
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 138287, 10 pages
http://dx.doi.org/10.1155/2013/138287

Research Article
A Latent Implementation Error Detection Method for
Software Validation

Jiantao Zhou,1 Jing Liu,1 Jinzhao Wu,2 and Guodong Zhong1

1 College of Computer Science, Inner Mongolia University, Hohhot 010021, China
2 Guangxi Key Lab of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities,
Nanning 530006, China

Correspondence should be addressed to Jiantao Zhou; zhoujiantao@tsinghua.org.cn

Received 4 February 2013; Accepted 18 February 2013

Academic Editor: Xiaoyu Song

Copyright © 2013 Jiantao Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Model checking and conformance testing play an important role in software system design and implementation. From the view
of integrating model checking and conformance testing into a tightly coupled validation approach, this paper presents a novel
approach to detect latent errors in software implementation. The latent errors can be classified into two kinds, one is called
as Unnecessary Implementation Trace, and the other is called as Neglected Implementation Trace. The method complements
the incompleteness of security properties for software model checking. More accurate models are characterized to leverage the
effectiveness of the model-based software verification and testing combined method.

1. Introduction

In software engineering practices, model-based software
development and analysis methods receive extensive atten-
tion [1]. Software model checking [2] and model-based
conformance testing [3] are two well-established approaches
validating the accuracy of software executions. Model check-
ing aims at verifying whether the software specification
model satisfies a set of key properties that represent the
software functional requirements, while conformance testing
aims at checking if the actual black-box implementation
behaves as what the specification model describes according
to some kind of conformance relation. More specifically,
software model checking validates the specification model
with the key properties during the design phase, while
conformance testing checks the nonconformance relation
between the system programs and the specification model
during the implementation phase.Thus, model checking and
conformance testing could perform sequentially and work
as an integrated validation process to assure the functional
correctness of a software system.

However, only applying model checking followed by
conformance testing is not fully satisfactory. The essential
reason is that model checking focuses on an accurate system

formal model, not considering the system implementation,
while conformance testing focuses on checking whether the
system implementation behaves as the model specified, not
considering whether the key properties are totally tested [4].
Specifically, in the ideal scenario, all the software behaviors
in the system implementation should satisfy the key prop-
erties, that is, all key properties are tested and all system
behaviors are verified, as shown in the midpart of Figure 1.
Unfortunately, in the software engineering practices, there
always exist some key properties verified by model checking
in the design phase, but they might not be tested at all in
the implementation phase. This kind of scenario is called as
“Under Tested,” as shown in the left part of Figure 1. From
the other side, some system error behaviors may still exist
in the software implementations after conformance testing,
and they also might not be checked out by model checking
in the design phase. This kind of scenario is called as “Under
Verified,” as shown in the right part of Figure 1.Therefore, the
“Under Tested” and “Under Verified” scenarios are twomajor
drawbacks of the traditional software validation methods,
where the model checking and the conformance testing
exercise sequentially and individually.

In order to integrate model checking and conformance
testing into a tightly coupled validation approach, two kinds

2 Journal of Applied Mathematics

Verified−

Tested
+

+ +

Verified
Tested

+ Verified
− Tested

Key properties Software behaviors

Figure 1: Three kinds of effects for the traditional software valida-
tion method.

of studies have been done. First, most studies in the literature
focus onfixing the “UnderTested” problem [4, 5]. Specifically,
the key properties are considered in the conformance test case
generation method, so executing such set of test cases could
guarantee that all key properties are tested. For example, key
properties could be formulized as the test purpose models
and the test generation process utilizes model checking as
a major generation technology. Consequently, all generated
test cases will definitely cover the key properties. These
studies could improve the “Under Tested” scenario, and the
major contribution is to make the conformance testing more
complete and more accurate, that is, the software verification
well complements the software testing.However, we also need
certain studies to improve the “Under Verified” scenario,
that is, the software testing should complement the software
verification as well. But in the literature, this kind of studies
is really few. Black-box checking [6] and adaptive model
checking [7] are two special cases.They aim to constructmore
specific system models from a partial or an empty model
through testing and learning. The difficulties in this kind of
studies result from the fact that the implementation errors
are always detected unexpectedly through the conformance
testing process, that is, we cannot guarantee detecting such
errors definitely. Therefore, we herein propose a more proac-
tive method to detect such latent errors which have been
programmed in the system implementations and improve the
“Under Verified” scenario consequently.

To demonstrate the motivation of our work more clearly,
we make further analysis first. Without loss of generality,
we adopt an instance model checking method based on the
Input-Output LabeledTransition System (IOLTS)models [4],
and an instance conformance testing approach based on the
IOLTS models and the Input-Output Conformance (IOCO)
relation [8]. Implementing an automatic vending machine
(AVM) system is taken as an example. It is supposed that
a specific software implementation of the vending machine
has been developed. The machine releases the tea or milk
when a coin is inserted. But in this implementation, there
exists a fatal error, that is, this machine could also release
the tea or milk as an incorrect coin is inserted. Furthermore,
it is supposed that the formal model of this AVM system
has no corresponding parts to deal with such exception
behavior. Therefore, as discussed previously, if we do not
consider a specific property towards this exception error in
the model checking phase unintentionally, the verification
will pass without counterexamples. Then, some test cases are
generated from this verified model, and no test case aims to
detect such exception behavior, because no corresponding

specification exists in the verified model. So, according to the
IOCO relation, the conformance testing will also determine
the conformance relation between the implementation and
themodel. Herein, a serious problem is emerged.Though this
exception behavior does exist in the system implementation,
both model checking and conformance testing do not detect
this fatal error. However, the error should be repaired.
Based on this analysis, a novel Latent Implementation Error
Detection (LIED) method for the software validation will
be proposed in this paper to proactively detect such latent
errors in the implementations. The LIED method explores
model checking towards the actual software implementation
to check such latent errors and utilize the counterexamples
to improve the system models. The LIED method not only
complements the incompleteness of the key security proper-
ties for the softwaremodel checking, but also constructsmore
accurate models to promote the effectiveness of the model-
based software verification and testing sequentially combined
method. On the one hand, the original model checking could
be performed more completely, because the key properties
and the system models are both well improved. On the other
hand, the conformance testing could be performed more
precisely, because the improvement of the system models
results in better test cases, which are generated with higher
accuracy and stronger capability of detecting implementation
errors. So, the “Under Verified” scenario is well improved
consequently.

