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A new concept of H, formation is proposed to handle a group of agents navigating in a free and an obstacle-laden environment
while maintaining a desired formation and changing formations when required. With respect to the requirements of changing
formation subject to internal or external events, a hybrid multiagent system (HMAS) is formulated in this paper. Based on the fact
that obstacles impose the negative effect on the formation of HMAS, the H_, formation is introduced to reflect the above disturbed
situation and quantify the attenuation level of obstacle avoidance via the H_,-norm of formation stability. An improved Newtonian
potential function and a set of repulsive functions are employed to guarantee the HMAS formation-keeping and collision-avoiding
from obstacles in a path planning problem, respectively. Simulation results in this paper show that the proposed formation
algorithms can effectively allow the multiagent system to avoid penetration into obstacles while accomplishing prespecified global

objective successfully.

1. Introduction

In recent years, there has been a spurt of interest in the area of
cooperative control for multiple agents due to its challenging
features and many applications, for example, formation con-
trol [1, 2], obstacles avoidance [3, 4], rendezvous [5], flocking
[6], foraging [7], troop hunting, and payload transport.
Referring to the existing literature, it is obvious that multiple
agents can perform tasks faster and more efficiently than a
single one. The existing approaches for cooperative control of
MAS:s fall into several categories, including behavior-based,
artificial potential, virtual structure, leader-follower, graph
theory, and decentralized control methods. Other methods
and research aspects of the cooperative control for MASs can
be found in [8-10].

As one key branch of cooperative control, formation and
obstacle avoidance problems of multiagent systems have been
received significant attentions [1-4, 8, 11]. In this case, the
MAS is usually required to follow a trajectory while main-
taining a desired formation and avoiding obstacles. In some

practical situations, the group of agents may be necessary
to perform certain maneuvers, such as split, reunion and
reconfiguration, in order to negotiate the obstacles [2, 12].
Although the formation problem for MASs is attracting
increasingly research attention, there are still several open
fields deserving further investigation, such as robustness,
fragility, and effectiveness of formation. With respect to
the most robustness analysis of MASs, such as [13-15], the
agents are investigated under uncertain environments with
external disturbances. However, in some sense, obstacles in
the navigational path can also be regarded as a disturbance
from environment, which would impair the performance of
formation stability. Furthermore, the influence of obstacles
is usually negligible when the distances between agents and
obstacles exceed certain range threshold. Inspired by obstacle
avoidance issue and H_, control theory, we introduce a new
concept of H formation, which treats the effects of obstacles
as certain exterior disturbances, to handle the formation
problem of MASs in clustered environment. Then a Lyapunov
approach is employed to deal with H_ analysis.



Artificial potential field (APF) method is widely used
in coordination control of MASs due to its simplicity and
efficiency [7, 16], which was first introduced by [17] for for-
mation and obstacle avoidance of MASs. Since then, several
literatures have attempted to improve the performance of
APF method. In [18], bifurcation theory is used to reconfigure
the formation through a simple free parameter change to
reduce the computational expense. By introducing a new
concept of artificial potential trenches in [11], the scalability
and flexibility of robot formations are improved. The basic
idea of potential field theory is to create a workshop, where
the agents are counterbalanced with each other by the inter-
active potential force between them and suffered a repulsive
force from obstacles to steer around them [19]. Despite all
the advantages of APFs, the lack of accurate representations
of obstacles with arbitrary shapes is regarded as one major
limitation to generally extend to practical applications. A
potential function based on generalized sigmoid functions,
which can be generated from the combinations of implicit
primitives or from sampled surface data is proposed in [20].
Using the optical flow, [21] have achieved the automatic
detection of obstacles in virtual environment. The formation
control with obstacle avoidance is highly related to the
flocking problems in [6], where only the obstacles with simple
shapes are taken into account. In this paper, we assume that
the boundary functions of arbitrary obstacles can be known
from the implicit functions which can be constructed from
sensor readings or image data. By combining the artificial
potential model and the negotiating results with obstacles, a
resultant artificial repulsive force is developed to guarantee
the obstacles avoidance.

