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We investigate the state-feedback stabilization problem for a class of stochastic feedforward nonlinear time-delay systems. By using
the homogeneous domination approach and choosing an appropriate Lyapunov-Krasovskii functional, the delay-independent state-
feedback controller is explicitly constructed such that the closed-loop system is globally asymptotically stable in probability. A
simulation example is provided to demonstrate the effectiveness of the proposed design method.

1. Introduction

In recent years, the study on stochastic lower-triangular
nonlinear systems has received considerable attention from
both theoretical and practical point of views see, for instance,
[1–19] and the references therein.This paper will further con-
sider the following stochastic feedforward nonlinear time-
delay systems described by
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where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛 and 𝑢 ∈ 𝑅 are the system state

and input signal, respectively, 𝑥
𝑖
= (𝑥
𝑖
, . . . , 𝑥

𝑛
)
𝑇, 𝑥
𝑖
(𝑡−𝑑(𝑡)) =

(𝑥
𝑖
(𝑡−𝑑(𝑡)), . . . , 𝑥

𝑛
(𝑡−𝑑(𝑡)))

𝑇 is the time-delayed state vector,

and 𝑑(𝑡) : 𝑅
+

→ [0, 𝑑] is the time-varying delay. 𝜔 is
an 𝑚-dimensional standard Wiener process defined on the
complete probability space (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃) with Ω being

a sample space, F being a 𝜎-field, {F
𝑡
}
𝑡≥0

being a filtration,
and 𝑃 being a probability measure. 𝑓

𝑖
: 𝑅
𝑛−𝑖−1

× 𝑅
𝑛−𝑖−1

→ 𝑅

and 𝑔
𝑗
: 𝑅
𝑛−𝑗

× 𝑅
𝑛−𝑗

→ 𝑅
𝑚 are assumed to be locally

Lipschitz with 𝑓
𝑖
(0, 0) = 0 and 𝑔

𝑗
(0, 0) = 0, 𝑖 = 1, . . . , 𝑛 − 2,

𝑗 = 1, . . . , 𝑛 − 1.
Feedforward (also called upper-triangular) system is

another important class of nonlinear systems. Firstly, from a
theoretical point of view, since they are not feedback lineariz-
able and maybe not stabilized by applying the conventional
backstepping method, the stabilization problem of these sys-
tems is more difficult than that of lower-triangular systems.
Secondly, many physical devices, such as the cart-pendulum
system in [20] and the ball-beam system with a friction term
in [21], can be described by equations with the feedforward
structure. In the recent papers, the stabilization problems for
feedforward nonlinear (or time-delay) systems have achieved
remarkable development; see, for example, [22–29] and the
references therein.

However, all these above-mentioned results are limited to
deterministic systems. There are fewer results on stochastic
feedforward nonlinear systems until now, due to the special
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characteristics of this system. To the best of the authors’
knowledge, [30] is the only paper to consider this kind of
stochastic feedforward nonlinear systems, but the assump-
tions on the nonlinearities are restrictive.

The purpose of this paper is to further weaken the
assumptions on the drift and diffusion terms of system
(1) and solve the state-feedback stabilization problem. By
using the homogeneous domination approach in [26] and
choosing an appropriate Lyapunov-Krasovskii functional,
a delay-independent state-feedback controller is explicitly
constructed such that the closed-loop system is globally
asymptotically stable in probability.

The paper is organized as follows. Section 2 provides
some preliminary results. The design and analysis of state-
feedback controller are given in Sections 3 and 4, respectively,
following a simulation example in Section 5. Section 6 con-
cludes this paper.

2. Preliminary Results

The following notations, definitions, and lemmas are to be
used throughout the paper.

𝑅
+
denotes the set of all nonnegative real numbers, and

𝑅
𝑛 denotes the real 𝑛-dimensional space. For a given vector

or matrix 𝑋, 𝑋𝑇 denotes its transpose, Tr{𝑋} denotes its
trace when 𝑋 is square, and |𝑋| is the Euclidean norm of
a vector 𝑋. C([−𝑑, 0]; 𝑅𝑛) denotes the space of continuous
𝑅
𝑛-value functions on [−𝑑, 0] endowed with the norm ‖ ⋅ ‖

defined by ‖𝑓‖ = sup
𝑥∈[−𝑑,0]

|𝑓(𝑥)| for 𝑓 ∈ C([−𝑑, 0]; 𝑅𝑛);
C𝑏F0([−𝑑, 0]; 𝑅

𝑛
) denotes the family of all F

0
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bounded C([−𝑑, 0]; 𝑅𝑛)-valued random variables 𝜉 = {𝜉(𝜃) :

−𝑑 ≤ 𝜃 ≤ 0}. C𝑖 denotes the set of all functions with
continuous 𝑖th partial derivatives; C2,1(𝑅𝑛 × [−𝑑,∞); 𝑅

+
)

denotes the family of all nonnegative functions 𝑉(𝑥, 𝑡) on
𝑅
𝑛
× [−𝑑,∞) which areC2 in 𝑥 andC1 in 𝑡;C2,1 denotes the

family of all functions which areC2 in the first argument and
C1 in the second argument.K denotes the set of all functions
𝑅
+