The paper is organized as follows. Firstly, certain prelim-
inaries and related work are discussed in Section 2. Then,
two kinds of specific latent implementation errors are defined
formally in Section 3. Finally, the LIED method is given in
detail in Section 4. The method includes three major parts:
enumerating the possible key properties, model checking
towards the system implementation, and revising the system
model using the counterexamples. To elaborate the feasibility
and effectiveness of the LIED method, we put it into practice
with a simplified AVM system as a representative.

2. Preliminaries and Related Work

In this section, we first introduce the formal definition of the
IOLTS model and the basic ideas about the IOCO relation-
based conformance testing method. Then, we discuss several
related and important studies on how to integrate model
checking and conformance testing technologies in recent
literature.

An IOLTS model is actually an LTS model with explicitly
specified input and output actions [8]. It is widely used not
only as a kind of formal modeling approach to model the
reactive software systems directly, but also as the operational
semanticmodel for several process languages, such as LOTOS
(Language of Temporal Ordering Specification).

Definition 1. An IOLTS model is a four-tuple IOLTS =
(𝑄, 𝐿, 𝑇, 𝑞

0
), where

(1) 𝑄 is a countable, nonempty set of states;
(2) 𝐿 = LI ∪ LU ∪ LE : LI is a countable sets of input

action labels, LU is a countable sets of output action

Journal of Applied Mathematics 3

labels, LE is a countable sets of inner action labels, and
they are disjoint;

(3) 𝑇 ⊆ 𝑄 × 𝐿 × 𝑄, is the action transition relation;
(4) 𝑞
0
is the initial state.

Definition 2. For an IOLTS model𝑀,

(1) 𝑞
𝜎

⇒ =def∃𝑞
󸀠 : 𝑞

𝜎

⇒ 𝑞󸀠, where 𝜎 ∈ 𝐿∗, that is, ∃𝑞
𝑡0

󳨀→

𝑞
1

𝑡1

󳨀→ ⋅ ⋅ ⋅
𝑡𝑛

󳨀→ 𝑞󸀠 : 𝑡
𝑖
∈ 𝐿(0 ≤ 𝑖 ≤ 𝑛);

(2) Traces (𝑀) =def {𝜎 ∈ 𝐿
∗ | 𝑞
0

𝜎

⇒}.

An IOLTSmodel for the specification of the AVM software is
presented in Figure 2(a). In this specification, when a coin
is inserted, which is modeled as an input action “?𝑐,” the
machine will release a bottle of tea or milk, which is modeled
as two output actions “!𝑡” and “!𝑚.” We also present two
IOLTS models for the AVM system implementations. The
model 𝑖1 in Figure 2(b) specifies an implementation with part
functions of the AVM system, that is, when a coin is inserted,
only a bottle of tea is released. The model 𝑖2 in Figure 2(c)
specifies an implementation with additional functions of the
AVMsystem, that is, thismachinemay release a bottle ofmilk
after an incorrect input action “?𝑘,” that is, no coin is inserted
actually.

The IOCO relation-based testing approach has well-
defined theoretical foundation [9] and high feasibility with
automatic testing tools, such as Torx [10] and TGV [11]. The
major framework of this testing approach has four related
components. First, IOLTS is used to model the specification
of a software system, and then IOLTS which is input enabled
is further defined as IOTS (Input Output Transition System)
to specify the behavior model of the system implementation.
IOTSmodels characterize significant external observations in
conformance testing, for example, quiescent states are crucial
for distinguishing valid no-output actions from deadlocks. It
just represents the state that an implementation is waiting for
an input data. Second, the IOCOrelation is defined as follows.

Definition 3. 𝑖 IOCO 𝑠⇔def for all 𝜎 ∈ traces(𝑠): out(𝑖 after 𝜎)
⊆ out(𝑠 after 𝜎), where 𝑖 is an implementation of the system
specification 𝑠.

Its intuitive idea is to compare output, that produced
after executing trace 𝜎 in 𝑖 and 𝑠, respectively, where 𝜎 is
generated just from 𝑠. Two major aspects are emphasized in
the definition: what actions should be observed, and what
it means for an implementation to conform to its specifi-
cation. Taking the AVM system in Figure 2 as an example,
according to the IOCO relation definition, it is determined
that 𝑖1 IOCO 𝑠 and 𝑖2 IOCO 𝑠, that is, the implementations
with part functions or additional functions are successfully
determined to conform to the specification model. IOCO
relation is a guidance of test case generation. Third, test
cases are generated automatically and recursively based on
specification models. Generally, the first transition of a test
case is derived from the initial state of the specificationmodel,
after which the remaining part of the test case is recursively
derived from all reachable states. Traces are recorded from

the initial state to reachable states including quiescent states.
If an output action, whether a real output or quiescence,
is not allowed in the specification model, the test case will
terminate with fail, otherwise, continue the further trace
explosion or just terminate with pass at last. The detailed
test generation algorithm is presented in [8]. Finally, the
test execution is an asynchronous communication, directed
by a test case, between the system implementation and its
external environment, that is, a tester. The tester provides
the implementation with input data and then observes its
responses, a real output or just quiescence. If the fail state is
reachedwhere the real observations have not been prescribed
in the test case model, the nonconformance between this
implementation and its specification is definitely determined.
Test cases are sound if they are able to make this kind of
nonconformance decision.

