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This paper is concerned with the variable coefficients mKdV (VC-mKdV) equation. First, through some transformation we convert
VC-mKdV equation into the constant coefficient mKdV equation. Then, using the first integral method we obtain the exact
solutions ofVC-mKdVequation, such as rational function solutions, periodicwave solutions of triangle function, bell-shape solitary
wave solution, kink-shape solitary wave solution, Jacobi elliptic function solutions, and Weierstrass elliptic function solution.
Furthermore, with the aid of Mathematica, the extended hyperbolic functions method is used to establish abundant exact explicit
solution of VC-mKdV equation. By the results of the equation, the first integral method and the extended hyperbolic function
method are extended from the constant coefficient nonlinear evolution equations to the variable coefficients nonlinear partial
differential equation.

1. Introduction

It iswell known that theKdVequation plays an important role
in the soliton theory. Many properties of the KdV equation,
such as symmetry, Bäcklund transformation, infinite con-
servation laws, Lax pairs, and Painleve analysis, have been
studied. Miura transformation links the KdV equation with
the mKdV equation. Therefore, as the KdV equation, mKdV
equation is also important in mathematical physics field.
In recent years, some authors considered the constant
coefficients mKdV equation [1–4]. However, in practical
applications, the coefficients of nonlinear evolution equations
vary with time and space. Therefore, the exact solution of
the variable coefficient nonlinear evolution equations has a
greater application value.

This paper will discuss the variable coefficients mKdV
equation (VC-mKdV):

𝑢
𝑡
+ 𝑎 (𝑡) 𝑢

𝑥
+ 𝑏 (𝑡) 𝑢

2
𝑢
𝑥
+ 𝑟 (𝑡) 𝑢

𝑥𝑥𝑥
= 0, (1)

where 𝑎(𝑡), 𝑏(𝑡), and 𝑟(𝑡) are arbitrary function of variable
𝑡. More recently, some properties of the variable coefficients
mKdV equation have been studied [5–18]. The aim of this
paper is to apply the first integral method and the extended
hyperbolic function method for constructing a series of
explicit exact solutions to the VC-mKdV equation (1), such
as rational function solutions, periodic wave solutions of tri-
angle functions, bell-shape solitarywave solution, kink-shape
solitary wave solution, Jacobi elliptic function solutions,
Weierstrass elliptic function solution, andmany exact explicit
solutions in form of the rational function of hyperbolic
function and the rational function of triangle function.

The rest of this paper is organized as follows. In Section 2,
the outline of the first integral method will be given. In
Section 3 we introduce a transformation to transform the
VC-mKdV equation (1) into a constant coefficients mKdV
equation. Section 4 is the main part of this paper; the
methods are employed to seek the explicit and exact solutions
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of the VC-mKdV equation (1). In the last section, some
conclusion is given.

2. The First Integral Method

The first-integral method, which is based on the ring theory
of commutative algebra, was first proposed by Professor Feng
Zhaosheng [19] in 2002. The method has been applied by
Feng to solve Burgers-KdV equation, the compound Burgers-
KdV equation, an approximate Sine-Gordon equation in (𝑛+
1)-dimensional space, and two-dimensional Burgers-KdV
equation [20–24].

In the recent years, many authors employed this method
to solve different types of nonlinear partial differential equa-
tions in physical mathematics. More information about these
applications can be found in [25] and references therein.
The most advantage is that the first integral method has not
many sophisticated computation in solving nonlinear algebra
equations compared to other direct algebramethod. For com-
pleteness, we briefly outline the main steps of this method.

Themain steps of thismethod are summarized as follows.
Given a system of nonlinear partial differential equations,

for example, in two independent variables,

𝑃 (𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, . . .) = 0. (2)

Using traveling wave transformation 𝑢(𝑥, 𝑡) = 𝑓(𝜉), 𝜉 = 𝑘𝑥+
𝜔𝑡+ 𝜉

0
and some other mathematical operations, the systems

(2) can be reduced to a second-order nonlinear ordinary
differential equation:

𝐷(𝑓, 𝑓

, 𝑓

) = 0. (3)

By introducing new variables𝑋 = 𝑓(𝜉), 𝑌 = 𝑓

(𝜉) ormaking

some other transformations, we reduce ordinary differential
equation (3) to a system of the first order ordinary differential
equation:

𝑋

= 𝑌

𝑌

= 𝐻 (𝑋, 𝑌) .