→ 𝑅
+
, which are continuous, strictly increasing, and

vanishing at zero;K
∞

denotes the set of all functions which
are of classK and unbounded;KL is the set of all functions
𝛽(𝑠, 𝑡): 𝑅

+
× 𝑅
+
→ 𝑅
+
, which are of K for each fixed 𝑡 and

decrease to zero as 𝑡 → ∞ for each fixed 𝑠.
Consider the following stochastic time-delay system:
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(2)

with initial data {𝑥(𝜃) : −𝑑 ≤ 𝜃 ≤ 0} = 𝜉 ∈ C𝑏F0([−𝑑, 0]; 𝑅
𝑛
),

where 𝑑(𝑡) : 𝑅
+
→ [0, 𝑑] is a Borel measurable function, 𝜔

is an𝑚-dimensional standardWiener process defined on the
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and 𝑔(0, 0, 𝑡) ≡ 0.

Definition 1 (see [6]). For any given 𝑉(𝑥(𝑡), 𝑡) ∈ C2,1

associated with system (2), the differential operator L is
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Definition 2 (see [6]). The equilibrium 𝑥(𝑡) = 0 of system
(2) is said to be globally asymptotically stable (GAS) in
probability if for any 𝜖 > 0 there exists a function 𝛽(⋅, ⋅) ∈

KL such that 𝑃{|𝑥(𝑡)| ≤ 𝛽(‖𝜉‖, 𝑡)} ≥ 1 − 𝜖 for any 𝑡 ≥ 0,
𝜉 ∈ C𝑏F0([−𝑑, 0]; 𝑅

𝑛
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1
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).

(ii) A function 𝑉 ∈ C(𝑅𝑛, 𝑅) is said to be homogeneous
of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
𝑉(Δ
𝜀
(𝑥)) = 𝜀

𝜏
𝑉(𝑥
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, . . . , 𝑥

𝑛
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(iii) A vector field ℎ ∈ C(𝑅𝑛, 𝑅𝑛) is said to be homoge-
neous of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such
that ℎ

𝑖
(Δ
𝜀
(𝑥)) = 𝜀

𝜏+𝑟𝑖ℎ
𝑖
(𝑥) for any 𝑥 ∈ 𝑅𝑛 \ {0}, 𝜀 > 0,

𝑖 = 1, . . . , 𝑛.
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𝑛

𝑖=1
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𝑖
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1/𝑝 for any 𝑥 ∈ 𝑅

𝑛, where 𝑝 ≥ 1 is
a constant. For simplicity, in this paper, one chooses
𝑝 = 2 and writes ‖𝑥‖

Δ
for ‖𝑥‖

Δ,2
.

Lemma 4 (see [6]). For system (2), if there exist a function
𝑉(𝑥(𝑡), 𝑡) ∈ C2,1(𝑅𝑛 × [−𝑑,∞); 𝑅

+
), two class K

∞
functions

𝛼
1
, 𝛼
2
, and a classK function 𝛼

3
such that

𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝛼

2
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−𝑑≤𝑠≤0

|𝑥 (𝑡 + 𝑠)|) ,

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ −𝛼
3
(|𝑥 (𝑡)|) ,

(4)

then there exists a unique solution on [−𝑑,∞) for (2), the equi-
librium 𝑥(𝑡) = 0 is GAS in probability, and 𝑃{lim

𝑡→∞
|𝑥(𝑡)| =

0} = 1.

Lemma 5 (see [26]). Given a dilation weight Δ = (𝑟
1
, . . . , 𝑟

𝑛
),

suppose that 𝑉
1
(𝑥) and 𝑉

2
(𝑥) are homogeneous functions

of degrees 𝜏
1
and 𝜏

2
, respectively. Then 𝑉

1
(𝑥)𝑉
2
(𝑥) is also

homogeneous with respect to the same dilation weight Δ.
Moreover, the homogeneous degree of 𝑉

1
⋅ 𝑉
2
is 𝜏
1
+ 𝜏
2
.

Lemma 6 (see [26]). Suppose that 𝑉 : 𝑅
𝑛

→ 𝑅 is a
homogeneous function of degree 𝜏 with respect to the dilation
weight Δ; then (i) 𝜕𝑉/𝜕𝑥

𝑖
is homogeneous of degree 𝜏 − 𝑟

𝑖
with

𝑟
𝑖
being the homogeneous weight of 𝑥

𝑖
; (ii) there is a constant 𝑐

such that 𝑉(𝑥) ≤ 𝑐‖𝑥‖
𝜏

Δ
. Moreover, if 𝑉(𝑥) is positive definite,

then 𝑉(𝑥) ≥ 𝑐‖𝑥‖
𝜏

Δ
, where 𝑐 is a positive constant.
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Lemma 7 (see [5]). Let 𝑐 and 𝑑 be positive constants. For any
positive number 𝛾, then |𝑥|𝑐|𝑦|𝑑 ≤ (𝑐/(𝑐 + 𝑑))𝛾|𝑥|

𝑐+𝑑
+ (𝑑/(𝑐 +

𝑑))𝛾
−𝑐/𝑑

|𝑦|
𝑐+𝑑.

3. Design of State-Feedback Controller

The objective of this paper is to design a state-feedback con-
troller for system (1) such that the equilibrium of the closed-
loop system is globally asymptotically stable in probability.