As for related studies about integrating model checking
and conformance testing technologies in the literature, most
of them focus on fixing the “Under Tested” problem, which
is mentioned in the above section. That is, key proper-
ties are involved in the test case generation methods, so
executing such set of test cases could guarantee that all
key properties are tested. The VERTECS research team at
INRIA [4, 12–14] specifies certain key properties, such as
possibility properties (“something good may happen”) and
safety properties (“something bad ever happens”), using the
IOLTS-based formal models, and integrates these property
models directly into the IOCO test case generation algorithm.
Besides, other studies [5, 15–18] first formulize the key prop-
erties as the test purpose models and then perform model
checking to generate the test cases. Finally, the produced
counterexamples, actually representing the system execution
traces satisfying the key properties, could be acted as the
conformance test cases. Consequently, all generated test cases
will definitely cover the key properties. The related studies
mentioned previously could improve the “Under Tested”
scenario and make the conformance testing more complete
and more accurate. However, black-box checking [6] and
adaptive model checking [7] are two special cases which aim
to construct more specific system models through testing
and learning, where initially the system implementation is
available but no specific model or just only a partial model
is provided. The model refinement process, which consists
of the model checking and test execution, is performed
iteratively to produce more accurate semimodels which
conform to the system implementations, until the model
satisfies the required key properties and conforms to the
system implementation. In this paper, we propose an LIED
method to proactively detect certain latent errors in the
implementations and improve the “Under Verified” scenario
consequently. The LIED method not only complements the
incompleteness of key security properties for the software
model checking, but also constructs more accurate models
to promote the effectiveness of the model-based software
verification and testing sequentially combined method.

Based on the discussion in Section 1 and previous related
work analysis, we should note that integrating the software
verification and conformance testing needs definitely itera-
tive refinements, as shown in Figure 3. Traditional software

4 Journal of Applied Mathematics

Specification

𝑞0

𝑞1

𝑞2 𝑞3
!𝑡 !𝑚

?𝑐

(a)

Implementation 𝑖1

𝑞0

𝑞1

𝑞2

!𝑡

?𝑐

(b)

Implementation 𝑖2

𝑞0 𝑞4

𝑞1 𝑞5

𝑞2 𝑞3
!𝑡

!𝑚

!𝑚

?𝑐

?𝑘

(c)

Figure 2: The specification and implementation IOLTS models for the AVM software.

Software

Implementation

Abstract model

1 2

3

4

Time
(1) Traditional verification

(2) Traditional testing

(3) Integrated verification

(4) Integrated testing

Figure 3:The iterative refinements in the integrated verification and
testing method.

verification and conformance testing execute sequentially
and separately, and they often have obvious boundaries
towards the abstract models or the implementation. Espe-
cially, the model-based test case generation process will
use abstract models. However, in the integrated software
verification and testing methodology, these two methods
are performed iteratively and complementarily. First, the
model checking and testing process have no strict bound-
aries, and several semimodels and semiimplementationsmay
exist before the final system model and implementation
are developed. For example, conformance testing can be
performed ahead on some semiimplementations to guide the
refinement of semimodels. After iterative refinements, the
final system model and system implementation are destined
to be more accurate and less error-prone. Second, some
specific model checking technologies could be used in the
testing phase complementarily and vice versa. For example,
CTL model checking algorithm is used to generate test cases
[5].

In this paper, the LIED method is regarded as an
integrated software validation method. It is essentially well

compatible with the traditional model checking and con-
formance testing procedures. That is, the LIED method is
developed as a complementary method for detecting latent
implementation errors, not for replacing the traditional
model checking and conformance testing. So, the LIED
tends to be an accelerant, because its central merit is to
construct more accurate system formal models, which are
quite helpful to promote the effectiveness of model checking
and themodel-based conformance testing.We could perform
model checking, the conformance testing, and the LIED
process iteratively and complementarily. Consequently, these
validation methods work collaboratively to make software
design and implementationmore effective andmore efficient.

3. Two Kinds of Latent Implementation Errors

As discussing the motivation of this paper in Section 1, we
demonstrate that though both model checking and confor-
mance testing have been performed successfully, some kinds
of programmed errors still exist in the software implemen-
tations. That is, these two software validation methods are
ineffective against detecting such latent errors. Therefore, we
propose an LIED method to proactively detect such latent
errors herein.

Before presenting the detailed LIED method, we start
with formally defining the specific kinds of latent implemen-
tation errors that we want to detect and repair in this paper.
The concept of Trace in the IOLTS modeling (refer to Defini-
tion 2) is used to specify such implementation errors, that is,
any specific error will definitely correspond to an execution
trace in the IOLTS model for the system implementation.
So, we could suppose with certain rationality that as long as
the system implementation is programmed with some latent
errors, there definitely exists an execution trace, in the IOLTS
model of the system implementations, describing how such
error behaviors execute step by step. Herein, we focus on two
specific kinds of latent implementation errors: unnecessary
implementation error and neglected implementation error.

