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We study the nature of the spectrum of the periodic problem for the heat equation with a lower-order term and with a deviating
argument. A significant influence of the lower-order term on the correct solvability of this problem is found. We obtain a criterion
for the strong solvability of the above-mentioned problem.

1. Introduction

In paper [1] we constructed a spectral theory of a model
differential equation of first order with a deviating argument.
The main idea of the article [1] has been further developed in
[2, 3].

The equation that we studied belongs to a class of
functional-differential equations. These equations have only
recently become a subject of research of individual authors;
particularly, such equations are studied in [4–6]. Functional-
differential equations have been actively studied recently by
some authors in papers [7, 8].

In this paper using the methods of paper [1] we have
found a solution of the mixed problem for the heat equation
with a deviating argument. As a result we got that the classical
solvability of the boundary value problem requires a certain
smoothness of the right-hand side of the equation (see (11)
of Theorem 4) and the strong solvability of the problem is
provided by the properties of the coefficient of the lower-
order term of the equation (Theorem 11).

Let Ω ⊂ 𝑅
2 be a rectangle bounded by the following

segments:

𝐴𝐵: 0 ≤ 𝑡 ≤ 𝑇, 𝑥 = 0, 𝐵𝐶: 0 ≤ 𝑥 ≤ 𝑙, 𝑡 = 𝑇,

𝐶𝐷: 0 ≤ 𝑡 ≤ 𝑇, 𝑥 = 𝑙, 𝐷𝐴: 0 ≤ 𝑥 ≤ 𝑙, 𝑡 = 0.

(1)

We denote by 𝐶
2,1

(Ω) the set of functions 𝑢(𝑥, 𝑡) that are
twice continuously differentiable with respect to the variable

𝑥 and once continuously differentiable with respect to the
variable 𝑡. The boundary of the area Ω is a set of segments
𝐵 = 𝐴𝐵 ∪ 𝐴𝐷 ∪ 𝐶𝐷.
Periodic Problem. Find a solution of the equation

𝐿𝑢 = 𝑢
𝑡
(𝑥, 𝑇 − 𝑡) + 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑎𝑢

𝑥
= 𝑓 (𝑥, 𝑡) (2)

satisfying the conditions

𝑢|𝑡=0 = 0, (3)

𝑢|𝑥=0 − 𝑢|𝑥=𝑙 = 0, 𝑢
𝑥

󵄨󵄨󵄨󵄨𝑥=0
− 𝑢
𝑥

󵄨󵄨󵄨󵄨𝑥=𝑙
= 0, (4)

where 𝑓 ∈ 𝐿
2
(Ω) and 𝑎 is constant.

Further the coefficient 𝑎 will be called the coefficient of
influence.

Definition 1. The function 𝑢(𝑥, 𝑡) ∈ 𝐿
2
(Ω) is called a strong

solution of (2)–(4) if there exists a sequence of functions
{𝑢
𝑛
} ∈ 𝐶

2,1
(Ω) ∩ 𝐶

1,0
(Ω), 𝑛 = 1, 2, 3, . . ., that satisfies the

boundary conditions of the problem and such that {𝑢
𝑛
} and

{𝐿𝑢
𝑛
}, 𝑛 = 1, 2, 3, . . ., converge, respectively, to 𝑢 and 𝑓.

Definition 2. The boundary value problem (2)–(4) is called
strongly solvable if a strong solution of the problem exists
for any right-hand side 𝑓(𝑥, 𝑡) ∈ 𝐿

2
(Ω) and this solution is

unique.
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The aim of this study is to investigate the nature of the
spectrum and the influence of the lower-order term on the
strong solvability of the problem (2)–(4) in the space 𝐿

2
(Ω).

Using Fourier method we obtained the conditions of
the existence of a strong solution of the boundary value
problem (2)–(4) in the space 𝐿

2
(Ω) in the form ofTheorem 4.