3.1. Assumptions. For system (1), we need the following
assumptions.

Assumption 8. For 𝑖 = 1, . . . , 𝑛 − 1, there exist positive
constants 𝑎

1
and 𝑎
2
such that

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥𝑖+2, 𝑥𝑖+2 (𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨

≤ 𝑎
1
(

𝑛

∑

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝑛

∑

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨
) ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑥𝑖+1, 𝑥𝑖+1 (𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨

≤ 𝑎
2
(

𝑛

∑

𝑗=𝑖+1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝑛

∑

𝑗=𝑖+1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨
) ,

(5)

where 𝑥
𝑛+1

= 𝑥
𝑛+1

(𝑡 − 𝑑(𝑡)) = 0.

Assumption 9. The time-varying delay 𝑑(𝑡) satisfies ̇𝑑(𝑡) ≤

𝛾 < 1 for a constant 𝛾.

Remark 10. When 𝑥
𝑖+1

= 𝑥
𝑖+1
(𝑡 − 𝑑(𝑡)) = 0 in diffusion term

𝑔
𝑖
(𝑖 = 1, . . . , 𝑛−1), Assumption 8 reduces to the same formas

in [30], fromwhich one can see that system (1) ismore general
than [30].The significance and reasonability of Assumption 8
are illustrated in that paper.

Firstly, we introduce the following coordinate transfor-
mation:

𝜂
𝑖
=

𝑥
𝑖

𝜅𝑖−1
, V =

𝑢

𝜅𝑛
, 𝑖 = 1, . . . , 𝑛, (6)

where 0 < 𝜅 < 1 is a scalar to be designed. By (6), (1) can be
expressed as

𝑑𝜂
1
= 𝜅𝜂
2
𝑑𝑡 + 𝑓

1
(𝜂
3
, 𝜂
3
(𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔
𝑇

1
(𝜂
2
, 𝜂
2
(𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

...

𝑑𝜂
𝑛−2

= 𝜅𝜂
𝑛−1

𝑑𝑡 + 𝑓
𝑛−2

(𝜂
𝑛
, 𝜂
𝑛
(𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔
𝑇

𝑛−2
(𝜂
𝑛−1

, 𝜂
𝑛−1

(𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

𝑑𝜂
𝑛−1

= 𝜅𝜂
𝑛
𝑑𝑡 + 𝑔

𝑇

𝑛−1
(𝜂
𝑛
, 𝜂
𝑛
(𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

𝑑𝜂
𝑛
= 𝜅V𝑑𝑡,

(7)

where 𝑓
𝑖
= 𝑓
𝑖
/𝜅
𝑖−1, 𝑔
𝑖
= 𝑔
𝑖
/𝜅
𝑖−1, 𝑖 = 1, . . . , 𝑛 − 1, 𝑓

𝑛−1
= 0.

3.2. State-Feedback Controller Design. We construct a state-
feedback controller for system (7).

Step 1. Introducing 𝜉
1
= 𝜂
1
and choosing 𝑉

1
(𝜂
1
) = (1/4)𝜉

4

1
,

from (3) and (7), it follows that

L𝑉
1
= 𝜅𝜉
3

1
𝜂
2
+
𝜕𝑉
1

𝜕𝜂
1

𝑓
1
+
1

2
Tr{𝑔

1

𝜕
2
𝑉
1

𝜕𝜂2
1

𝑔
𝑇

1
} . (8)

The first virtual controller

𝜂
∗

2
= −𝑐
11
𝜉
1
=: −𝛼
1
𝜉
1
, 𝑐
11
> 0, (9)

leads to L𝑉
1
≤ −𝜅𝑐

11
𝜉
4

1
+ 𝜅𝜉
3

1
(𝜂
2
− 𝜂
∗

2
) + (𝜕𝑉

1
/𝜕𝜂
1
)𝑓
1
+

(1/2)Tr{𝑔
1
(𝜕
2
𝑉
1
/𝜕𝜂
2

1
)𝑔
𝑇

1
}.

Step i (𝑖 = 2, . . . , 𝑛). In this step, we can get the following
lemma.

Lemma 11. Suppose that at step 𝑖 − 1, there is a set of virtual
controllers 𝜂∗

1
, . . . , 𝜂

∗

𝑖
defined by

𝜂
∗

1
= 0, 𝜉

1
= 𝜂
1
− 𝜂
∗

1
= 𝜂
1
,

𝜂
∗

𝑘
= −𝛼
𝑘−1

𝜉
𝑘−1

, 𝜉
𝑘
= 𝜂
𝑘
− 𝜂
∗

𝑘
, 𝑘 = 2, . . . , 𝑖,

(10)

such that the (𝑖 − 1)th Lyapunov function 𝑉
𝑖−1
(𝜂
𝑖−1
) =

(1/4)∑
𝑖−1

𝑗=1
𝜉
4

𝑗
satisfies

L𝑉
𝑖−1

≤ −𝜅

𝑖−1

∑

𝑗=1

𝑐
𝑖−1,𝑗

𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖−1
(𝜂
𝑖
− 𝜂
∗

𝑖
)

+

𝑖−1

∑

𝑗=1

𝜕𝑉
𝑖−1

𝜕𝜂
𝑗

𝑓
𝑗
+
1

2

𝑖−1

∑

𝑝,𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑉
𝑖−1

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
} ,

(11)

where 𝛼
𝑗
, 𝑐
𝑖−1,𝑗

, 𝑗 = 1, . . . , 𝑖 − 1, are positive constants. Then
there exists a virtual control law 𝜂