Definition 4 (unnecessary implementation trace (UIT)).
For an IOLTS MS (software specification model) and
an IOLTS MI (software implementation model), where

Journal of Applied Mathematics 5

𝑄(MS) ∩𝑄(MI) = Φ, LI(MS) = LI(MI), and LU(MS) =
LU(MI), and key property set 𝑃 (temporal logic formulae):

UIT (MI) =def {𝜎 ∈ obvTraces(𝑀
𝐼
) − obvTraces(𝑀

𝑆
) |

∃𝑝 ∈ 𝑃 : ¬(𝜎 󳨃→ 𝑝)}, where obvTraces (𝑀)=def {𝜎 ∈ (𝐿
𝐼
∪

𝐿
𝑈
)
∗
| 𝜎 = 𝜎󸀠|

𝐿𝐼∪𝐿𝑈
, 𝜎󸀠 ∈ Traces(𝑀)}.

The obvTraces operator restricts the original traces 𝜎󸀠
for an IOLTS model to only input and output action labels
(𝐿
𝐼
∪𝐿
𝑈
)
∗, that is, the inner action labels are omitted and just

externally observed actions are considered. So, the intuitive
idea of the Unnecessary Implementation Trace consists of
two parts. On the one hand, such traces could be observed
from the system implementation, but not described in the
system specification models, that is, 𝜎 ∈ obvTraces(𝑀

𝐼
) −

obvTraces(𝑀
𝑆
). On the other hand, such traces do not satisfy

the key properties which the system functional requirements
desire, that is, ∃𝑝 ∈ 𝑃 : ¬(𝜎 󳨃→ 𝑝). In a word, every UIT trace
models a detailed unnecessary implementation error that is
programmed in the system implementation, and the system
specification model has no corresponding parts to deal with
such exception behaviors.

Clearly, in this case, if we do not consider a specific
key property against this unnecessary implementation error
in the model checking phase, the verification does pass.
After then, the IOCO conformance testing will also pass,
because none of test cases, which are generated from verified
system model, are capable of detecting such implementation
error. Consequently, though an unnecessary implementation
error does exist in the system implementation, both model
checking and conformance testing do not detect this fatal
error, and this kind of errors indeed should be repaired.

Definition 5 (neglected implementation trace (NIT)). For an
IOLTS MS (software specification model) and an IOLTS MI
(software implementation model), where 𝑄(MS) ∩𝑄(MI)
= Φ, LI(MS) = LI(MI), and LU(MS) = LU(MI), and key
property set 𝑃 (temporal logic formulae):

NIT (MI) =def {𝜎 ∈ obvTraces(𝑀
𝐼
) ∩ obvTraces(𝑀

𝑆
) |

∃𝑝 ∈ 𝑃 : ¬(𝜎 󳨃→ 𝑝)}. Each Neglected Implementation Trace
represents a specific neglected implementation error, but this
kind of traces is a really special case. First, they appear in the
specification models, as well as the implementation models,
that is, 𝜎 ∈ obvTraces(𝑀

𝐼
)∩obvTraces(𝑀

𝑆
). Besides, they do

not satisfy the key properties which the software functional
requirements desire, that is, ∃𝑝 ∈ 𝑃 : ¬(𝜎 󳨃→ 𝑝). Thus, under
normal circumstances, the model checking phase can detect
such exceptional behaviors. However, under special circum-
stances, the Neglected Implementation Trace may be omitted
by the abstraction in the model checking procedure. In this
case, the verification will be passed unexpectedly. Then, we
take the conformance testing into account. Because such
neglected implementation traces behave the same in bothMS
andMI, the IOCO conformance relation between the specifi-
cation model and the implementations are still determined
unexpectedly. That is, we consider the exception behaviors
during the IOCO conformance testing as legal behaviors,
because they have been specified in the MS in the same way.
Consequently, though the neglected implementation error

does exist in the system implementation and specification,
both model checking and conformance testing do not detect
this fatal error, and this kind of errors indeed should be
repaired too.

To sum up, we aim to detect and repair two kinds
of latent implementation errors, that is, the unnecessary
implementation errors and the neglected implementation
errors, whichmay not be detected using the traditionalmodel
checking and IOCO conformance testing combined method.
They have the same fatal effects, but they result from different
causes. Therefore, in the LIED method, we utilize the unified
method to detect these two kinds of latent implementation
errors, but fix them using respective methods.

4. The LIED Method

As we discussed in Section 1, the unnecessary implemen-
tation error and the neglected implementation error always
occur nondeterministicly through the conformance testing
process, that is, we cannot guarantee detecting such errors
definitely. Therefore, the LIED method is designed to proac-
tively detect such latent errors which have been programmed
in the system implementations. In this section, we first
present the central idea and the framework of our LIED
method. Then two core parts of this method are discussed in
detail, respectively, that is, constructing the analogy set for the
key properties and improving the system formal models and
system implementations with the counterexamples. Finally,
the AVM system is analyzed using the LIED method as a
representative to elaborate the feasibility and effectiveness of
the LIED method.

4.1. The Overarching Methodology. The central goal of our
LIED method is to find out some unnecessary implemen-
tation errors or neglected implementation errors, where
no evident clues are provided by the system models. So,
designing the LIEDmethod has two necessary preconditions.
First, we need to check the system implementation. Second,
we need to check as many key properties as possible against
the system implementations. Consequently, we adopt model
checking as the basic technology and apply it directly into
the system implementations. That is, the central idea of
our LIED method is to explore model checking towards
the actual software implementation to check whether some
kinds of latent implementation errors exist and then utilize
the counterexamples, which illustrate the exception behavior
executions, as guidance to improve the system models and
implementations.

The framework of the LIEDmethod is shown in Figure 4.
It is composed of three related parts.