In addition, it may happen that the MASs are desired
to perform various formation shapes to achieve specified
navigational objective. As a result, it is necessary for the MAS
to possess the ability of changing formation shape during
the navigation, such as split, rejoin, and reconfiguration. In
this case, the MASs consist of both continuous variables
and discrete events. In [2], a triple (group element g, shape
variable r, control graph §) is employed to model the mobile
robots and meet the requirement of changing formations.
Furthermore, a Petri-potential-fuzzy hybrid controller is
presented for the motion planning of multiple mobile robots
with multiple targets in a clustered environment in [22].
In this paper, a hybrid formation controller is proposed
where the formation changes as events (tasks) occur. In
practice, the correspondence between tasks and formation
can be prespecified at the initialization step, and created
intelligently by the embedded processors in each agent during
the implementation. It is remarkable that the hybrid multia-
gent systems exhibit continuous-state dynamics and discrete
behavior jumping between formations. Then, we formulate
the HMAS by a hybrid machine owing to its advantages of
illustrating inputs and outputs explicitly [23, 24].

The paper proceeds as follows. The formation control
and obstacle avoidance problem are addressed in Section 2.
In Section 3, a new concept of H_, formation and tech-
nical proofs are provided. In Section 4, we discuss the
obstacle-avoidance functions. Simulation results to illustrate
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the results are presented in Section 5. Conclusions and future
work are provided in Section 6.

Notation 1. Throughout the paper, let Z be the set of positive
integers, and let J = [t;,+00) (f, > 0). R" represents
the real Euclidean n-dimensional vector space. For x =
(x1,...,x,)" € R", the norm of x is ||x| £ (x7x)"2, where
the symbol ()" denotes the transpose of a matrix or a vector.
I, denotes the identity matrix of order n (for simplicity I
if no confusion arises). £,[0,00) is the Lebesgue space of
R"-valued vector-functions g(-), defined on the time interval

[0, 00), with the norm |lg|, = (IOOO ||g(t)||2)1/2dt,

2. Problem Formulation and Preliminaries

Consider a multiagent system with N nodes and an undi-
rected graph topology ® = (v,¢); v and ¢ are the set of
vertices and the set of edges (i.e, € € v x v), respectively. The
notation (4, j) or (j,i) equivalently denotes the edge of the
graph between node i and node j. Furthermore, a graph is
connected if there exists a path between every pair of distinct
nodes; otherwise it is disconnected.

Before proceeding further, the following assumptions are
made in this paper.

(1) Each agent is equipped with sensors and computa-
tional hardware that allow it to detect the distances
to the obstacles within the sensing range. Further-
more, the agent can access its position in the world
coordinate system and broadcast to its neighboring
agents. The wireless communication has a limited
range and is assumed to be imperfect; that is, links
may be broken.

(2) The multiagent system has a task set ~ and a formation
set F which meet actual project needs before initia-
tion. And suppose that all agents know the informa-
tion of ¥ and [F, as well as the desired formation shape
and trajectories in every step.

Referred to hybrid machine presented in [23, 24] and
associated with the practical application, we consider a
special class of hybrid multiagent system (HMAS) which is
modeled by an elementary hybrid machine (EHM) [25] as
follows:

HMAS = (Q. %, Dy, E, (A% x (0))) . )

The elements of HMAS are denoted as follows. Q =
{40915+ -->Gm_1} 1s a set of vertices (discrete states); in
formation control, each discrete state g; € Q correspondsto a
desired formation shape A’, and we denote a set of formation
shape by F = {A% AL, A" 2 = {#,,.q.q; € Q)
(i,j = 0,...,m — 1) is a finite (task) set of event labels;
(gg»> x(0)) is the initial desired formation and state of HMAS,
respectively. E = {(g;, %qiqj,qj,xgo) 4,9, € Qlisa
set of edges (transition-paths), where g; is the exited vertex
and g; is the entered one. If the event # qa; 18 triggered,

consequently the formation of HMAS transits from A’ to A/,
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FIGURE 1: Example of a hybrid multiagent system performing under different events.

For example, Figure 1 shows a sequence of admissible col-
lective behaviors of a HMAS triggered by event set X =
{form, dismiss, split, unite, transform 1, transform 2}.

Remark 1. In practical application, the multiagent system
is always assigned multiple tasks in the navigation, and
each task may correspond to multiple formation shapes.
Similarly to the deterministic automaton described in [26],
we suppose that the HMAS is deterministic; namely, there
cannot be two transitions with the same event label. It is worth
mentioning that the following theoretical analysis is available
for nondeterministic HMAS; that is, there can be multiple
transitions triggered by the same event.