∗

𝑖+1
= −𝛼
𝑖
𝜉
𝑖
such that

L𝑉
𝑖
≤ −𝜅

𝑖

∑

𝑗=1

𝑐
𝑖𝑗
𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖
(𝜂
𝑖+1

− 𝜂
∗

𝑖+1
)

+

𝑖

∑

𝑗=1

𝜕𝑉
𝑖

𝜕𝜂
𝑗

𝑓
𝑗
+
1

2

𝑖

∑

𝑝,𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑉
𝑖

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
} ,

(12)

where 𝑉
𝑖
(𝜂
𝑖
) = (1/4)∑

𝑖

𝑗=1
𝜉
4

𝑗
=: 𝑉
𝑖−1
(𝜂
𝑖−1
) + 𝑊
𝑖
(𝜂
𝑖
).

Proof. See the Appendix.

At step 𝑛, choosing 𝑉
𝑛
(𝜂
𝑛
) = (1/4)∑

𝑛

𝑖=1
𝜉
4

𝑖
and

V = 𝜂
∗

𝑛+1
= −𝛼
𝑛
𝜉
𝑛

= − (𝛼
𝑛
𝜂
𝑛
+ 𝛼
𝑛−1

𝜂
𝑛−1

+ ⋅ ⋅ ⋅ + 𝛼
1
𝜂
1
) ,

(13)
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with the help of (3), (12), and (13), one obtains

L𝑉
𝑛
≤ −𝜅

𝑛

∑

𝑖=1

𝑐
𝑛𝑖
𝜉
4

𝑖
+ 𝜅𝜉
3

𝑛
(V − 𝜂∗

𝑛+1
)

+

𝑛

∑

𝑖=1

𝜕𝑉
𝑛

𝜕𝜂
𝑖

𝑓
𝑖
+
1

2

𝑛

∑

𝑝,𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑉
𝑛

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
}

= −𝜅

𝑛

∑

𝑖=1

𝑐
𝑛𝑖
𝜉
4

𝑖
+
𝜕𝑉
𝑛

𝜕𝜂
𝐹 +

1

2
Tr{𝐺

𝜕
2
𝑉
𝑛

𝜕𝜂2
𝐺
𝑇
} ,

(14)

where 𝐹 = (𝑓
1
, . . . , 𝑓

𝑛−2
, 0, 0)
𝑇, 𝐺 = (𝑔

1
, . . . , 𝑔

𝑛−1
, 0), 𝜉
𝑛
=

𝜂
𝑛
− 𝜂
∗

𝑛
, 𝛼
𝑖
= 𝛼
𝑛
⋅ ⋅ ⋅ 𝛼
𝑖
, 𝑐
𝑛𝑖
, 𝑖 = 1, . . . , 𝑛, are positive constants.

The system (7) and (13) can be written as

𝑑𝜂 = 𝜅𝐸 (𝜂) 𝑑𝑡 + 𝐹 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝐺
𝑇
(𝜂, 𝜂 (𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

(15)

where 𝜂 = 𝜂
𝑛
= (𝜂
1
, . . . , 𝜂

𝑛
)
𝑇, 𝐸(𝜂) = (𝜂

2
, . . . , 𝜂

𝑛
, V)𝑇, and 𝐹

and 𝐺 are defined as in (14). Introducing the dilation weight
Δ = (1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝜂1 ,...,𝜂𝑛

), by (10) and 𝑉
𝑛
(𝜂) = (1/4)∑

𝑛

𝑖=1
𝜉
4

𝑖
, one has

𝑉
𝑛
(Δ
𝜀
(𝜂))

=
1

4

𝑛

∑

𝑖=1

(𝜀𝜂
𝑖
+ 𝛼
𝑖−1
𝜀𝜂
𝑖−1

+ ⋅ ⋅ ⋅ + 𝛼
𝑖−1

⋅ ⋅ ⋅ 𝛼
1
𝜀𝜂
1
)
4

= 𝜀
4
𝑉
𝑛
(𝜂) ,

(16)

from which and Definition 3, we know that𝑉
𝑛
(𝜂) is homoge-

neous of degree 4.

4. Stability Analysis

We state the main result in this paper.

Theorem 12. If Assumptions 8 and 9 hold for the stochastic
feedforward nonlinear time-delay system (1), under the state-
feedback controller 𝑢 = 𝜅

𝑛V and (13), then

(i) the closed-loop system has a unique solution on
[−𝑑,∞);

(ii) the equilibrium at the origin of the closed-loop system
is GAS in probability.

Proof. We proveTheorem 12 by four steps.

Step 1. Since 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 = 1, . . . , 𝑛, are assumed to be locally

Lipschitz, so the system consisting of (13) and (15) satisfies
the locally Lipschitz condition.