With the help of the spectral theory of linear operators we
have established criteria of strong solvability of this problem,
presented in the form ofTheorem 11, which is the main result
of this paper.

2. Results

Problem about Spectrum. Examine the nature of the spectrum
of the functional-differential operator

𝐿𝑢 = 𝑢
𝑡
(𝑥, 𝑇 − 𝑡) + 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑎𝑢

𝑥
,

𝐷 (𝐿) = {𝑢 ∈ 𝐶
2,1

(Ω) ∩ 𝐶 (Ω) ,

𝑢|𝑡=0 = 𝑢|𝑥=0 − 𝑢|𝑥=𝑙 = 𝑢
𝑥

󵄨󵄨󵄨󵄨𝑥=0
− 𝑢
𝑥

󵄨󵄨󵄨󵄨𝑥=𝑙
= 0} .

(5)

Theorem 3. The spectral problem

𝐿𝑢 = 𝑢
𝑡
(𝑥, 𝑇 − 𝑡) + 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑎𝑢

𝑥
(𝑥, 𝑡) = 𝜆𝑢 (𝑥, 𝑡) ,

𝑢|𝑡=0 = 𝑢|𝑥=0 − 𝑢|𝑥=𝑙 = 𝑢
𝑥

󵄨󵄨󵄨󵄨𝑥=0
− 𝑢
𝑥

󵄨󵄨󵄨󵄨𝑥=𝑙
= 0

(6)

has an infinite number of eigenvalues:

𝜆
𝑚𝑛

= (−1)
𝑛

(𝑛 +
1

2
)

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

+
2𝑚𝜋𝑖

𝑙
𝑎,

𝑚 = 0, ±1, ±2, . . . , 𝑛 = 0, 1, 2, . . . ,

(7)

and the corresponding eigenfunctions

𝑢
𝑚𝑛

(𝑥, 𝑡) =
2

√𝑇𝑙

exp(
2𝑚𝜋𝑖

𝑙
𝑥) ⋅ sin(𝑛 +

1

2
)

𝜋𝑡

𝑇
,

𝑚 = 0, ±1, ±2, . . . , 𝑛 = 0, 1, 2, . . . ,

(8)

which form an orthonormal basis of the space 𝐿
2
(Ω), where

Ω = [0, 𝑙] × [0, 𝑇].

Proof. By method of separation of variables we get two
spectral problems. The first problem is the Sturm-Liouville
problem with Dirichlet condition.The second problem is the
Cauchy problem for the first-order equation with deviating
arguments, which is studied in detail in [1]. The rest is
elementary.

Theorem 4. For the existence and uniqueness of a strong
solution of the boundary problem (2)–(4), it is necessary and
sufficient to fulfill the condition

[(−1)
𝑛

(𝑛 +
1

2
) ⋅

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

−
2𝑚𝜋

𝑙
⋅ Im 𝑎]

2

+(
2𝑚𝜋

𝑙
⋅ Re 𝑎)

2

̸= 0, ∀𝑚 = 0, ±1, ±2, . . . , 𝑛 = 0, 1, 2, . . . .

(9)

When this condition is fulfilled a strong solution of the
problem exists and has the form

𝑢 (𝑥, 𝑡) =

∞

∑

𝑚=−∞

∞

∑

𝑛=0

(𝑓, 𝑢
𝑚𝑛

)

𝜆
𝑚𝑛

⋅ 𝑢
𝑚𝑛

(𝑥, 𝑡) (10)

for all 𝑓(𝑥, 𝑡) ∈ 𝐿
2
(Ω) satisfying

∞

∑

𝑚=−∞

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑓, 𝑢
𝑚𝑛

)

𝜆
𝑚𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

< +∞, (11)

where the eigenvalues 𝜆
𝑚𝑛

and the eigenfunctions 𝑢
𝑚𝑛

(𝑥, 𝑡) are
given by (7) and (8).

The proof is omitted since this theorem is a simple
consequence of the preceding theorem.