Dy is the dynamics of HMAS and for each agent i and
q € Q, which is described by

N
%(6) = f(6x)+ ) J; O x;(0) +ul (1) +Caw, (1), (2)
j=1

where i € {1,2,...,N}, t € J, x,(t) ¢ R”, x = [x],
X3, ..., x]", and C; are real constant matrices with appropri-
ate dimensions. f(t,x) : J x RN — R™! is continuously
differentiable, representing the group motion (i.e., path of the
HMAS). J(t) = (J;;(1)) N 1 the time-varying coupling con-
figuration matrix representing the communication strength
and communicational topology of the HMAS. If there is
an interconnection between agent i and agent j (j #1), then
]ij(t) = ]ji(t) > 0; otherwise, ]ij(t) = ]ji(t) = 0, and the
diagonal elements of matrix J(¢) are defined by

N N
Ja® == J;®) == > J;. (3)

jeLj#i jeLj#i

w;(t) here denotes the obstacle-avoiding function, which will
be derived from potential function in Section 6.

Moreover, the formation controller in this paper is
derived by extending the one in [1] into multiformation case

(q €Q):

N
ul (t) = ZZ (xj () —x; (t) - A?j)
=

j#i
y [ Sa -l 0-x0-23 17112
2
La
_ S y@-no-ayr L (4)
LZ

r

1 1
+Sr<_2 + —2>
212

% e<1/L3+1/Li>||x,-<t>x,-<r>A?,.uz] ’

where A?. e R™ and A7 = (A7) € [ is the formation-
) ' NxN

shape matrix of the multiagent system with A‘fj = —A‘i.i and
A?i = 0. Parameters S, S,, L, and L, are positive constants
representing the strengths and effect ranges of the attractive

and repulsive forces, respectively; and with the following
constraint we have

2
Sa o La /-1l 0-x0-a%°
s, 12
r r
(5)

L ,
- (1 + L—‘;) ¢ Uk O-xi -5 /1)

r

where L, > L,.



Remark 2. Compared to the formation controller given in
[1], the formation controller in this paper is designed to
achieve more complicated control objects, such as forma-
tion switching in clustered environment. Furthermore, it is
worth mentioning that the obstacle-avoiding function w;(t)
(i = 1,...,N) as a part of the controller is an important
contribution for this paper.

In order to simplify (4), define

S, _ _ _Ad 272

q _ (lx; (@) =x; () -A% 1" /L)

(Pij (t) =2 |:L—;e Xj X ij
a

_ S - 0-x@-at 1)

r

(5%)
2

» e(—1/L2,+1/Li><||xj<r>—x,-<r>—A?j||2)] '

(6)

According to (5), one can verify (p?j(t) > 0, and the necessity
of this constraint can be addressed by referring to that the
force vector and position vector are unidirectional.

Then rewrite the formation controller (4) as follows:

N
u?(t)z;¢fj(t)(xj(t)—xi(t)—A?j), 1€Q
j#1

Remark 3. Let (pgj(t) be a continuous function with respect
to [lx;(t) — x;(£)
bounds of ll; () = x;(¢) - A‘fju exist, then (p?j(t) is bounded
on all sets of IIxj(t) —x;(t) - A‘?jll (i,j=1,...,Nand g € Q).
Furthermore, regard the fact that most multiagent systems are
implemented in finite horizon which means the limitation of

interagent distances exists. Throughout the paper, we assume
that the lower bound of q)g.(t) exists, and we denote it by

- Aq,-j||, and it is easy to prove that if the

=L (8)

q=0,...,m—1
where ¢ > 0 can be guaranteed by choosing appropriate
valuesof L, L,, S,, and S, in the constraint (5).
3. Analysis of H_, Formation Stability

Now, this section will analyze H,, formation stability of
the above-developed framework of HMAS in a free and an
obstacle-laden environment, respectively.

Since we have property (3), the HMAS (1) is equivalent to

N
X (8) = f (&%) + ) J; (0) (5 (8) = x; (1))
j=1 )

+ u? ) + Cu; (t).
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Before moving on, we need to note that the formation
switching in the controller will introduce discontinuities to
the right hand side of (9). With respect to the dwell-time
theory in [27], if the switching of a family of individually
stable systems is sufficiently slow, then overall systems remain
stable. As a result, we assume that the intervals between
consecutive switching signals, that is, dwell time, are large
enough. Due to the introduction of average dwell-time, this
assumption does not represent a restriction because this
concept allows the formation switching mechanism to be
more flexible provided that the average interval between
consecutive switching is no less than certain fixed positive
constant.