(a) Constructing the Analogy Set for Key Properties. The
traditional model checking is performed against the original
set of key properties. Such key properties are usually extracted
from the functional requirement specifications for a specific
software system, and they describe the necessary functional
system behaviors. However, in order to detect more latent

6 Journal of Applied Mathematics

Repair implementation error

Original set of
Implementation

Counterexamples

Formal model

Empty
No

Yes

NIE UIE

Improve model
key properties

Analogy set of

Analogy Model
checking simulation

Synchronous
enumeration

key properties

Figure 4: The framework of the LIED method.

implementation errors, we need to do some analogy enu-
meration based on the original set of key properties. For
example, an original key property could be specified as “if
condition is true then do actions.” The analogy enumeration
for this property could construct two more properties, that
is, “if condition is false then do actions” and “if condition
is true then not do actions.” In this way, after such analogy
enumeration procedure, the analogy set of key properties are
generated for checking more possible exception behaviors
for the system implementations. The details of the analogy
enumeration procedure are discussed in Section 4.2.

(b) Detecting the Latent Implementation Errors. Based on
the analogy set of key properties, we apply model checking
into the system implementations directly, and the Copper
model checker [19] is adopted in this paper. In this way, we
could proactively detect certain latent implementation errors
against the analogy set of key properties, and such latent
errors are actually not detected in the traditional software
verification process. If a counterexample is produced, wemay
detect a latent implementation error, and this counterexample
could be used as an intuitive guidance for improving the
system models and the system implementations.

(c) Revising the Models or Implementations with Counterex-
amples. In this paper, we propose a counterexample-guided
refinement method for the software validation process.
Specifically, we perform synchronous simulation between
a specific counterexample and the system model. If the
simulation produces an empty set of synchronous traces, it
means that the exception behaviors which are represented by
this counterexample are not considered in system model; an
unnecessary implementation error, that is, UIE, is actually
detected. In this case, the system model should be improved
with additional parts about dealing with the exception
behaviors, and the system implementation should be fixed
too. Otherwise, if the simulation produces a nonempty set
of synchronous traces, it means that though the system
model has corresponding parts to deal with such exception
behaviors, a neglected implementation error, that is, NIE,
is still detected from the system implementation. In this
case, the system model should be modified according to

the counterexample scenario, and the system implementation
should be fixed too.Thedetails of the synchronous simulation
procedure and the corresponding refinements are discussed
in Section 4.3.

The LIED method is developed for detecting latent
implementation errors, and it is well compatible with tradi-
tional model checking and conformance testing procedures.
The major advantages of our LIED method lie in two
aspects. First, it complements the incompleteness of the key
properties for the software validation. More importantly,
it benefits constructing a more accurate system formal
model to promote the effectiveness of the model-based soft-
ware verification and testing sequentially combined method.
Specifically, the original model checking could be performed
more completely, because the key properties and the system
models are both improved, and the conformance testing
could be performedmore precisely, because the improvement
of the system models results in better test cases, which are
generated with higher accuracy and stronger error-detecting
capability. Consequently, the LIED method improves the
“Under Verified” scenario as expected.

4.2. Constructing the Analogy Set for Key Properties. In order
to detect more latent implementation errors proactively and
focus on more necessary functional behaviors for a software
system, we perform analogy enumeration based on the
original set of key properties, which are constructed in the
traditional model checking phase. According to the survey of
patterns in property specifications [20–22], most properties
(more than 90%) could be formulized within five kinds
of property patterns, where each of them could be either
specified as a Linear Temporal Logic (LTL) formula or a
Computation Tree Logic (CTL) formula. As shown in Table 1,
we present the original specifications (OS) and its analogy set
(AS) for each kind of property patterns, respectively.

As we want to detect more latent implementation errors
proactively, the above analogy set for properties is used
from two aspects in the LIED method. On one hand, if
one specific property is verified in original model checking
process, the properties of its analogy set should be paid more
attention and correspondingly checked against the system
implementations. On the other hand, taking the cause-effect

Journal of Applied Mathematics 7

Table 1: The analogy set specifications for five property patterns.

Pattern name Property specification Analogy set specification Explanations

Absence LTL: 𝐺(¬𝑝)
CTL: 𝐴𝐺(¬𝑝)

LTL: 𝐹(𝑝)
CTL: 𝐸𝐹(𝑝)

OS: action 𝑝 never occurs
AS: action 𝑝 occurs definitely

Existence LTL: 𝐹(𝑝)
CTL: 𝐴𝐹(𝑝)

LTL: 𝐺(¬𝑝)
CTL: 𝐴𝐺(¬𝑝)

OS: action 𝑝 occurs definitely
AS: action 𝑝 never occurs

Universality LTL: 𝐺(𝑝)
CTL: 𝐴𝐺(𝑝)

LTL: 𝐹(¬𝑝)
CTL: 𝐸𝐹(¬𝑝)

OS: action 𝑝 occurs all through
AS: action 𝑝 does not occur definitely

Precedence LTL: 𝐹(𝑞) → (¬𝑞 ∪ 𝑝)

CTL: ¬𝐸(¬𝑝 ∪ (𝑞 ∧ (¬𝑝)))

LTL: 𝐹(𝑞) → (¬𝑞 ∪ ¬𝑝)

𝐺(𝑝 → 𝐺(¬𝑞))

CTL: ¬𝐸(𝑝 ∪ (𝑞 ∧ 𝑝))
𝐴𝐺(𝑝 → 𝐴𝐺(¬𝑞))

OS: the occurrence of action 𝑞 is enabled by the
occurrence of action 𝑝
AS: action 𝑞 occurs without the preoccurrence of action
𝑝 or action 𝑝 occurs without the postoccurrence of
action 𝑞

Response LTL: 𝐺(𝑝 → 𝐹(𝑞))

CTL: 𝐴𝐺(𝑝 → 𝐴𝐹(𝑞))

LTL: 𝐺(𝑝 → 𝐺(¬𝑞))

𝐹(𝑞) → (¬𝑞 ∪ ¬𝑝)

CTL: 𝐴𝐺(𝑝 → 𝐴𝐺(¬𝑞))

¬𝐸(𝑝 ∪ (𝑞 ∧ 𝑝))

OS: the occurrence of action 𝑝must be followed by the
occurrence of action 𝑞
AS: action 𝑝 occurs without the postoccurrence of
action 𝑞 or action 𝑞 occurs without the preoccurrence
of action 𝑝

relation into account, the absence, existence, and universality
properties could be classified as a group, while the precedence
and response properties as another group. So, if one specific
property is verified in the original model checking process,
the other kind of properties and its analogy set properties
should be also considered to have a check against the system
implementations. In this way, we complement the incom-
pleteness of key security properties for the software model
checking, andmore importantly, we havemore opportunities
to find out the unnecessary implementation errors or the
neglected implementation errors.