Theorem 5. If 𝑎 + 𝑎 = 0, then the differential operator (5)
is essentially self-adjoint in the space 𝐻 = 𝐿

2
(Ω), where Ω =

[0, 𝑙]×[0, 𝑇] is a rectangle, lying in the upper half-plane (𝑥, 𝑡) ∈

𝑅
2.

Proof. It easily follows from the symmetry of the operator 𝐿

and the completeness of its eigenvectors.

FromTheorems 4 and 5 there follows theTheorem 6.

Theorem 6. If

(a) Re 𝑎 = 0,
(b) (−1)

𝑛
(𝑛 + 1/2) ⋅ (𝜋/𝑇) − (2𝑚𝜋/𝑙)

2
− (2𝑚𝜋/𝑙) ⋅ Im 𝑎 ̸= 0,

then the inverse operator (𝐿)
−1 exists, which is also self-adjoint.

Proof. From Theorem 4 there follows the existence of the
operator (𝐿)

−1; the rest follows from the series of equalities
(𝐿
−1

)

∗

= (𝐿
∗

)
−1

= (𝐿)
−1, in whichTheorem 5 and the known

equality (𝐴
−1

)
∗

= (𝐴
∗
)
−1 were used.

Definition 7. A linear operator 𝐴 (not necessarily bounded)
in space 𝐻 is called normal if it is densely defined and closed
and satisfies the condition 𝐴

∗
𝐴 = 𝐴𝐴

∗.

Lemma 8 (see [9]). Let 𝐴 be a densely defined operator in a
Hilbert space 𝐻. Then

(a) 𝐴
∗ is closed;

(b) 𝐴 allows a closure if and only if 𝐷(𝐴
∗
) is dense, and in

this case 𝐴 = 𝐴
∗∗;

(c) if 𝐴 allows a closure, then (𝐴)
∗

= 𝐴
∗.

Lemma 9 (see [10]). Let 𝐴 be a normal operator in the space
𝐻. Then

(a) 𝐷(𝐴) = 𝐷(𝐴
∗
);

(b) ‖𝐴𝑥‖ = ‖𝐴
∗
𝑥‖ for ∀𝑥 ∈ 𝐷(𝐴);

(c) 𝐴 is the maximum normal operator.
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Using these lemmas we obtain the next theorem.

Theorem 10. If 𝑎 + 𝑎 ̸= 0, then the closure of the operator 𝐿 is a
normal operator; that is, the equality 𝐿

∗

𝐿 = 𝐿 𝐿
∗ is satisfied.

Proof. This formula can be verified directly.

3. About the Nature of the Spectrum of
the Operator 𝐿

Theorem 11. (a) If Re 𝑎 ̸= 0, then there exists an inverse
operator 𝐿

−1, which is normal and compact. We have the
estimate

󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
−1󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐾
−1

, 𝐾 = max {
𝜋

2𝑇
,
2𝜋

𝑙
|Re 𝑎|} . (12)

The spectrum of the operator 𝐿 is discrete, that is, has no
limit points in the finite part of the plane.

(b) If Re 𝑎 = 0, Im 𝑎 ̸= ((−1)
𝑛
(𝑛 + 1/2)/2𝑚) ⋅ (𝑙/𝑇) −

2𝑚𝜋/𝑙, 𝑛 = 0, 1, 2, . . . , 𝑚 = 0, ±1, ±2, . . ., and both values of
2𝜋𝑇/𝑙

2 and 𝑇 ⋅ Im 𝑎/𝑙 are rational, then the inverse operator
𝐿
−1 exists and is bounded but not compact. The operator 𝐿

is self-adjoint; its spectrum consists of an infinite number of
eigenvalues, among which there are an infinite number of
infinite multiple eigenvalues.