To investigate the formation control of MAS, we intro-
duce a measurement error X;(f) given as

X () = x; () —x; (). (10)
It follows from (5), (9), and (10) that the time derivative of
Xij(t) is as follows:

N

Xy (0= 3 (T3 (0) X o (6) = T (6) X ()

k=1
+ Cjwj t) - Cw; (t)
(11)

z

£y (9% 0 (X 0 - A7)

— () (X (- A%) ).

For a formation of multiple agents moving in a clustered
environment, it is inevitable to encounter various obstacles
which affect the performance of formation or even break
the whole system down. Naturally, the multiagent system is
desirable to be able to adapt to the environment. In general,
the agents are only affected by the obstacles when they enter
a certain region. At other times, the influence being exerted
from obstacles can be negligible. With the above analysis, the
obstacles can be treated as exogenous disturbances deriving
from the environment, and H analysis can be employed to
investigate the formation stability of HMAS.

Associating the system (2) with the formation controller
(7), we define a disagreement function similar to [28] as
follows:

1 N-1 N 2
o(X;0) =5 X XX 0-a3 a2

i=1 j>i

which demonstrates the formation performance of HMAS for
qg€Q.

For the HMAS given in (2), H,, formation stability means
to find a formation controller (7) such that the following
conditions in (DF1) and (DF2) hold.

(DF1). The formation of HMAS (1) is asymptotically stable
when w(t) = 0, where w(t) = [w],w},...,wy]", which
is equivalent to the asymptotical formation stability of the
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HMAS (1) in the absence of obstacles. That is to say that,
all agents asymptotically converge to the desired formation

positions; that is, IIX,»J-(t)—A‘?J.II — Oast — oo, whereq € Q.

(DF2). The formation controller ensures a certain level of H
formation performance as follows:
sup

[, @ (X;®)dt
X;;(0)

AN Y 3N % 0 - A% /N B, 0]

<y
(13)

for initial states x;(0) € R™! and q € Q wherey > lisa
constant, X,-j(O) = xj(O)—xl-(O), and (I)(Xij(t)) is given by (12).
If the conditions (DF1) and (DF2) hold, then the formation
of HMAS (1) is said to achieve the H_ formation stability.

Remark 4. Tt is worthwhile noting that (DF2) is a standard
condition arising from the H, control theory, which implies
that X;;, (i, j = 1,..., N), converges to Aqij in the sense of &,.

Remark 5. According to (DF2), the attenuation level y >
1 shows the sensitivity of obstacle avoidance in HMAS (1).
Giving a smaller y > 1 means that the intensity and range of
reaction of HMAS towards obstacles are smaller.

Theorem 6. Given a positive scalar y > 1, the H. formation
problem of the HMAS (1) under the conditions (DF1) and
(DF2) is solved at initial positions x;(0) € R”, if

r I Cl -
N i+ Xii N
ij ij
T T <0 14
0 i + Xij B 0 (14)
s Xij
C! 2
-t 0 0 _2Y
L N N2
holds for alli, j = 1,2,..., N, where
(@+7)1 (@-7)1 (15)
7‘[1.. =, Xi. = N
g 2 g 2
and @ is defined in (8).

Proof. Without the loss of generality, construct a common
Lyapunov function in the form of

1 & 2
T3 2OREY B (16)

i=1 j=1

where g € Q. If the derivative of V' with respective to (9)
is constantly negative for all subsystems, then the formation
of HMAS (1) is stable. For the sake of convenience, X;;(t) is
implicitly rewritten as X
the proof.

ij> as well as ]ij(t), goiqj(t), and w;(f) in

5
From the above discussion, one has
| NN v
V= ﬁ;;(x” - 4%)' %,
| NN N
- EZ;Z;; [(X"J Au) (75X _]ikXik)]
=1 )= =
V1
(17)

In respect that the coupling configuration matrix J(t) is
symmetric, and X;; = =X Aql.j =-A%, X, =0,and Az'j =0,

ji’ jio i
one has

N N N
vy = ‘%Z > 2 (X5 =A%) 15X

1 N N N T
=2 2 2 (X =A%) T X (18)

1 N N N AT
— 2 2 (X =A%) T X e

Renaming j in the v, as k, thus one has

z

v =-

Mz
™M=z

[(in - A%-,»)T — (X — A?ci)T] JikX k-

(19)