Step 2. We consider the following entire Lyapunov function
for system (15):

𝑉 (𝜂) = 𝑉
𝑛
(𝜂) +

(𝑐
02
+ 𝑐
03
) 𝜅
2

1 − 𝛾
∫

𝑡

𝑡−𝑑(𝑡)

󵄩󵄩󵄩󵄩𝜂(𝜎)
󵄩󵄩󵄩󵄩
4

Δ
𝑑𝜎, (17)

where 𝑐
02
and 𝑐
03
are positive parameters to be determined. It

is easy to verify that𝑉(𝜂) isC2 on 𝜂. Since𝑉
𝑛
(𝜂) is continuous,

positive definite, and radially unbounded, by Lemma 4.3 in
[31], there exist two classK

∞
functions 𝛽

1
and 𝛼

21
such that

𝛽
1
(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) ≤ 𝑉

𝑛
(𝜂) ≤ 𝛼

21
(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) . (18)

By Lemma 4.3 in [31] and Lemma 6, there exist positive
constants 𝑐 and 𝑐, class K

∞
functions 𝛼

22
and 𝛼

22
, and a

positive definite function 𝑈(𝜂) whose homogeneous degree
is 4 such that

𝑐
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
≤ 𝑈 (𝜂) ≤ 𝑐

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
,

𝛼
22
(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) ≤ 𝑈 (𝜂) ≤ 𝛼

22
(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) .

(19)

From 𝑑(𝑡) : 𝑅
+
→ [0, 𝑑] and (19), it follows that

(𝑐
02
+ 𝑐
03
) 𝜅
2

1 − 𝛾
∫

𝑡

𝑡−𝑑(𝑡)

󵄩󵄩󵄩󵄩𝜂 (𝜎)
󵄩󵄩󵄩󵄩
4

Δ
𝑑𝜎

≤ 𝑐∫

𝑡

𝑡−𝑑(𝑡)

𝛼
22
(
󵄨󵄨󵄨󵄨𝜂 (𝜎)

󵄨󵄨󵄨󵄨) 𝑑𝜎

𝜎=𝑠+𝑡

= 𝑐∫

0

−𝑑(𝑡)

𝛼
22
(
󵄨󵄨󵄨󵄨𝜂 (𝑠 + 𝑡)

󵄨󵄨󵄨󵄨) 𝑑 (𝑠 + 𝑡)

≤ 𝑐∫

0

−𝑑

𝛼
22
(
󵄨󵄨󵄨󵄨𝜂 (𝑠 + 𝑡)

󵄨󵄨󵄨󵄨) 𝑑 (𝑠 + 𝑡)

≤ 𝑐 sup
−𝑑≤𝑠≤0

𝛼
22
(
󵄨󵄨󵄨󵄨𝜂 (𝑠 + 𝑡)

󵄨󵄨󵄨󵄨)

≤ 𝛼
22
( sup
−𝑑≤𝑠≤0

󵄨󵄨󵄨󵄨𝜂 (𝑠 + 𝑡)
󵄨󵄨󵄨󵄨) ,

(20)

where 𝑐, 𝑐 are positive constants and 𝛼
22

is a class K
∞

function. Since |𝜂| ≤ sup
−𝑑≤𝑠≤0

|𝜂(𝑠 + 𝑡)|, 𝛼
21
(|𝜂|) ≤

𝛼
21
(sup
−𝑑≤𝑠≤0

|𝜂(𝑠 + 𝑡)|). Defining 𝛽
2
= 𝛼
21
+ 𝛼
22
, by (17), (18),

and (20), one gets

𝛽
1
(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) ≤ 𝑉 (𝜂) ≤ 𝛽

2
( sup
−𝑑≤𝑠≤0

󵄨󵄨󵄨󵄨𝜂 (𝑠 + 𝑡)
󵄨󵄨󵄨󵄨) . (21)

Step 3. By Lemma 6 and (14), there exists a positive constant
𝑐
01
such that

𝜕𝑉
𝑛

𝜕𝜂
𝜅𝐸 (𝜂) ≤ −𝑐

01
𝜅
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
. (22)

By Assumption 8, (6), and 0 < 𝜅 < 1, one has
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝜂
𝑖+2
, 𝜂
𝑖+2

(𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨󵄨

≤
𝑎
1
(∑
𝑛

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝜅
𝑗−1
𝜂
𝑗

󵄨󵄨󵄨󵄨󵄨
+ ∑
𝑛

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝜅
𝑗−1
𝜂
𝑗
(𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨
)

𝜅𝑖−1

≤ 𝑎
1
𝜅
2
(

𝑛

∑

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝜂
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝑛

∑

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝜂
𝑗
(𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨
)

≤ 𝛿
1
𝜅
2
(
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩Δ +

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩Δ) ,

(23)
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where 𝛿
1
is a positive constant. Using Lemmas 5–7 and (23),

one gets

𝜕𝑉
𝑛

𝜕𝜂
𝐹 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

=

𝑛−2

∑

𝑖=1

𝜕𝑉
𝑛

𝜕𝜂
𝑖

𝑓
𝑖
(𝜂
𝑖+2
, 𝜂
𝑖+2

(𝑡 − 𝑑 (𝑡)))

≤ 𝑐
02
𝜅
2

𝑛−2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
3

Δ
(
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩Δ +

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩Δ)

≤ 𝜅
2
(𝑐
02

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
+ 𝑐
02

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩
4

Δ
) ,

(24)

where 𝑐
02
, 𝑐
02
, and 𝑐

02
are positive constants. Similar to (23),

there is a positive constant 𝛿
2
such that

󵄨󵄨󵄨󵄨𝑔𝑖 (𝜂𝑖+1, 𝜂𝑖+1 (𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨 ≤ 𝛿
2
𝜅 (
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩Δ +

