherwise, let 𝑡∗ = inf
𝑡>𝑡
1

{𝑡 | 𝐼(𝑡) <

𝑚
4
}, there are two possible case for 𝑡∗.
Case (I). 𝑡∗ = 𝑛

1
𝑇, 𝑛
1
∈ 𝑍
+. Then 𝐼(𝑡) ≥ 𝑚

4
for 𝑡 ∈ [𝑡

1
, 𝑡
∗
)

and 𝐼(𝑡
∗
) = 𝑚

4
. Choose 𝑛

2
, 𝑛
3
∈ 𝑍
+
, such that

𝑛
2
𝑇 >

1

𝜇
ln 1 + 𝑚

∗

𝜀
, 𝑒

−(𝑛
2
+1)(𝜇+𝑟)𝑇

𝑒
𝑛
3
𝜔
> 1. (68)

Let 𝑇
󸀠

= (𝑛
2
+ 𝑛
3
)𝑇, we claim that there exists a 𝑡

2
∈

(𝑡
∗
, 𝑡
∗
+ 𝑇
󸀠
] such that 𝐼(𝑡

2
) > 𝑚

4
. Otherwise, consider (62)

with 𝑚(𝑛
1
𝑇
+
) = 𝑆(𝑛

1
𝑇
+
) for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇] and 𝑛

1
≤ 𝑛 ≤

𝑛
1
+ 𝑛
2
+ 𝑛
3
. We have

󵄨󵄨󵄨󵄨𝑚 (𝑡) − 𝑚
∗

(𝑡)
󵄨󵄨󵄨󵄨 ≤ (1 + 𝑚

∗
) 𝑒
−𝜇(𝑡−𝑡

∗
)
< 𝜀 (69)

for (𝑛
1
+ 𝑛
2
)𝑇 < 𝑡 ≤ (𝑛

1
+ 𝑛
2
+ 𝑛
3
)𝑇. So as in the above step

(I), we have

𝐼 (𝑡
∗
+ 𝑇
󸀠
) ≥ 𝐼 (𝑡

∗
+ 𝑛
2
𝑇) 𝑒
𝑛
3
𝜔
. (70)

From system (9), we get

𝐼
󸀠

(𝑡) ≥ (−𝜇 − 𝑟) 𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝐼 (𝑡
+
) = 𝐼 (𝑡) , 𝑡 = 𝑛𝑇,

(71)

for 𝑡 ∈ [𝑡
∗
, 𝑡
∗
+ 𝑛
2
𝑇]. Integrating (71) on [𝑡

∗
, 𝑡
∗
+ 𝑛
2
𝑇], we

have

𝐼 (𝑡
∗
+ 𝑛
2
𝑇) ≥ 𝑚

4
𝑒
(−𝜇−𝑟)𝑛

2
𝑇
. (72)

Thus, we have

𝐼 (𝑡
∗
+ 𝑇
󸀠
) ≥ 𝑚

4
𝑒
(−𝜇−𝑟)𝑛

2
𝑇
𝑒
𝑛
3
𝜔
> 𝑚
4
, (73)

which is a contradiction.
Let 𝑡̃ = inf

𝑡>𝑡
∗{𝑡 | 𝐼(𝑡) > 𝑚

4
}, and then for 𝑡 ∈

(𝑡
∗
, 𝑡̃), 𝐼(𝑡) ≤ 𝑚

4
and 𝐼(𝑡̃) = 𝑚

4
, since 𝐼(𝑡) is continuous

and 𝐼(𝑡
+
) = 𝐼(𝑡) when 𝑡 = 𝑛𝑇. For 𝑡 ∈ (𝑡

∗
, 𝑡̃), suppose

𝑡̃ ∈ (𝑡
∗
+ (𝑘 − 1)𝑇, 𝑡

∗
+ 𝑘𝑇], 𝑘 ∈ 𝑍

+
, 𝑘 ≤ 𝑛

2
+ 𝑛
3
; from (71),

we have

𝐼 (𝑡) ≥ 𝐼 (𝑡
∗
) 𝑒
(−𝜇−𝑟)(𝑡−𝑡

∗
)
≥ 𝑚
4
𝑒
(𝑛
2
+𝑛
3
)(−𝜇−𝑟)𝑇

. (74)

Let 𝑚󸀠
2
= 𝑚
4
𝑒
(𝑛
2
+𝑛
3
)(−𝜇−𝑟)𝑇, hence; we have 𝐼(𝑡) ≥ 𝑚

󸀠

2
for 𝑡 ∈

(𝑡
∗
, 𝑡̃). For 𝑡 > 𝑡̃, the same arguments can be continued since

𝐼(𝑡̃) ≥ 𝑚
4
.