(c) If Re 𝑎 = 0, Im 𝑎 ̸= ((−1)
𝑛
(𝑛+1/2)/2𝑚) ⋅ (𝑙/𝑇)−2𝑚𝜋/𝑙,

𝑛 = 0, 1, 2, . . . , 𝑚 = 0, ±1, ±2, . . . and at least one of the values
of 2𝜋𝑇/𝑙

2 and 𝑇⋅ Im 𝑎/𝑙 is irrational, then the inverse operator
𝐿
−1 exists, but is not bounded. The operator 𝐿 is self-adjoint

and its spectrum consists of an infinite number of eigenvalues
and continuous spectrum filling the entire real axis (−∞, +∞).
The points of the continuous spectrum are the limit points of
eigenvalues.

(d) If Re 𝑎 = 0 and Im 𝑎 = (((−1)
n
(n + 1/2))/2m) ⋅ (l/T) −

2m𝜋/l for some values n = 0, 1, 2, . . . ; m = 0, ±1, ±2, . . .,
the inverse operator L−1 does not exist. The operator L is self-
adjoint. If both values of 2𝜋T/l2 and T ⋅ Im 𝑎/l are rational,
the spectrum consists of an infinite number of eigenvalues,
among which there are an infinite number of infinite multiple
eigenvalues. If at least one of the values of 2𝜋T/l2, T ⋅ Im 𝑎/l
is irrational, then the spectrum of the operator L fills the entire
real line (−∞, +∞).

Proof. In the work [11] Weyl introduced the concept of a
sequence uniformly distributed modulo 1 and also proved a
criterion of uniform distribution. In the same paper he gave
examples of sequences distributed uniformly modulo 1. The
simplest of these sequences is the sequence 1𝜉, 2𝜉, 3𝜉, . . . with
some irrational number 𝜉.

Weyl’s First Theorem. If 𝜑(𝑧) is a polynomial with a constant
term 𝛼

0
and not all coefficients of 𝜑(𝑧) − 𝛼

0
are rational, then

the sequence of numbers 𝜑(1), 𝜑(2), 𝜑(3), . . . is distributed
uniformly dense everywhere.

In particular:

Weyl’s Second Theorem. If 𝜉 is some irrational number, the
sequence of points 1𝜉, 4𝜉, 9𝜉, 16𝜉, 25𝜉, . . . when winding of a

real axis around a circle of length 1 covers it evenly dense
everywhere.The same will hold if the squares of numbers are
replaced by their cubes or fourth degrees, and so forth.

Next, we show that the set of eigenvalues {𝜆
𝑚𝑛

} is
compacted with an increase in the indices 𝑛 and 𝑚.

The eigenvalues that we found are of the form

𝜆
𝑚𝑛

= (−1)
𝑛

(𝑛 +
1

2
)

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

+
2𝑚𝜋𝑖

𝑙
𝑎,

𝑎 ̸= 0, 𝑚 = 0, ±1, ±2, . . . , 𝑛 = 0, 1, 2, . . . .

(13)

Let us consider the neighborhood of the origin. If it was a
limit point of the set of eigenvalues, then the inverse operator
(𝐿)
−1 would be unbounded.
If 𝜆
𝑚𝑛

→ 0 for some subsequence, then

󵄨󵄨󵄨󵄨𝜆𝑚𝑛
󵄨󵄨󵄨󵄨

2

= ((−1)
𝑛

(𝑛 +
1

2
)

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

−
2𝑚𝜋

𝑙
⋅ Im 𝑎)

2

+ (
2𝑚𝜋

𝑙
⋅ Re 𝑎)

2

󳨀→ 0.

(14)

This is impossible when Re 𝑎 ̸= 0. If Re 𝑎 ̸= 0, then

󵄨󵄨󵄨󵄨𝜆𝑚𝑛
󵄨󵄨󵄨󵄨

2

≥ (
2𝜋

𝑙
Re 𝑎)

2

, ∀𝑚 = 1, 2, . . . ,

󳨐⇒
󵄨󵄨󵄨󵄨𝜆𝑚𝑛

󵄨󵄨󵄨󵄨 ≥ (
2𝜋

𝑙
Re 𝑎) , ∀𝑚 = 1, 2, . . . ,

󵄨󵄨󵄨󵄨𝜆0𝑛
󵄨󵄨󵄨󵄨

2

= [(𝑛 +
1

2
)

𝜋

𝑇
]

2

≥ (
𝜋

2𝑇
)

2

,

󵄨󵄨󵄨󵄨𝜆0𝑛
󵄨󵄨󵄨󵄨 ≥

𝜋

2𝑇
, ∀𝑛 = 0, 1, 2, . . . .