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩Δ) ,

(25)

from which and Lemmas 5–7, one gets

1

2
Tr{𝐺 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

𝜕
2
𝑉
𝑛

𝜕𝜂2
𝐺
𝑇
(𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))}

≤
1

2
𝑚√𝑚

𝑛−1

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑉
𝑛

𝜕𝜂
𝑖
𝜕𝜂
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔𝑖 (𝜂𝑖+1, 𝜂𝑖+1 (𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝜂
𝑗+1
, 𝜂
𝑗+1

(𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
03
𝜅
2

𝑛−1

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
2

Δ
(
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩Δ +

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩Δ)
2

≤ 𝜅
2
(𝑐
03

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
+ 𝑐
03

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩
4

Δ
) ,

(26)

where 𝑐
03
, 𝑐
03
, and 𝑐

03
are positive constants. With the help of

(3), (15), (17), (22), (24), (26), and Assumption 9, one has

L𝑉 ≤
𝜕𝑉
𝑛

𝜕𝜂
𝜅𝐸 (𝜂) +

𝜕𝑉
𝑛

𝜕𝜂
𝐹 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

+
1

2
Tr{𝐺 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

𝜕
2
𝑉
𝑛

𝜕𝜂2
𝐺
𝑇
(𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))}

+ (𝑐
02
+ 𝑐
03
) 𝜅
2
(

1

1 − 𝛾

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
−
󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))

󵄩󵄩󵄩󵄩
4

Δ
)

≤ −𝑐
01
𝜅
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
+ (𝑐
02
+ 𝑐
03
+
𝑐
02
+ 𝑐
03

1 − 𝛾
) 𝜅
2󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩
4

Δ

= −𝜅(𝑐
01
− (𝑐
02
+ 𝑐
03
+
𝑐
02
+ 𝑐
03

1 − 𝛾
) 𝜅)

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
.

(27)

Since 𝑐
01
is a constant independent of 𝑐

02
, 𝑐
03
, 𝑐
02
, 𝑐
03
, and

𝛾, by choosing

0 < 𝜅 < 𝜅
∗
=: min{1,

𝑐
01

𝑐
02
+ 𝑐
03
+ ((𝑐
02
+ 𝑐
03
) / (1 − 𝛾))

} .

(28)

Equation (27) becomes L𝑉 ≤ −𝑐
0
‖𝜂‖
4

Δ
, where 𝑐

0
is a

positive constant. By (19), one obtains

L𝑉 ≤ −
𝑐
0

𝑐
𝛼
22
(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) . (29)

By Steps 1–3 and Lemma 4, the system consisting of (13)
and (15) has a unique solution on [−𝑑,∞), 𝜂 = 0 is GAS in
probability, and 𝑃{lim

𝑡→∞
|𝜂| = 0} = 1.

Step 4. Since (6) is an equivalent transformation, so the
closed-loop system consisting of (1), 𝑢 = 𝜅

𝑛V, and (13) has
the same properties as the system (13) and (15). Theorem 12
holds.

Remark 13. In this paper, the homogeneous domination idea
is generalized to stochastic feedforward nonlinear time-delay
systems (1). The underlying philosophy of this approach
is that the state-feedback controller is first constructed for
system (7) without considering the drift and diffusion terms,
and then a low gain 𝜅 in (6) (whose the value range is (28)) is
introduced to state-feedback controller to dominate the drift
and diffusion terms.

Remark 14. Due to the special upper-triangular structure and
the appearance of time-varying delay, there is no efficient
method to solve the stabilization problem of system (1).
By combining the homogeneous domination approach with
stochastic nonlinear time-delay system criterion, the state-
feedback stabilization of system (1) was perfectly solved in
this paper.

Remark 15. One of the main obstacles in the stability analysis
is how to deal with the effect of time-varying delay. In this
paper, by constructing an appropriate Lyapunov-Krasovskii
functional (17), this problem was effectively solved.

Remark 16. It is worth pointing out that the rigorous proof of
Theorem 12 is not an easy job.

5. A Simulation Example

Consider the following stochastic nonlinear system:

𝑑𝑥
1
= 𝑥
2
𝑑𝑡 +

1

10
(𝑥
2
+ 𝑥
2
(𝑡 − 𝑑 (𝑡)) cos 𝑥

2
) 𝑑𝜔,

𝑑𝑥
2
= 𝑢𝑑𝑡,

(30)

where 𝑑(𝑡) = 1 + (1/2) sin 𝑡. It is easy to verify that
Assumptions 8 and 9 are satisfied with 𝑎

1
= 0, 𝑎

2
= 1/10,

and ̇𝑑(𝑡) = (1/2) cos 𝑡 < 1.