(4)

Suppose that the first integral of (4) has a form as follows:

𝑃 (𝑋, 𝑌) =

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
= 0. (5)

(In general𝑚 = 1 or𝑚 = 2), where 𝑎
𝑖
(𝑋) (𝑖 = 0, 1, . . . , 𝑚) are

real polynomials of𝑋.
According to the Division theorem from ring theory of

commutative algebra, there exists polynomials 𝛼(𝑋), 𝛽(𝑋) of
variable𝑋 inR[𝑋] such that

𝑑𝑃

𝑑𝜉

= [𝛼 (𝑋) + 𝛽 (𝑋)𝑌] 𝑃 (𝑋, 𝑌) . (6)

We determine polynomials 𝛼(𝑋), 𝛽(𝑋), 𝑎
𝑖
(𝑋) (𝑖 = 0, 1,

2, . . .) from (6), furthermore, obtain 𝑃(𝑋, 𝑌).
Then substituting 𝑋 = 𝑓(𝜉), 𝑌 = 𝑓


(𝜉) or other trans-

formations into (5), exact solutions to (2) are established,
through solving the resulting first-order integrable differen-
tial equation.

3. A Transformation to the
VC-mKdV Equation

In order to transfer (1) into the form of (3), we firstly do
some transformations for (1). Since (1) is a variable coeffi-
cients equation and we need to transform it to the constant
coefficients mKdV equation, we introduce a transformation

𝑢 (𝑥, 𝑡) = 𝑈 (𝑋, 𝑇) 𝑝 (𝑥, 𝑡) , (7)

where 𝑋 = 𝑋(𝑥, 𝑡), 𝑇 = 𝑇(𝑥, 𝑡). Through this transforma-
tion, we hope that (1) be changed into the form of constant
coefficients mKdV equation:

𝑈
𝑇
+ 24𝑈

2
𝑈
𝑋
+ 𝑈
𝑋𝑋𝑋

= 0. (8)

In order to obtain the above transformation equation, substi-
tuting (7) into (1) and assuming 𝑇

𝑥
= 0, and simultaneously

on both side of the formulas by dividing 𝑟(𝑡)𝑋3
𝑥
, we have

𝑝𝑏𝑈
3
𝑝
𝑥

𝑟𝑋
3

𝑥

+

𝑝
2
𝑏𝑈
2
𝑈
𝑋

𝑟𝑋
2

𝑥

+ (

𝑝
𝑡

𝑟𝑋
3

𝑥
𝑝

+

𝑝
𝑥𝑥𝑥

𝑋
3

𝑥
𝑝

+

𝑎𝑝
𝑥

𝑟𝑋
3

𝑥
𝑝

)𝑈

+ (

𝑎

𝑟𝑋
2

𝑥

+

𝑋
𝑡

𝑟𝑋
3

𝑥

+

𝑋
𝑥𝑥𝑥

𝑋
3

𝑥

+

2𝑝
𝑥𝑥

𝑋
2

𝑥
𝑝

+

3𝑋
𝑥𝑥
𝑝
𝑥

𝑋
3

𝑥
𝑝

)𝑈
𝑋

+

𝑇
𝑡

𝑟𝑋
3

𝑥

𝑈
𝑇
+ (

3𝑋
𝑥𝑥

𝑋
2

𝑥

+

3𝑝
𝑥

𝑋
𝑥
𝑝

)𝑈
𝑋𝑋

+ 𝑈
𝑋𝑋𝑋

= 0.

(9)

Comparing the coefficients of (9) with (8), such as 𝑈2𝑈
𝑋
,

𝑈, 𝑈
𝑥
, and so on, we have

𝑝𝑏𝑝
𝑥

𝑟𝑋
3

𝑥

= 0, (10)

𝑝
2
𝑏

𝑟𝑋
2

𝑥

= 24, (11)

𝑝
𝑡

𝑟𝑋
3

𝑥
𝑝

+

𝑝
𝑥𝑥𝑥

𝑋
3

𝑥
𝑝

+

𝑎𝑝
𝑥

𝑟𝑋
3

𝑥
𝑝

= 0, (12)

𝑎

𝑟𝑋
2

𝑥

+

𝑋
𝑡

𝑟𝑋
3

𝑥

+

𝑋
𝑥𝑥𝑥

𝑋
3

𝑥

+

2𝑝
𝑥𝑥

𝑋
2

𝑥
𝑝

+

3𝑋
𝑥𝑥
𝑝
𝑥

𝑋
3

𝑥
𝑝

= 0, (13)