1
N4

1

Il
—
=

Il
—_
=
N

<

One can find the fact that X}, - X}, = X", and Al — A?{ =
ji i j ji i
A%; then

(20)



Using the standard completing the square argument, it
follows from (20) that

N 2
2% (21)

Furthermore, the v, is similarly analyzed as follows:

=3 Yol -1 (x

i=1 j>i
With respect to (8), one can easily obtain

i~ AL). (22)

N-1 N .
—q_DZ Z(Xij - A?j) (Xij B A?j)
i=1 j>i
_N- 23
SONICHIEEY S
Al -1l
Then, for v;, one has
HN-IN
vs== ) ) (X - AY) Ca (24)
N i=1 j>i

Now, we consider the formation stability of HMAS (1)

with w(t) = 0. From the inequalities (21) and (23), V becomes
—T;; 0 0
N-1 N i+ Xij
0 —7T;;
Z pyL ST |9y @)
i=1 j>i T+ Xij
T —Xij

where Q;; = [(X;; - A?].)T,XIT]., (A?j)T]T, m;j, and ;; are given

in (15). By the Schur complement formula, the achievement
of inequality (14) is equivalent to the following inequalities
satisfied as follows:

1
_nij + KI 0 0
”1] + Xij
0 _T[l'j < s
T T 2
0 nij Xl]
B —Xij
I _1
G| i~ N 0 0 G
N 0 i + Xij N 2y
0 " 2 0| W
T+ X.T.
0 0 i . ij X 0
(26)
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By nonnegative matrix theory, one can easily find that

—T1;; 0 0
i + Xij
nij + ij
s —Xij
. 27)
_ﬂij + ﬁ 0 0
i+ X,
< 0 _7-[1,], % < 0,
rriT]. + XiTj
0 T, X

which implies V < 0. This proves that condition (DF1) holds
for the HMAS (1) with w(t) = 0

Next, we prove the H, performance constraint (DF2) for

all nonzero w;(t) € ¥,[0,00) and a prescribed y > 1. Define

~ oo 1 N
V= L (q) (Xij (t)) - YﬁZwiT (1) w; (t)) dt
i=1 (28)

zznx (©) - x0) - 4%,

11]>1

and one has

©0 N
! (CD (%, ) - %Zf" Ow; (1) +V (x (t))) dt

_V(x(co) + =L Z lex (0) - x;(0) - A%

i=1 j>i

.. N
)} ..
< L (cp (X; 1) - Ni;nw,. O +V (x (t)))dt.

(29)

Combining (21), (23), and (24), one obtains

;
- —(x;-a%) Cu,
T+
—% 0 0
TG Tt Xij
T -2 _
+o )0 24 i
0 it X X

4 2
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_7'[,] I _ Ci i
2 2N 2N
0 i nij + Xz] 0
y . 2 . 4 £
0 T[l] + Xij _@ 0 1]’
. 4 2
_G 0 Y
L 2N N?

(30)

where 5,-]. = [QI.TJ., w] (t)]". From the LMI (14), it is easy to prove

E < 0 which implies V < 0 and immediately leads to the
inequality (13).

Therefore, the formation of HMAS (1) has the property of
H_, criteria (DF1) and (DF2). This completes the proof. [

Remark 7. By studying the LMIs (14), the variables x;; > 0
in (15) indicate the connectivity strength among agents. In
particular, due to the monotone decreasing property of ¢;;
with respect to norm IIxj(t) -x,;(t)-A i | and the discussion in
Remark 3, this connectivity strength is inversely proportional
to the relatively active scope of MASs.

4. Design Obstacle-Avoiding Functions

In this section, collision avoidance in trajectory tracking
is achieved using mutual repulsion between agents and
obstacles, which is resulted from the Newtonian potential-
based model. By regarding the agents and obstacles as con-
ductors with uniform charges, the repulsive force inversely
proportional to the distance of them can be derived in closed
form.

Based on practical applications in robotics and haptic
rendering, an ideal potential field should possess all of the
following attributes.

(i) With respect to the property of obstacle avoidance,
the magnitude of potential and corresponding repul-
sion should be infinite at the boundary of obstacles
and drop off with distance. And the range of potential
is bounded, which is accordant with the limited
detective scope of agent’s built-in explorer in this
paper.