Case (II). 𝑡∗ ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
. Then 𝐼(𝑡) ≥ 𝑚

4
for 𝑡 ∈ [𝑡

1
, 𝑡
∗
]

and 𝐼(𝑡
∗
) = 𝑚

4
; suppose 𝑡∗ ∈ (𝑛

4
𝑇, (𝑛
4
+1)𝑇), 𝑛

4
∈ 𝑍
+
. There

are two possible cases for 𝑡 ∈ (𝑡
∗
, (𝑛
4
+ 1)𝑇), 𝑛

4
∈ 𝑍
+
.

Case (IIa). 𝐼(𝑡) ≤ 𝑚
4
for all 𝑡 ∈ (𝑡

∗
, (𝑛
4
+ 1)𝑇). We claim

that there must be a 𝑡
󸀠

2
∈ [(𝑛
4
+ 1)𝑇, (𝑛

4
+ 1)𝑇 + 𝑇

󸀠
] such that

𝐼(𝑡
󸀠

2
) > 𝑚

4
. Otherwise, consider (62) with 𝑚((𝑛

4
+ 1)𝑇

+
) =

𝑆((𝑛
4
+ 1)𝑇

+
); we have

󵄨󵄨󵄨󵄨𝑚 (𝑡) − 𝑚
∗

(𝑡)
󵄨󵄨󵄨󵄨 ≤ (1 + 𝑚

∗
) 𝑒
−𝜇(𝑡−(𝑛

4
+1)𝑇) (75)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇] and 𝑛
4
+ 1 ≤ 𝑛 ≤ 𝑛

4
+ 1 + 𝑛

2
+ 𝑛
3
. By a

similar argument as in step II case (I), we get

𝐼 ((𝑛
4
+ 1 + 𝑛

2
+ 𝑛
3
) 𝑇) ≥ 𝐼 ((𝑛

4
+ 1 + 𝑛

2
) 𝑇) 𝑒
𝑛
3
𝜔
. (76)

Since 𝐼(𝑡) ≤ 𝑚
4
for 𝑡 ∈ (𝑡

∗
, (𝑛
4
+ 1)𝑇), (71) holds on [𝑡

∗
, (𝑛
4
+

1 + 𝑛
2
)𝑇], so we have

𝐼 ((𝑛
4
+ 1 + 𝑛

2
) 𝑇) ≥ 𝑚

4
𝑒
(𝑛
2
+1)(−𝜇−𝑟)𝑇

. (77)

Thus

𝐼 ((𝑛
4
+ 1 + 𝑛

2
+ 𝑛
3
) 𝑇) ≥ 𝑚

4
𝑒
(𝑛
2
+1)(−𝜇−𝑟)𝑇

𝑒
𝑛
3
𝜔
> 𝑚
4
, (78)

which is a contradiction. Let 𝑡 = inf
𝑡>𝑡
∗{𝑡 | 𝐼(𝑡) > 𝑚

4
}, and

then for ∈ (𝑡
∗
, 𝑡), 𝐼(𝑡) ≤ 𝑚

4
and 𝐼(𝑡) = 𝑚

4
. For 𝑡 ∈ (𝑡

∗
, 𝑡),

suppose 𝑡 ∈ (𝑛
4
𝑇 + (𝑘

󸀠
− 1)𝑇, 𝑛

4
𝑇 + 𝑘

󸀠
𝑇], 𝑘
󸀠

∈ 𝑍
+
, 𝑘
󸀠

≤

1 + 𝑛
2
+ 𝑛
3
, we have

𝐼 (𝑡) ≥ 𝑚
4
𝑒
(1+𝑛
2
+𝑛
3
)(−𝜇−𝑟)𝑇

. (79)

Let𝑚
2
= 𝑚
4
𝑒
(1+𝑛
2
+𝑛
3
)(−𝜇−𝑟)𝑇

< 𝑚
󸀠

2
, so 𝐼(𝑡) ≥ 𝑚

2
for 𝑡 ∈ (𝑡

∗
, 𝑡).