4.3. Refining the Models with Counterexamples. According
to the framework of our LIED method in Figure 4, the
analogy set of the original key properties for a specific
software system is generated as a new set of properties, and
then we apply the model checking, against this new set of
properties, onto the system implementations directly. If all of
the properties are verified successfully, we could determine
that the system implementation works correctly with respect
to the system specification, and then we could perform
traditional conformance testing as usual. However, the LIED
method is actually more willing to get a counterexample,
which may reveal an existing latent implementation error. As
autoproduced counterexamples could intuitively present the
scenarios about how the latent errors occur, they are quite
helpful for revising the system models and fixing the system
implementations.

First, we present the formal definition of the counterex-
ample from the LTS point of view, and it could be concretized
with corresponding syntax towards different model checkers.

Definition 6 (unified counterexample (UCE)). A Unified
Counterexample is a kind of Trace of an IOLTS model𝑀:

UCE (𝑀) =def {𝜎 ∈ Traces (𝑀) | |𝜎| < 𝑛, 𝑛 ∈ 𝑁} . (1)

Intuitively speaking, a counterexample is a specific exe-
cution of a software system, that is, a trace of detailed
behaviors. The model𝑀 in the above definition refers to the
system specification in program level; for example, in the
Copper model checker, it is the program specification file
(∗.pp). According to the preceding Definition 2, a specific
counterexample may be a sequence of input actions, output
actions and internal actions, where internal actions reflect the
value variation of corresponding program variables without
external behaviors.

Based on the counterexample and the software model,
a Counterexample-Guided Synchronous Simulation (CGSS)
algorithm is proposed as Algorithm 1 to check whether the
system model has the same behavior trace as the counterex-
ample from the input/output point of view. If the simulation
produces an empty set of synchronous traces, it means
that the exception behaviors which are represented by this
counterexample are not totally considered in the system
model, so a UIE is actually detected. Otherwise, a nonempty
set of synchronous traces reveals that the system model
does have corresponding parts to deal with such exception
behaviors, and an NIE is detected consequently.

If the unnecessary implementation errors are detected,
the system model should be improved by adding additional
parts to deal with the UIE errors that demonstrated by the
counterexamples, and, the system implementations should
be fixed by taking out extra program codes. Similarly, if the
neglected implementation errors are detected, the system
model should be modified against corresponding parts to
handle the NIE errors that demonstrated by the counterex-
amples, and, the system implementation should be fixed by
revising the inaccurate program codes.

4.4. Case Study: An AVM System. To elaborate the feasibility
and effectiveness of our LIED method, an AVM software
system is analyzed using this method as a representative
in this section. The Copper model checker is adopted. The

8 Journal of Applied Mathematics

GivenMS for a system model and ct for a counterexample trace, where:
(1) ∃𝜎

𝑆
∈ Traces (MS), that is, ∃𝑞

0

𝑡0

󳨀→ 𝑞
1

𝑡1

󳨀→ ⋅ ⋅ ⋅
𝑡𝑛

󳨀→ 𝑞
𝑛
: 𝑞
𝑖
∈ 𝑄 (MS) and 𝑡

𝑖
∈ 𝐿 (MS), (0 ≤ 𝑖 ≤ 𝑛);

(2) ct could be specified as: ∃𝑐
0

𝑎0

󳨀→ 𝑐
1

𝑎1

󳨀→ ⋅ ⋅ ⋅
𝑎𝑚

󳨀󳨀→ 𝑐
𝑚
: 𝑐
𝑗
∈ 𝑄 (ct) and 𝑎

𝑗
∈ 𝐿 (ct), (0 ≤ 𝑗 ≤ 𝑚);

(3) 𝑄 (MS) ∩ 𝑄 (ct) = Φ and 𝐿 (MS) ⊇ 𝐿 (ct) and 𝑞
0
= 𝑐
0
;

Procedure CGSS {
/∗ omit all internal actions in the counterexample trace ∗/
ct new = Trim (ct), where 𝐿 (ct new) ⊆ LI (ct) ∪ LU (ct)
/∗ based on ct new trace to perform synchronous simulation with MS model ∗/
for each pair 𝑎

𝑗
∈ 𝐿 (ct new) starting from 𝑎

0
and 𝑡

𝑖
∈ 𝐿 (MS) starting from 𝑡

0
{

/∗ the external trace of counterexample acts the same as the trace in MS, exit to report non-empty set ∗/
if 𝑎
𝑗
is the last action of ct new and 𝑎

𝑗
= 𝑡
𝑖
then return non-empty set; exit;

/∗ omit considering internal actions and go for the next iteration ∗/
if 𝑡
𝑖
∈ LE (MS) then 𝑡

𝑖
= 𝑡
𝑖+1
; continue;

/∗ the same external action leads to one synchronous simulation step, and go for the next iteration ∗/
if 𝑎
𝑗
= 𝑡
𝑖
then 𝑎

𝑗
= 𝑎
𝑗+1

, 𝑡
𝑖
= 𝑡
𝑖+1
; continue;

/∗ the different external action leads to failure simulation, and exit to report empty set ∗/
if 𝑎
𝑗
̸= 𝑡
𝑖
then return empty set; exit;

} // end of for each pair
} // end of procedure

Algorithm 1: Counterexample-Guided Synchronous Simulation (CGSS).