𝑇
𝑡

𝑟𝑋
3

𝑥

= 1, (14)

3𝑋
𝑥𝑥

𝑋
2

𝑥

+

3𝑝
𝑥

𝑋
𝑥
𝑝

= 0. (15)

From (11) and (14), we have𝑋
𝑥

̸= 0 and

𝑏 =

24𝑟𝑋
2

𝑥

𝑝
2

, 𝑟 =

𝑇
𝑡

𝑋
3

𝑥

. (16)
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Substituting (16) into (10), (12), (13), and (15), we obtain

24𝑝
𝑥

𝑋
𝑥
𝑝

= 0, (17)

𝑋
3

𝑥
𝑝
𝑡
+ 𝑝
𝑥𝑥𝑥

𝑇
𝑡
+ 𝑋
3

𝑥
𝑎𝑝
𝑥

𝑇
𝑡
𝑋
3

𝑥
𝑝

= 0, (18)

𝑎𝑋
4

𝑥
𝑃 + 𝑋

3

𝑥
𝑋
𝑡
𝑝 + 𝑋

𝑥𝑥𝑥
𝑇
𝑡
𝑝 + 2𝑝

𝑥𝑥
𝑇
𝑡
𝑋
𝑥
+ 3𝑋
𝑥𝑥
𝑝
𝑥
𝑇
𝑡

𝑇
𝑡
𝑋
3

𝑥
𝑝

= 0,

(19)

3 (𝑋
𝑥𝑥
𝑝 + 𝑝
𝑥
𝑋
𝑥
)

𝑋
2

𝑥
𝑝

= 0. (20)

Form (18), we have 𝑇
𝑡
̸= 0. Also from (20), we have 𝑋

𝑥𝑥
= 0

and 𝑋
𝑥𝑥𝑥

= 0. From (17) and (18), we have that 𝑝 can only
be a constant. For simplicity, we take 𝑝 = 𝐶. Substituting this
into (19), we obtain

𝑋 = 𝐹(𝑥 − ∫𝑎 (𝑡) 𝑑𝑡) . (21)

For simplicity, we take

𝑋 = 𝑥 − ∫𝑎 (𝑡) 𝑑𝑡. (22)

Substituting (23) into (16), we have

𝑇 = ∫ 𝑟 (𝑡) 𝑑𝑡 + 𝐶
1
, (23)

where 𝐶
1
is an arbitrary constant. Thus we get s transform

between VC-mKdV equation (1) with constant coefficients
mKdV equation (8).

4. Explicit and Exact Solutions of
the VC-mKdV Equation

We firstly obtain explicit and exact solutions of the constant
coefficients mKdV equation (8) and then obtain explicit and
exact solutions of the constant coefficients mKdV equation
(1). In the view of (8), we suppose 𝜉 = 𝑘𝑋+𝜔𝑇+𝜉

0
, and then

we have

𝜔𝑈

+ 24𝑘𝑈

2
𝑈

+ 𝑘
3
𝑈

= 0. (24)

Integrating (24) once with respect to 𝜉, we obtain

𝑈

+ 𝑚𝑈

3
+ 𝑙𝑈 = 𝐸, (25)

where 𝑙 = 𝜔/𝑘
3
, 𝑚 = 8/𝑘

2, and 𝐸 is arbitrary integration
constant. Let 𝑅 = 𝑈(𝜉), 𝑆 = 𝑅

; (25) can be converted to a
system of nonlinear ODEs as follows:

𝑅

= 𝑆,

𝑆

= −𝑚𝑅

3
− 𝑙𝑅 + 𝐸.