For 𝑡 > 𝑡, the same arguments can be continued since 𝐼(𝑡) ≥

𝑚
4
.
Case (IIb). There exists a 𝑡 ∈ (𝑡

∗
, (𝑛
4
+ 1)𝑇) such that

𝐼(𝑡) > 𝑚
4
. Let 𝑡∗∗ = inf

𝑡>𝑡
∗{𝑡 | 𝐼(𝑡) > 𝑚

4
}, and then for

𝑡 ∈ (𝑡
∗
, 𝑡
∗∗

), 𝐼(𝑡) ≤ 𝑚
4
and 𝐼(𝑡

∗∗
) = 𝑚

4
. For 𝑡 ∈ (𝑡

∗
, 𝑡
∗∗

),
integrating (71) on (𝑡

∗
, 𝑡
∗∗

), we have

𝐼 (𝑡) ≥ 𝐼 (𝑡
∗
) 𝑒
(−𝜇−𝑟)(𝑡−𝑡

∗
)
≥ 𝑚
4
𝑒
(−𝜇−𝑟)𝑇

> 𝑚
2
. (80)

So, 𝐼(𝑡) ≥ 𝑚
2
for 𝑡 ∈ (𝑡

∗
, 𝑡
∗∗

). Since 𝐼(𝑡
∗∗

) ≥ 𝑚
4
, for 𝑡 > 𝑡

∗∗,
the same arguments can be continued.

Hence, 𝐼(𝑡) ≥ 𝑚
2
for all 𝑡 ≥ 𝑡

1
. The proof is completed.

5. Numerical Analysis and Conclusion

To verify the theoretical results obtained in this paper,
we will give some numerical simulations. We consider the
hypothetical set of parameter values as Λ = 0.2, 𝜇 = 0.2,
𝛽 = 0.1, 𝑟 = 0.3, and 𝑎 = 0.1 with (𝑆

0
, 𝐼
0
, 𝑍
0
) = (0.7, 0.3, 0.3).

By calculation, we know that 𝑅 = 0.2 < 1, and according
toTheorem 5, and we know that the disease-free equilibrium
𝐸
0
(1, 0, 1) of system (7) is locally asymptotically stable for this

case (see Figure 1). We set the hypothetical set of parameter
values as Λ = 1.8, 𝜇 = 0.2, 𝛽 = 0.08, 𝑟 = 0.3, 𝑎 = 0.1

with (𝑆
0
, 𝐼
0
, 𝑍
0
) = (0.7, 0.3, 0.3). By calculation, we know that

𝑅 = 1.44 > 1, and according to Theorem 6, we know that
the endemic equilibrium 𝐸

∗
(6.25, 1.1, 6.25) of system (7) is

locally asymptotically stable for this case (see Figure 2).
On the other hand, we consider the hypothetical set of

parameter values as Λ = 1, 𝜇 = 0.2, 𝛽 = 0.5, 𝑟 = 0.6, 𝑎 = 3,
and 𝑇 = 1 with (𝑆

0
, 𝐼
0
, 𝑍
0
) = (0.7, 0.3, 0.3). If 𝛿 = 0.8,

by calculation, we know that R = 0.4155 < 1. According
to Theorem 9, we know that the “infection-free” periodic
solution of system (9) is globally asymptotically stable for this
case (see Figure 3). We can explain this in the epidemiology
that if we take such a strategy by improving vaccination
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Figure 1: Illustration of basic behavior of system (7) on the threshold values 𝑅 = 0.2 < 1, where Λ = 0.2, 𝜇 = 0.2, 𝛽 = 0.1, 𝑟 = 0.3, 𝑎 = 0.1,
the initial value is (𝑆

0
, 𝐼
0
, 𝑍
0
) = (0.7, 0.3, 0.3), and 𝐸

0
= (1, 0, 1).



Journal of Applied Mathematics 11

S

I

Z

8

7

6

5

4

3

2

1

100 200 300 400 500

(a) Time series of 𝑆(𝑡), 𝐼(𝑡), 𝑍(𝑡)

2

1.5

1

0.5

1 2 3 4 5 6 7 8

I

S

(b) Phase portrait of 𝑆(𝑡), 𝐼(𝑡)

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

Z

S

(c) Phase portrait of 𝑆(𝑡), 𝑍(𝑡)

6.25004

6.25002

6.25000

6.24998

6.24996

6.24994

1.09997 1.09999 1.10001 1.10003 1.10005

Z

I

(d) Phase portrait of 𝐼(𝑡), 𝑍(𝑡)

0
2

4
6

8
10

0
0.5

1
1.5

2
2.5
0

2

4

6

8

10

S

Z

I

(e) Phase portrait of 𝑆(𝑡), 𝐼(𝑡), 𝑍(𝑡)
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Figure 4: Illustration of basic behavior of system (9) on the threshold values R = 1.4831 > 1, where Λ = 1, 𝜇 = 0.2, 𝛽 = 0.5, 𝑟 = 0.6, 𝑎 =