IOLTSmodel for this AVMsystem is presented in Figure 2(a).
Besides, we implement a program for such AVM system,
which may release milk without inserting coin, just like the
scenario in Figure 2(c).The core segment of this program is if
(strcmp(input,“coin”)==0) output coffee (); else output milk
();. Obviously, when something else (not a coin) is inserted, a
bottle of milk is then released, and no error message is posted
as expected.

Step 1 (enumerating the key properties). In traditional model
checking phase, we consider a requirement that if a coin
is inserted, the milk or coffee is released. We formulate
this requirement into an LTL property with precedence
format. Besides, its analogy set is generated, which checks the
scenario that the milk or coffee is released without inserting
a coin. Original property is formulated as 𝐹(𝑞) → (¬𝑞 ∪ 𝑝).
Analogy property is formulated as:𝐹(𝑞) → (¬𝑞∪¬𝑝), where
𝑞 stands for releasing action (output: !𝑡 or !𝑚) and𝑝 stands for
inserting action (input: ?𝑐).

Copper supports temporal logic claims expressed in
State/Event Linear Temporal Logic (SE-LTL). The syntax of
SE-LTL is similar to that of LTL, except that the atomic
formulas are either actions or expressions involving program
variables. Therefore, the analogy property could be formu-
lated as follows:
ltl ExamProp {#F (output

󳨐⇒((!output) #U(! [input==coin]))) ;} ,
(2)

where output represents the output action output coffee() or
output milk() in the AVM programs.

Step 2 (model checking the program). The program for the
AVM system is processed into the AVM.pp file and the above

property is specified into the AVM.spec file. Then, the model
checking towards the program is executed using the following
command.

copper - -default - -specification ExamProp AVM.pp
AVM.spec - -ltl

The result of this LTL model checking is “conformance
relation does not exist !! specification ExamProp is invalid. . ..”
Besides, a counterexample is produced correspondingly. As
follows, a detailed UCE trace 𝜎

󸀠 is generated from the
program variables assignment parts and the action parts in
that counterexample.

𝜎
󸀠 = (𝑃0:epsilon[input = null], 𝑃0:epsilon[input =

"Key"], strcmp, 𝑃0:epsilon [branch(0)], output milk].
In this trace, 𝑃0:epsilon stands for internal actions that

present value assignments of variables or decision of branch
statements. This trace reveals that when the input is assigned
with value key, not the expected value coin, the output action
output milk still occurred. The ExamProp property cannot
hold against the AVM program.

Step 3 (revamping the model and program with the coun-
terexample). We put above UCE trace 𝜎󸀠 and the system
model shown in Figure 2(a) as inputs into the CGSS
algorithm. After the counterexample-guided synchronous
simulation procedure, it produces an empty set. So, a UIE
is actually detected. That is, a bottle of milk will be released
when incorrect input is inserted, and the model has a
lack of specification to deal with such error. Therefore, we
improve the system model-by adding additional parts to
deal with this UIE error, as shown in Figure 5. If certain
incorrect input (not a coin) is inserted, the AVM system will
output error messages and terminate its execution in stop
state. Furthermore, we also fix the core segment of system
program into “if (strcmp(input, “coin”)==0) output coffee();

Journal of Applied Mathematics 9

Stop𝑞0 𝑞4

𝑞3

𝑞1

𝑞2
!𝑡 !𝑚

?𝑐

?𝑘 !err

Figure 5: The improved IOLTS models for the AVM software.

else output error();”, so that the UIE error mentioned above
will not occur.

Through the above exemplified execution of our LIED
method towards the AVM system, its feasibility and effective-
ness are demonstrated.That is, certain latent implementation
errors are detected, andmore importantly, the systemmodels
and implementations are well improved.

5. Conclusion

To validate the functional accuracy for a software system only
applying model checking followed by conformance testing
may not detect some latent implementation errors, that is,
the unnecessary implementation errors and the neglected
implementation errors. In this paper, the LIED method
is proposed to detect such latent implementation errors
proactively. Based on the analogy set of key properties,
the LIED method applies model checking directly into the
actual software implementation to check whether some latent
implementation errors exist and utilize the counterexamples,
which illustrate the exception behavior executions as intuitive
guidance to improve the system models and system imple-
mentations respectively.

The LIED method is essentially well compatible with
the traditional model checking and model-based confor-
mance testing procedures. It could be applied as an effective
complementary method for detecting latent implementa-
tion errors, but not for replacing the traditional model
checking and conformance testing. The major advantages
of our LIED method could be concluded from two aspects.
First, it efficaciously complements the incompleteness of the
key security properties for the software validation process.
Second, it helps to construct more accurate system formal
models to promote the effectiveness of model checking and
model-based conformance testing, that is, the original model
checking could be performed more completely because the
key properties and the system models are both improved,
and conformance testing could be performed more precisely
because the improvement of the system models result in
generating test cases with higher accuracy and stronger capa-
bility of detecting the implementation errors. In a word, the
LIED method tends to be a well accelerant for better model
checking and conformance testing iterative executions, where

the “Under Verified” scenario is improved as expected,
and consequently, these software validation methods work
collaboratively to make software design and implementation
more effective and more efficient. In the future, the LIED
method will try to work in more complex and practical
systems [23–25].