(26)

Nowwe employ theDivision theorem to seek the first integral
to (26). Suppose that 𝑅 = 𝑅(𝜉), 𝑆 = 𝑆(𝜉) are the nontrivial

solution to the system (26), and its first integral is an irredu-
cible polynomial inR[𝑅, 𝑆]:

𝑃 (𝑅 (𝜉) , 𝑆 (𝜉)) =

2

∑

𝑖=0

𝑎
𝑖
(𝑅) 𝑆
𝑖
= 0, (27)

where 𝑎
𝑖
, 𝑖 = 0, 1, 2 are polynomial of 𝑅. According to the

Division theorem, there exists polynomials 𝛼(𝑅), 𝛽(𝑅) of
variable 𝑅 inR[𝑅] such that

𝑑𝑃

𝑑𝜉

= 𝑎


2
(𝑅) 𝑆
3
+ 2𝑎
2
(𝑅) 𝑆𝑆


+ 𝑎


1
(𝑅) 𝑆
2

+ 𝑎
1
(𝑅) 𝑆

+ 𝑎


0
(𝑅) 𝑆

= (𝛼 (𝑅) + 𝛽 (𝑅) 𝑆) (𝑎
2
(𝑅) 𝑆
2
+ 𝑎
1
(𝑅) 𝑆 + 𝑎

0
(𝑅)) .

(28)

Collecting all the terms with the same power of 𝑆 together
and equating each coefficient to zero yield a set of nonlinear
algebraic equations as follows:

𝑎


2
(𝑅) = 𝛽 (𝑅) 𝑎

2
(𝑅) , (29)

𝑎


1
(𝑅) = 𝛽 (𝑅) 𝑎

1
(𝑅) + 𝛼 (𝑅) 𝑎

2
(𝑅) , (30)

𝑎


0
(𝑅) = 𝛽 (𝑅) 𝑎

0
(𝑅) + 𝛼 (𝑅) 𝑎

1
(𝑅)

+2𝑎
2
(𝑅) (𝑚𝑅

3
+ 𝑙𝑅 − 𝐸) ,

(31)

𝑎
1
(𝑅) (−𝑚𝑅

3
− 𝑙𝑅 + 𝐸) = 𝛼 (𝑅) 𝑎

0
(𝑅) . (32)

Because 𝑎
𝑖
(𝑅), (𝑖 = 1, 2) are polynomials, from (29) we

can deduce deg[𝑎
2
(𝑅)] = 0, 𝛽(𝑅) = 0; that is 𝑎

2
(𝑅) is a

constant. For simplicity, we take 𝛽(𝑅) = 0, 𝑎
2
(𝑅) = 1. Then

we determine 𝑎
0
(𝑅), 𝑎

1
(𝑅), and 𝛼(𝑅). From (30), we have

deg[𝑎
1
(𝑅)] − 1 = deg[𝛼(𝑅)] or 𝑎

1
(𝑅) = 𝛼(𝑅) = 0. In what

follows we will discuss these two situations.
(1) In the case of 𝛼(𝑅) = 0, 𝑎

1
(𝑅) = 0.

In this case, (30) and (32) are satisfied. From (31), we can
derive 𝑎

0
(𝑅) = (𝑚/2)𝑅

4
+ 𝑙𝑅
2
− 2𝐸𝑅 + 𝑑, where 𝑑 is an

integral constant. Substituting 𝑎
2
(𝑅), 𝑎
1
(𝑅), 𝑎
0
(𝑅) into (27),

one obtains that

𝑅

= ±√−

𝑚

2

𝑅
4
− 𝑙𝑅
2
+ 2𝐸𝑅 − 𝑑. (33)

Based on the discussion for different parameters, we can
obtain the solutions of the nonlinear ordinary differential
equation (33).

(a) For 𝑑 = 𝐸 = 0, (33) admits the following three general
solutions:

𝑅
1
= ± √

2𝑙

𝑚

csch√−𝑙𝜉, 𝑙𝑚 > 0

𝑅
2
= ± √−

2𝑙

𝑚

sech√−𝑙𝜉, 𝑙 < 0, 𝑚 > 0

𝑅
3
= ±

1

√−𝑚/2𝜉

, 𝑙 = 0.

(34)
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Combining (7), (22), (23), (34), and 𝑝(𝑥, 𝑡) = 𝐶, 𝑅 = 𝑈(𝜉),
one can get the following three sets of explicit exact solutions
to (1):

𝑢
1
(𝑥, 𝑡) = ± 𝑖𝐶√

𝜔

4𝑘

csch√ 𝜔

𝑘
3
𝜉, 𝑘𝜔 > 0,

𝑢
2
(𝑥, 𝑡) = ± 𝐶√−

𝜔

4𝑘

sech√− 𝜔
𝑘
3
𝜉, 𝑘𝜔 < 0,

𝑢
3
(𝑥, 𝑡) = ±

𝐶𝑘

2𝑖 [𝑘 (𝑥 − ∫ 𝑎 (𝑡) 𝑑𝑡) + 𝜉
0
]

, 𝜔 = 0,

(35)

where 𝜉 = 𝑘(𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔(∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0
, 𝐶, 𝐶
1
are

arbitrary parameters, and 𝜉
0
is an arbitrary constant.