(15)

Hence,

󵄨󵄨󵄨󵄨𝜆𝑚𝑛
󵄨󵄨󵄨󵄨 ≥ max {

𝜋

2𝑇
,
2𝜋

𝑙
|Re 𝑎|} , ∀𝑚 = 0, ±1, ±2, . . . ;

𝑛 = 0, 1, 2, . . .

(16)

Thus, when Re 𝑎 ̸= 0 the inverse operator 𝐿
−1 exists and

is bounded. If a subsequence {𝜆
𝑘𝑙

} of the sequence {𝜆
𝑚𝑛

}

converges to a point 𝜆
0
in the complex plane, then the

sequence {|𝜆
𝑘𝑙

|} is bounded; therefore, the second index 𝑙

takes only a finite number of values. Then the first index
takes a finite number of values too. We have a contradiction,
since assumption on {𝜆

𝑘𝑙
} is an infinite convergent sequence.

Therefore, the sequence {𝜆
𝑚𝑛

} has no limit points in the finite
part of the complex plane 𝜆, which means that the spectrum
of the operator 𝐿 is discrete.

Now we will investigate whether the operator 𝐿
−1 is

compact. Any subsequence of the sequence {𝜆
𝑚𝑛

}, 𝑚 =

0, ±1, ±2, . . . , 𝑛 = 0, 1, 2 . . ., tends to infinity. In fact, let {𝜆
𝑖𝑗
}

be an arbitrary infinite subsequence of the sequence {𝜆
𝑚𝑛

}.
Then two situations are possible:
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(1) either the first index takes an infinite number of
values, then

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

≥ (
2𝑖𝜋

𝑙
Re 𝑎)

2

, 󳨐⇒
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
󳨀→ +∞, (17)

(2) or the first index takes a finite number of values, while
the second index takes an infinite number of values;
therefore

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

= [(−1)
𝑗
(𝑗 +

1

2
)

𝜋

𝑇
− (

2𝑖𝜋

𝑙
)

2

−
2𝑖𝜋

𝑙
⋅ Im 𝑎]

2

+ (
2𝑖𝜋

𝑙
⋅ Re 𝑎)

2

≥ [(𝑗 +
1

2
)

𝜋

𝑇
+ (−1)

𝑗+1
(

2𝑖𝜋

𝑙
)

2

+(−1)
𝑗+1 2𝑖𝜋

𝑙
⋅ Im 𝑎]

2

󳨀→ ∞.

(18)

Due to the fact that 𝑗 → +∞, the second and third terms
are the bounded quantities.

Lemma 12 (see [12]). For the complete continuity of the
operator of the normal type it is necessary and sufficient to fulfill
the condition

lim
𝑛→+∞

𝜆
𝑛

= 0. (19)

On the basis of Lemma 12 and (17) and (18) it follows that
the inverse operator 𝐿

−1 is completely continuous. Therefore
its spectrum is discrete.

Now consider the case Re 𝑎 = 0.
In this case, the eigenvalues have the form

𝜆
𝑚𝑛

= (−1)
𝑛

(𝑛 +
1

2
)

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

−
2𝑚𝜋

𝑙
Im 𝑎,

Im 𝑎 ̸= 0.

(20)

Suppose that 𝜆
𝑚𝑛

̸= 0, that is,

Im 𝑎 ̸=
(−1)
𝑛

(𝑛 + 1/2)

2𝑚
⋅

𝑙

𝑇
−

2𝑚𝜋

𝑙
,

𝑛 = 0, 1, 2, . . . , 𝑚 = 0, ±1, ±2, . . . .