(ii) The shapes of equipotential surface should be similar
with the obstacle surface and spherical symmetrical at
the boundary of potential field.

(iii) The first and second derivatives of potential function
should exist and be continuous, so that the resulting
force field is smooth.

Before moving on, for making this paper self-contained,
we revisit the general definition of external disturbance in the
H_, problem. H, techniques are usually used to evaluate the
incremental gain of external input signal in any direction and
at any frequency. In the context of H,, theory, the external

signals with finite energy are often investigated; that is,
lw®)|l < co. More explicitly, the finite energy signal w(t) is
said to belong to L, [0, co), which implies

“000 IIw(t)IIzdt]l/2 = “:o iwj(t)wi(t)dt]l/z < 0.

(31)

In order to utilize H,, theory to design obstacle-
avoidance controller, we assume that multiagent systems
ultimately get far from the obstacles as time evolves.
Incorporated with attributes (ii) this assumption leads to
lim, , w(t) = 0. That is, the obstacle-avoidance functions
w;(t) are available in finite time intervals. In addition, for
avoiding obstacles, the agent-obstacle distances are intuitively
greater than zero, and consequently the supremum of func-
tion w;(t) (i = 1,...,N) exists. Based on above analysis
on obstacle-avoidance function, one can easily derive the
conclusion that w(t) belongs to L, [0, o).

Now, we will discuss the obstacle-avoiding function
beginning with the instance of mass points (when the bulks
of agents and obstacles are close to each other) and then
extending to bulky obstacles (over 10 times bigger than agent)
with arbitrary shapes.

Consider that an agent i navigates in an obstacle-laden
environment with M € Z, obstacles, and assume that s; € R”
is the position of obstacle I (I € {1,2,..., M}). The potential
at agent i due to obstacle [ is

Pil
x: &) = sl

where p; is the repulsion coefficient for obstacles avoidance
and is defined as follows:

[p Ia®O-s]<o
Pﬂ‘{o, I, (6) - ] = . (3)

Py(t) = (32)

where p is a positive scalar and § is the maximal sensing range
of agent. When the relative distance of agent i and obstacle
I is shorter than that of the detective scope §, agent i will
receive a signal of possible collision and the obstacle-avoiding
function will work. In other words, the repulsive potentials
between agents and obstacles act only when they get close to
certain range. Now, the obstacle-avoiding function for agent
i is introduced based on the negative gradient of the potential
(32) in the following form:

x; (1) -
pi (34)
Z ’||x<>—s,n

Then we extend the obstacle-avoiding function for the
bulky objects with arbitrary shapes. In practical situations,
particularly in many exploration applications, the implicit
functions of obstacles to be modeled are not available. But
by samples of boundary surfaces obtained from camera,
laser range finder and sonar, and with the help of some
techniques such as signal sampling and image processing, the
implicit functions can be obtained, and then they construct

w; (t) - x ll (Xl,Sl



the APFs [20]. For convenience, in this paper, assume that
the boundary function of obstacle I is known as B;, and f3;
here is the position of arbitrary point on the boundary of
obstacle. In fact, most of obstacles can be mathematically
approximated with polyhedron. In this paper we focus on
the convex polyhedra obstacles. Moreover, the results can
be easily extended to obstacles with arbitrary shapes. The
repulsion between agent i and an arbitrary point of the
obstacle’s boundary is

x; (1) - f

F () = py— P
- Bl

(35)

where p; are defined in (33). Then for the agent i the obstacle-
avoiding function is defined as

M
w, (t) = ;cJ;BldFil, (36)

where (f)B represents the surface integrals on boundary of
1

obstacles.

In view of above analysis, the obstacles laden in the
terrain are static. However, it is worth mentioning that all
the obstacle-avoidance functions are available for moving
obstacles except for those with high-speed. In this case, the
position vector f3,(¢) is a vector-valued function over time
ted.

5. Numerical Examples

In this section, some simulation results illustrate the perfor-
mance of the proposed control laws to achieve formation
and obstacles avoidance. To avoid triviality, the advantage of
formation controllers (4) compared with others is omitted in
this paper, and the reader is referred to [1].