Funding

This work was supported by the National Natural Science
Foundation of China (61262082, 61262017, 61163011, and
60973147), the Key Project of Chinese Ministry of Edu-
cation (212025), the Inner Mongolia Science Foundation
for Distinguished Young Scholars (2012JQ03), the Introduc-
tion Foundation for High-Level Talents of Inner Mongolia
University, the Doctoral Fund of Ministry of Education of
China [20090009110006], the Natural Science Foundation of
Guangxi (2011GXNSFA018154 and 2012GXNSFGA060003),
the Science andTechnology Foundation ofGuangxi (10169-1),
and the Guangxi Scientific Research Project (201012MS274).

References

[1] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald,
“Formal methods: practice and experience,” ACM Computing
Surveys, vol. 41, no. 4, article 19, pp. 1–36, 2009.

[2] R. Jhala and R. Majumdar, “Software model checking,” ACM
Computing Surveys, vol. 41, no. 4, article 21, pp. 1–54, 2009.

[3] R. M. Hierons, K. Bogdanov, J. P. Bowen et al., “Using formal
specification to support testing,” ACM Computing Surveys, vol.
41, article 9, pp. 1–76, 2009.

[4] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating
formal verification and conformance testing for reactive sys-
tems,” IEEE Transactions on Software Engineering, vol. 33, no.
8, pp. 558–574, 2007.

[5] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model
checkers: a survey,” Software Testing Verification and Reliability,
vol. 19, no. 3, pp. 215–261, 2009.

[6] D. Peled, M. Y. Vardi, andM. Yannakakis, “Black box checking,”
Journal of Automata, Languages and Combinatorics, vol. 7, no. 2,
pp. 225–246, 2002.

[7] A. Groce, D. Peled, andM. Yannakakis, “Adaptive model check-
ing,” in Proceedings of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’02), pp. 357–370, Springer,
Grenoble, France, April 2002.

[8] J. Tretmans, “Model based testing with labelled transition
systems,” in Formal Methods and Testing, R. M. Hierons, J.
P. Bowen, and M. Harman, Eds., pp. 1–38, Springer, Berlin,
germany, 2008.

[9] J. Tretmans, “Test generationwith inputs, outputs and repetitive
quiescence,” Software-Concepts and Tools, vol. 17, no. 3, pp. 103–
120, 1996.

[10] J. Tretmans and E. Brinksma, “TorX: automated model based
testing,” in Proceedings of the 1st European Conference onModel-
Driven Software Engineering (ECMDSE ’03), pp. 1–13, AGEDIS,
Nuremberg, Germany, December 2003.

[11] C. Jard and T. Jéron, “TGV: theory, principles and algorithms.
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” International Journal

10 Journal of Applied Mathematics

on Software Tools for Technology Transfer, vol. 7, no. 4, pp. 297–
315, 2005.

[12] V. Rusu, H. Marchand, V. Tschaen, T. Jeron, and B. Jeannet,
“From safety verification to safety testing,” in Proceedings of the
Testing of Communicating Systems (TestCom ’04), pp. 160–176,
Springer, Oxford, UK, March 2004.

[13] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva, “Symbolic test
selection based on approximate analysis,” in Proceedings of the
11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’05), pp. 349–364,
April 2005.

[14] M. Oostdijk, V. Rusu, J. Tretmans, R. G. De Vries, and T. A.
C. Willemse, “Integrating verification, testing, and learning for
cryptographic protocols,” Lecture Notes in Computer Science,
vol. 4591, pp. 538–557, 2007.

[15] A. Gargantini andC.Heitmeyer, “Usingmodel checking to gen-
erate tests from requirements specifications,” ACM SIGSOFT
Software Engineering Notes, vol. 24, pp. 146–162, 1999.

[16] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A temporal logic
based theory of test coverage and generation,” in Proceedings of
the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’02), pp. 327–341,
Springer, Grenoble, France, April 2002.

[17] D. A. da Silva and P. D. L. Machado, “Towards test purpose
generation fromCTLproperties for reactive systems,”Electronic
Notes inTheoretical Computer Science, vol. 164, no. 4, pp. 29–40,
2006.

[18] G. Fraser and A. Gargantini, “An evaluation of model checkers
for specification based test case generation,” inProceedings of the
2nd International Conference on Software Testing, Verification,
and Validation (ICST ’09), pp. 41–50, IEEE Press, Denver, Colo,
USA, April 2009.

[19] Software Engineering Institute, CMU, Copper Manual,
Tutorial, and Specification Grammar, http://www.sei.cmu.
.edu/library/abstracts/whitepapers/copper.cfm

[20] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in prop-
erty specifications for finite-state verification,” in Proceedings of
the International Conference on Software Engineering (ICSE ’99),
pp. 411–420, IEEE Press, Los Angeles, Calif, USA, May 1999.

[21] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, Spec Patterns,The
Santos Laboratory, Kansas State University.

[22] A. Fedeli, F. Fummi, and G. Pravadelli, “Properties incomplete-
ness evaluation by functional verification,” IEEE Transactions
on Computers, vol. 56, no. 4, pp. 528–544, 2007.

[23] J. B. Wang, M. Chen, X. Wan, and C. Wei, “Ant-colony-
optimization-based scheduling algorithm for uplink CDMA
nonreal-time data,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 1, pp. 231–241, 2009.

[24] J. B. Wang, H. M. Chen, M. Chen, and J. Z. Wang, “Cross-layer
packet scheduling for downlink multiuser OFDM systems,”
Science in China F, vol. 52, no. 12, pp. 2369–2377, 2009.

[25] J.-B. Wang, Y. Jiao, X. Song, and M. Chen, “Optimal training
sequences for indoor wireless optical communications,” Journal
of Optics, vol. 14, no. 1, Article ID 015401, 2012.