(21)

If 𝑛 = 2𝑘 + 1 and 𝑘 = 0, 1, 2, . . ., then

𝜆
𝑚,2𝑘+1

= − (2𝑘 +
3

2
)

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

−
2𝑚𝜋

𝑙
Im 𝑎 󳨀→ +∞

(22)

at𝑚, 𝑘 → ∞; therefore this subsequence has no limit points.
If 𝑛 = 2𝑘, 𝑘 = 0, 1, 2, . . ., then

𝜆
𝑚,2𝑘

= (2𝑘 +
1

2
)

𝜋

𝑇
− (

2𝑚𝜋

𝑙
)

2

−
2𝑚𝜋

𝑙
Im 𝑎,

𝑘 = 0, 1, 2, . . . , 𝑚 = 0, ±1, ±2, . . . .

(23)

Transform this expression to a form convenient for us

𝜆
𝑚,2𝑘

=
2𝜋

𝑇
[𝑘 +

1

4
−

2𝑚
2
𝜋𝑇

𝑙2
−

𝑚𝑇

𝑙
Im 𝑎]

=
2𝜋

𝑇
[𝑘 +

1

4
− (𝑚
2 2𝜋𝑇

𝑙2
+ 𝑚

𝑇 ⋅ Im 𝑎

𝑙
)] .

(24)

For convenience we introduce the following notation:

𝜑 (𝑚) = 𝑚
2 2𝜋𝑇

𝑙2
+ 𝑚

𝑇 ⋅ Im 𝑎

𝑙
, (25)

where [𝑥] is the integer part and (𝑥) is the fractional part.
Suppose that 𝑘 = [𝜑(𝑚)], then

𝜆
𝑚,2𝑘

=
2𝜋

𝑇
[

1

4
+ [𝜑 (𝑚)] − 𝜑 (𝑚)]

=
2𝜋

𝑇
[

1

4
− (𝜑 (𝑚) − [𝜑 (𝑚)])] =

2𝜋

𝑇
[

1

4
− (𝜑 (𝑚))] .

(26)

Now we use the Weyl’s theorem [11], for this we assume
that at least one of the values of

2𝜋𝑇

𝑙2
,

𝑇 ⋅ Im 𝑎

𝑙
(27)

is irrational. Then by Weyl’s theorem the fractional part
𝜑(𝑚), that is, (𝜑(𝑚)), fills the interval [0, 1] uniformly dense
when 𝑚 = 0, 1, 2, . . .. Then the subsequence {𝜆

𝑚, 2𝑘
}, 𝑚 =

0, 1, 2, . . . , 𝑘 = [𝜑(𝑚)], is dense everywhere in the interval
[−3𝜋/2𝑇, 𝜋/2𝑇].

Assuming 𝑘 = [𝜑(𝑚)] + 1 and 𝑘 = [𝜑(𝑚)] + 2, . . ., then
𝑘 = [𝜑(𝑚)] − 1, 𝑘 = [𝜑(𝑚)] − 2, . . ., and so on; we obtain
that the sequence {𝜆

𝑚𝑛
} is uniformly dense everywhere; that

is, the continuous spectrum of the operator 𝐿 fills the entire
real axis from −∞ to +∞. Let now both values of

2𝜋𝑇

𝑙2
,

𝑇 ⋅ Im 𝑎

𝑙
(28)

be rational; then 𝜑(𝑚) is always rational. To be specific let

2𝜋𝑇

𝑙2
=

𝑝

𝑞
,

𝑇 ⋅ Im 𝑎

𝑙
=

𝑟

𝑘
. (29)

Then

𝜑 (𝑚) = 𝑚
2

⋅
𝑝

𝑞
+ 𝑚 ⋅

𝑟

𝑘
=

𝑚
2
𝑝 + 𝑚𝑟

𝑞 ⋅ 𝑘
= [𝜑 (𝑚)] + (𝜑 (𝑚)) .