Firstly, drive 4 agents with the initialization positions
(-1.2,-1.1)7, (-2.0,3.8)", (5.3,2.0)7, and (4.2,2.0)" to form
a shape of square and realize obstacle avoidance in the
navigation. The formation-shape matrix A7 is set as

> 23 > >

Al _[ﬁ Q]T Al _[ﬁ _ﬁ '
2522 |7 27 2

AL = [_ﬁ _Q]T Al = [_ﬁ E]T (37)
34 = > 2 | 4= 5 o |

Ay =[v20], A =[0.-V2],

and two obstacles locate at [2.50,5.00]" and [-0.82,15.90]".
The target trajectory of f(t, x) in HMAS (1) is given by

-0.1 0 cos (0.4 = t)
ftx)= [ 0 0,1] i [sin (0.25 = t)] 68
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FIGURE 2: Formation of MAS without obstacle-avoidance functions
case.

and the time-varying configuration matrix switches from one
mode to another. They are as follows:

[-06 03 0 03]
1|03 -06 03 0

F'=1 0 03 -06 03|
03 0 03 -06
) : (39)
-09 03 03 03
> |03 -09 03 03
=103 03 -09 03

[ 03 03 03 —09]

For the formation controller (5), let S, = 8.1, L, = 0.31,
S, =0.69, L = 0.3,and & = 3, p = 0.5 in obstacle-avoiding
function (34).

According to Figures 2 and 3, one can demonstrate the
control laws presented in this paper realize the formation
keeping while avoiding collision with obstacles (marked by
black stars in the figures) in complex environment. For the
sake of measuring and visualising the formation effectiveness,
we introduce the following formation error:

N-1 N
e®=2 Y (J@-xo]-|ajl).  «o

i=1 j>i

which is shown in Figure 4. Then, the sensitivity of obstacle-
avoiding function is investigated in Figure 5, which depicts
the curves of left term in inequality (13) under different
repulsion coefficient p and repulsion rang 8. From Figure 5,
one can verify the fact that the performance index y in
inequality (13) reflects the sensitivity of HMAS towards
obstacles; that is, smaller y requires HMAS to be less active
(smaller p and &) towards obstacle.

Next, in an attempt to demonstrate the effectiveness
of obstacle-avoidance function (36), a rectangular obstacle
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FIGURE 4: Formation error of MAS controlled by obstacle-avoidance
functions.

stands in the way of the HMAS path. Figures 6 and 7 show
that the HMAS steers around the obstacle smoothly with the
help of obstacle-avoidance functions and keeps a predefined
formation in the whole process, as well as the corresponding
formation error.

In many practical situations, the HMAS occasionally
encounters the trench-shape obstacles which are impossible
for the whole system keeping original shape to pass through.
In such case, the HMAS has to transform formation to a
feasible one. In this example, the task is to transition from
a square formation to a straight line to pass the trench
safely. When the HMAS detects the trench existed in the
tracking path, specified task is triggered and corresponding
formation is determined according to the predetermined

Left term in inequality (13)

02

0 2 4 6 § 10 12 14 16 18
t(s)

— 0=3,p=05 O Supremum
O  Supremum — 80=10,p=1.0
— §=10,p=05 O  Supremum

FIGURE 5: Investigation of parameters y, p, and §.

Y -axis

0 5 10 15 20 25 30 35 40 45
X-axis

F1GURE 6: Obstacle avoidance of MAS in 2D.

task-formation scheme. As shown in Figure 8, the HMAS
breaks formation, goes in a straight line when it meets the
trench, and transforms back into the original formation after
passing the trench.

6. Conclusion

In this paper, new formation and obstacle-avoidance pro-
tocols of multiagent systems are presented. A notion of
H_, formation has been first defined to characterize the
performance of obstacle-avoiding, and the H,, performance
index is concreted as a sensitivity of obstacle-avoidance in
this paper. Then a hybrid formation controller with a task set
and a formation set is introduced to handle distinct obstacles.
By designing diverse task-formation mapping, the HMAS
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FIGURE 7: Formation error for obstacle avoidance of MAS in 2D.
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FIGURE 8: Formation change for HMAS in the presence of trench-
shaped obstacle.

can accomplish various complex missions. Then obstacle-
avoidance functions using potential field model are specified
to realize multiagent systems avoiding arbitrarily-shaped
obstacles on the path. According to the simulation results, not
only the HMAS can steer around the obstacles with proposed
approach, but also the reconfiguration of formation can be
achieved in the complex environment.
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