Design of Controller. Introducing the following coordinate
transformation:

𝜂
1
= 𝑥
1
, 𝜂

2
=
𝑥
2

𝜅
, V =

𝑢

𝜅2
, (31)

system (30) becomes

𝑑𝜂
1
= 𝜅𝜂
2
𝑑𝑡 + 𝑔

1
𝑑𝜔,

𝑑𝜂
2
= 𝜅V𝑑𝑡,

(32)
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Figure 1: (a) The response of the closed-loop system (30) and (b) the response of the controller (37).

where 𝑔
1
= (1/10)(𝜅𝜂

2
+𝜅𝜂
2
(𝑡−𝑑(𝑡)) cos 𝜅𝜂

2
). Choosing 𝜉

1
=

𝜂
1
and 𝑉

1
(𝜂
1
) = (1/4)𝜉

4

1
, we obtainL𝑉

1
≤ −2𝜅𝜉

4

1
+ 𝜅𝜉
3

1
(𝜂
2
−

𝜂
∗

2
) + (1/2)(𝜕

2
𝑉
1
/𝜕𝜂
2

1
)𝑔
2

1
, where 𝜂∗

2
= −2𝜂

1
=: −𝛼
1
𝜉
1
. By 𝜉
2
=

𝜂
2
− 𝜂
∗

2
and 𝑉

2
(𝜂
2
) = 𝑉

1
(𝜂
1
) + (1/4)𝜉

4

2
, a direct calculation

leads to

L𝑉
2
≤ −2𝜅𝜉

4

1
+ 𝜅𝜉
3

1
𝜉
2
+ 𝜅𝜉
3

2
V + 𝜅𝛼

1
𝜉
3

2
𝜂
2
+
1

2

𝜕
2
𝑉
2

𝜕𝜂2
1

𝑔
2

1
. (33)

By Lemma 7, one has

𝜉
3

1
𝜉
2
≤ 0.5𝜉

4

1
+ 0.8438𝜉

4

2
,

𝛼
1
𝜉
3

2
𝜂
2
≤ 0.5𝜉

4

1
+ 5.7797𝜉

4

2
.

(34)

Choosing

V = −7.6235𝜉
2
=: −𝛼
2
𝜉
2 (35)

and substituting (34) into (33), one gets

L𝑉
2
≤ −𝜅 (𝜉

4

1
+ 𝜉
4

2
) +

1

2

𝜕
2
𝑉
2

𝜕𝜂2
1

𝑔
2

1
. (36)

By (31) and (35), one obtains the actual controller

𝑢 = −𝛼
2
(𝜅𝑥
2
+ 𝛼
1
𝜅
2
𝑥
1
) . (37)

The Choice of 𝜅∗. Defining ‖𝜂‖
Δ
= (𝜂
2

1
+ 𝜂
2

2
)
1/2 and choosing

𝑉 (𝜂) = 𝑉
2
(𝜂) + 𝜅

2
∫

𝑡

𝑡−𝑑(𝑡)

󵄩󵄩󵄩󵄩𝜂 (𝜎)
󵄩󵄩󵄩󵄩
4

Δ
𝑑𝜎, (38)

by (3), (36), and 𝑑(𝑡) = 1 + (1/2) sin 𝑡, one obtains

L𝑉 ≤ −𝜅
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
+ 𝜅
2
(1.5

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
+ 0.5

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩
4

Δ
)

+ 𝜅
2
(
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
− 0.5

󵄩󵄩󵄩󵄩𝜂 (𝑡 − 𝑑 (𝑡))
󵄩󵄩󵄩󵄩
4

Δ
)

= −𝜅 (1 − 2.5𝜅)
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
4

Δ
,

(39)

from which we get the critical value 𝜅∗ = 0.4; that is, 𝜅 ∈

(0, 0.4).
In simulation, we choose the initial values 𝑥

1
(0) =

−0.8, 𝑥
2
(0) = 1, and 𝜅 = 0.3. Figure 1 demonstrates the

effectiveness of the state-feedback controller.

6. A Concluding Remark

By using the homogeneous domination approach, this paper
further studied the state-feedback stabilization problem for
a class of stochastic feedforward nonlinear time-delay sys-
tems (1). The delay-independent state-feedback controller is
explicitly constructed such that the closed-loop system is
globally asymptotically stable in probability.

There still exist some problems to be investigated. One is
to consider the output-feedback control of switched stochas-
tic system (1) by using average dwell time method in [32].
Another is to find a practical example (similar to [33–
35]) for system (1). The last is to generalize the networked
control systems (such as [36–41]) to stochastic feedforward
networked systems.
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Appendix