(30)

The fractional part 𝜑(𝑚) takes only a finite number of
values; they are the remainders of the division 𝑚

2
𝑝 + 𝑚𝑟 by

𝑞 ⋅ 𝑘; that is

0,
1

𝑞 ⋅ 𝑘
,

2

𝑞 ⋅ 𝑘
, . . . ,

𝑞 ⋅ 𝑘 − 1

𝑞 ⋅ 𝑘
. (31)

When 𝑚 is changing from −∞ to +∞, these values will
repeat infinitely many times, at least one or all of them. For
us it is important that they do not coincide with 1/4.
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Assuming 𝑘 = [𝜑(𝑚)], 𝑚 = 0, 1, 2, . . ., we see that

𝜆
𝑚,2𝑘

=
2𝜋

𝑇
[

1

4
− (𝜑 (𝑚))] , 𝑚 = 0, 1, 2, . . . . (32)

This infinite sequence is contained in a segment
[−3𝜋/2𝑇, 𝜋/2𝑇] and consists of a finite number of fractions
of the form

2𝜋

𝑇
⋅

1

4
,
2𝜋

𝑇
⋅ (

1

4
−

1

𝑞 ⋅ 𝑘
) ,

2𝜋

𝑇
⋅ (

1

4
−

2

𝑞 ⋅ 𝑘
) , . . . ,

2𝜋

𝑇
⋅ (

1

4
−

𝑞𝑘 − 1

𝑞 ⋅ 𝑘
) ,

(33)

so at least one of them, or all, or some of them are repeated
infinitely many times. This suggests that some numbers
in the segment [−3𝜋/2𝑇, 𝜋/2𝑇] are the infinitely multiple
eigenvalues.

Continuing this reasoning as in the irrational case, we see
that the spectrum of the operator 𝐿 consists of an infinite
set of eigenvalues and among the eigenvalues there are the
infinite set of the infinitely multiple eigenvalues. By our
assumption

Im 𝑎 ̸=
(−1)
𝑛

(𝑛 + 1/2)

2𝑚
⋅

𝑙

𝑇
−

2𝑚𝜋

𝑙
,

𝑛 = 0, 1, 2, . . . , 𝑚 = 0, ±1, ±2, . . . ;

(34)

therefore the inverse operator exists and is bounded but is
not compact in view of the existence of eigenvalues of infinite
multiplicity, as the spectrum of the compact operator has a
finite multiplicity. If Re 𝑎 = 0 and

Im 𝑎 =
(−1)
𝑛

(𝑛 + 1/2)

2𝑚
⋅

𝑙

𝑇
−

2𝑚𝜋

𝑙
(35)

for some values 𝑛 = 0, 1, 2, . . . , 𝑚 = 0, ±1, ±2, . . ., the inverse
operator𝐿

−1 does not exist and zero is an eigenvalue, perhaps,
of the infinite multiplicity. In this case, if at least one of the
values of

2𝜋𝑇

𝑙2
,

𝑇 ⋅ Im 𝑎

𝑙
(36)

is irrational, then the spectrum of the operator 𝐿 fills the
entire real axis. If both of these values are rational, then the
spectrum of the operator 𝐿 consists of an infinite number
of eigenvalues, among which there are an infinite number of
infinite multiple eigenvalues.

Finally, we note that the boundary value problem (2)–(4)
is strongly solvable in the cases of (a) and (b) of Theorem 11
but in cases (c) and (d) is not.

4. Conclusions

Bymeans of Fourier method, a criterion for strong solvability
of the mixed Cauchy problem for the heat equation with a
deviating argument was found.The nature of the spectrum of
the periodic problem for the heat equation with a deviating

argument was studied in detail, and the norm of the inverse
operator was estimated through the influence coefficient.
The dependence between the coefficient of influence and the
nature of the spectrum of the heat operator with a deviating
argument was found.
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