3, 𝑇 = 1, and 𝛿 = 0.2.
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proportion of susceptible persons in practice, as a result, the
infectious population vanishes; that is, diseases eliminate.
Figures 3(b), 3(c), 3(d), and 3(e) show the “infection-free”
periodic solution under R = 0.4155 < 1. In contrast, if we
decrease vaccination proportion of susceptible persons to 0.2,
the diseases will be permanent (in this caseR = 1.4831.) (see
Figure 4). Comparing Figure 1with Figure 3 and Figure 2with
Figure 4, we find that the impulse vaccination proportion of
susceptible persons has played a very important role in the
actual epidemic prevention.

In this paper, a SIR epidemic model with distributed
delay is proposed.The dynamics behavior of the model with-
out vaccination or under impulsive vaccination is studied,
respectively. By using the Jacobian matrix, the stability of
the equilibrium points of the system without vaccination is
analyzed and by using Floquet’s theorem, small-amplitude
perturbation skills and comparison theorem the sufficient
conditions of globally asymptotic stability of “infection-free”
periodic solution and the permanence of the model under
impulsive vaccination are obtained. Lastly, we give some
numerical simulation to illustrate our main conclusions. We
think our mathematical results would be helpful in diseases
control.

Appendix

The Second Additive Compound Matrix

Let 𝐴 = (𝑎
𝑖𝑗
) be a 3 × 3 matrix. Then its second additive

compound matrix is as follows:

𝐴
[2]

= (

𝑎
11

+ 𝑎
22

𝑎
23

−𝑎
13

𝑎
32

𝑎
11

+ 𝑎
33

𝑎
12

−𝑎
31

𝑎
21

𝑎
22

+ 𝑎
33

) . (A.1)

Proposition. Let 𝜎𝐴 = 𝜆
𝑖
: 𝑖 = 1, 2, 3 be the spectrum of 𝐴.

Then the spectrum of 𝐴[2] is 𝜎𝐴[2] = 𝜆
𝑖
+ 𝜆
𝑗
: 1 ≤ 𝑖 < 𝑗 ≤ 3.
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for impulsive integro-differential equations and applications,”
Journal of Mathematical Analysis and Applications, vol. 328, no.
2, pp. 1343–1368, 2007.

[34] X. Y. Song and Y. F. Li, “Dynamic behaviors of the periodic
predator-prey model with modified Leslie-Gower Holling-type
II schemes and impulsive effect,”Nonlinear Analysis: RealWorld
Applications, vol. 9, no. 1, pp. 64–79, 2008.

[35] S. J. Gao, Z. D. Teng, and D. H. Xie, “Analysis of a delayed
SIR epidemic model with pulse vaccination,” Chaos, Solitons &
Fractals, vol. 40, no. 2, pp. 1004–1011, 2009.

[36] J. Hui and L.-S. Chen, “Impulsive vaccination of SIR epidemic
models with nonlinear incidence rates,” Discrete and Continu-
ous Dynamical Systems B, vol. 4, no. 3, pp. 595–605, 2004.

[37] Z. H. Lu, X. B. Chi, and L. S. Chen, “The effect of constant and
pulse vaccination on SIR epidemic model with horizontal and
vertical transmission,” Mathematical and Computer Modelling,
vol. 36, no. 9-10, pp. 1039–1057, 2002.

[38] X. Z. Meng, L. S. Chen, and H. D. Cheng, “Two profitless delays
for the SEIRS epidemic disease model with nonlinear incidence
and pulse vaccination,” Applied Mathematics and Computation,
vol. 186, no. 1, pp. 516–529, 2007.

[39] X. Z. Meng and L. S. Chen, “The dynamics of a new SIR
epidemicmodel concerning pulse vaccination strategy,”Applied
Mathematics andComputation, vol. 197, no. 2, pp. 582–597, 2008.

[40] A. D’Onofrio, “On pulse vaccination strategy in the SIR epi-
demic model with vertical transmission,” Applied Mathematics
Letters, vol. 18, no. 7, pp. 729–732, 2005.

[41] X. Y. Song, Y. Jiang, and H. M. Wei, “Analysis of a saturation
incidence SVEIRS epidemic model with pulse and two time
delays,” Applied Mathematics and Computation, vol. 214, no. 2,
pp. 381–390, 2009.

[42] C. Castillo-Chavez and B. J. Song, “Dynamical models of
tuberculosis and their applications,” Mathematical Biosciences
and Engineering, vol. 1, no. 2, pp. 361–404, 2004.
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