Proof of Lemma 11. According to (3), (7), (10), and (11), one
has

L𝑉
𝑖
≤ −𝜅

𝑖−1

∑

𝑗=1

𝑐
𝑖−1,𝑗

𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖−1
𝜉
𝑖
+

𝑖−1

∑

𝑗=1

𝜕𝑉
𝑖−1

𝜕𝜂
𝑗

𝑓
𝑗

+
1

2

𝑖−1

∑

𝑝, 𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑉
𝑖−1

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
}

+

𝑖

∑

𝑘=1

𝜕𝑊
𝑖

𝜕𝜂
𝑘

(𝜅𝜂
𝑘+1

+ 𝑓
𝑘
) +

1

2
Tr{𝑔

𝑖

𝜕
2
𝑊
𝑖

𝜕𝜂2
𝑖

𝑔
𝑇

𝑖
}

+

𝑖−1

∑

𝑗=1

Tr{𝑔
𝑖

𝜕
2
𝑊
𝑖

𝜕𝜂
𝑖
𝜕𝜂
𝑗

𝑔
𝑇

𝑗
} +

1

2

𝑖−1

∑

𝑝, 𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑊
𝑖

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
}

= −𝜅

𝑖−1

∑

𝑗=1

𝑐
𝑖−1,𝑗

𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖−1
𝜉
𝑖
+
𝜕𝑊
𝑖

𝜕𝜂
𝑖

𝜅𝜂
𝑖+1

+ (

𝑖−1

∑

𝑗=1

𝜕𝑉
𝑖−1

𝜕𝜂
𝑗

𝑓
𝑗
+

𝑖

∑

𝑘=1

𝜕𝑊
𝑖

𝜕𝜂
𝑘

𝑓
𝑘
) +

𝑖−1

∑

𝑘=1

𝜕𝑊
𝑖

𝜕𝜂
𝑘

𝜅𝜂
𝑘+1

+ (
1

2

𝑖−1

∑

𝑝, 𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑉
𝑖−1

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
} +

1

2
Tr{𝑔

𝑖

𝜕
2
𝑉
𝑖

𝜕𝜂2
𝑖

𝑔
𝑇

𝑖
}

+

𝑖−1

∑

𝑗=1

Tr{𝑔
𝑖

𝜕
2
𝑉
𝑖

𝜕𝜂
𝑖
𝜕𝜂
𝑗

𝑔
𝑇

𝑗
}

+
1

2

𝑖−1

∑

𝑝, 𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑊
𝑖

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
})

= −𝜅

𝑖−1

∑

𝑗=1

𝑐
𝑖−1,𝑗

𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖
𝜂
𝑖+1

+

𝑖

∑

𝑗=1

𝜕𝑉
𝑖

𝜕𝜂
𝑗

𝑓
𝑗

+
1

2

𝑖

∑

𝑝, 𝑞=1

Tr{𝑔
𝑝

𝜕
2
𝑉
𝑖

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
}

+ 𝜅𝜉
3

𝑖−1
𝜉
𝑖
− 𝜅𝜉
3

𝑖

𝑖−1

∑

𝑘=1

𝜕𝜂
∗

𝑖

𝜕𝜂
𝑘

𝜂
𝑘+1

.

(A.1)

We concentrate on the last two terms on the right-hand side
of (A.1).

Using (10) and Lemma 7, one obtains

𝜉
3

𝑖−1
𝜉
𝑖
≤ 𝑙
𝑖,𝑖−1,1

𝜉
4

𝑖−1
+ 𝜌
𝑖1
𝜉
4

𝑖
,

− 𝜉
3

𝑖

𝑖−1

∑

𝑘=1

𝜕𝜂
∗

𝑖

𝜕𝜂
𝑘

𝜂
𝑘+1

≤
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑖−1

∑

𝑘=1

𝛼
𝑖−1

⋅ ⋅ ⋅ 𝛼
𝑘
(𝜉
𝑘+1

− 𝛼
𝑘
𝜉
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
3

(

𝑖−1

∑

𝑘=1

(𝛼
𝑖−1

⋅ ⋅ ⋅ 𝛼
𝑘−1

+ 𝛼
𝑖−1

⋅ ⋅ ⋅ 𝛼
𝑘+1

𝛼
2

𝑘
)
󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

+ 𝛼
𝑖−1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨 )

≤

𝑖−1

∑

𝑘=1

𝑙
𝑖𝑘2
𝜉
4

𝑘
+ 𝜌
𝑖2
𝜉
4

𝑖
,

(A.2)

where 𝑙
𝑖,𝑖−1,1

, 𝑙
𝑖𝑘2
(𝑘 = 1, . . . , 𝑖 − 1), 𝜌

𝑖1
, and 𝜌

𝑖2
are positive

constants, 𝛼
0
= 0.

Choosing

𝑐
𝑖𝑗
= {

𝑐
𝑖−1,𝑗

− 𝑙
𝑖𝑗2
> 0, 𝑗 = 1, . . . , 𝑖 − 2,

𝑐
𝑖−1,𝑖−1

− 𝑙
𝑖,𝑖−1,1

− 𝑙
𝑖,𝑖−1,2

> 0, 𝑗 = 𝑖 − 1,

𝜂
∗

𝑖+1
= − (𝑐

𝑖𝑖
+ 𝜌
𝑖1
+ 𝜌
𝑖2
) 𝜉
𝑖
=: −𝛼
𝑖
𝜉
𝑖
, 𝑐
𝑖𝑖
> 0,

(A.3)

and substituting (A.2)-(A.3) into (A.1), one gets the desired
result.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

The authors would like to express sincere gratitude to editor
and reviewers for their helpful suggestions in improving
the quality of this paper. This work was partially supported
by the National Natural Science Foundation of China (nos.
61304002, 61304003, 61203123, and 61304054), the Funda-
mental Research Funds for the Central Universities of China
(no. 11CX04044A), the Shandong Provincial Natural Science
Foundation of China (no. ZR2012FQ019), and the Polish-
Norwegian Research Programme operated by the National
Center for Research and 24 Development under the Norwe-
gian Financial Mechanism 2009–2014 in the frame of Project
Contract (no. Pol-Nor/200957/47/2013).

References

[1] N. Duan and X.-J. Xie, “Further results on output-feedback
stabilization for a class of stochastic nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 56, no. 5, pp. 1208–1213,
2011.
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