(b) For 𝐸 = 0, 𝑑 = 𝑙
2
/2𝑚, we can obtain the following

four sets of explicit exact solutions to (33)

𝑅
4
= ±√

𝑙

𝑚

tan√− 𝑙
2

𝜉, 𝑙𝑚 > 0,

𝑅
5
= ±√

𝑙

𝑚

cot√− 𝑙
2

𝜉, 𝑙𝑚 > 0,

𝑅
6
= ±√−

𝑙

𝑚

tanh√ 𝑙

2

𝜉, 𝑙𝑚 < 0,

𝑅
7
= ±√−

𝑙

𝑚

coth√ 𝑙

2

𝜉, 𝑙𝑚 < 0.

(36)

Combining (7), (22), (23), (36), and 𝑝(𝑥, 𝑡) = 𝐶, 𝑅 = 𝑈(𝜉), we
can get the following four explicit exact solutions of (1):

𝑢
4
(𝑥, 𝑡) = ±𝐶√

𝜔

8𝑘

tan√− 𝜔

2𝑘
3
𝜉, 𝑘𝜔 > 0,

𝑢
5
(𝑥, 𝑡) = ±𝐶√

𝜔

8𝑘

cot√− 𝜔

2𝑘
3
𝜉, 𝑘𝜔 > 0,

𝑢
6
(𝑥, 𝑡) = ±𝐶√−

𝜔

8𝑘

tanh√ 𝜔

2𝑘
3
𝜉, 𝑘𝜔 < 0,

𝑢
7
(𝑥, 𝑡) = ±𝐶√−

𝜔

8𝑘

coth√ 𝜔

2𝑘
3
𝜉, 𝑘𝜔 < 0,

(37)

where 𝜉 = 𝑘(𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔(∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0
, 𝐶, 𝐶
1
are

arbitrary parameters, and 𝜉
0
is an arbitrary constant.

(c) For 𝐸 = 𝑙 = 0, from (33) we have

𝑅

= ±√−

𝑚

2

𝑅
4
− 𝑑. (38)

Let 𝑍 = 𝑅
2; (38) becomes

𝑍

= ±√−

𝑚

2

𝑍
3
− 𝑑𝑍. (39)

While 𝑚 < 0, the above equation possesses a Weierstrass
elliptic function doubly periodic wave type solution:

𝑍 = ℘(√−

𝑚

8

𝜉, −

8𝑑

𝑚

, 0) . (40)

Combining (7), (22), (23), (40), 𝑍 = 𝑅
2
, 𝑝(𝑥, 𝑡) = 𝐶, and 𝑅 =

𝑈(𝜉), we derive that (1) admits a Weierstrass elliptic function
doubly periodic wave type solution:

𝑢
8
(𝑥, 𝑡) = ±𝐶√℘(±

1

𝑘𝑖

𝜉, −𝑑𝑘
2
, 0) , (41)

where 𝜉 = 𝑘(𝑥−∫ 𝑎(𝑡)𝑑𝑡),𝐶,𝐶
1
are arbitrary parameters, and

𝜉
0
is an arbitrary constant.

(d) For 𝐸 = 0, 𝑑 ̸= 0, we obtain elliptic function solutions
for (33) as follows:

𝑅
9
= ±√

1 − 𝑙

𝑚

cn√1 − 𝑙

2

𝜉

𝑑 =

𝑙
2
− 1

2𝑚

𝑅
10
= ±√

2

𝑚

dn√2 + 𝑙𝜉

𝑑 = −

2 (𝑙 + 1)

𝑚

𝑅
11
= ±√−

1 + 𝑙

𝑚

nc√ 𝑙 − 𝑙

2

𝜉

𝑑 =

𝑙
2
− 1

2𝑚

𝑅
12
= ±√−

2 (1 + 𝑙)

𝑚

nd√2 + 𝑙𝜉

𝑑 = −

2 (𝑙 + 1)

𝑚

𝑅
13
= ±

√
1 − 𝑙
2

2𝑚

sd√1 − 𝑙

2

𝜉

𝑑 =

𝑙
2
− 1

2𝑚

𝑅
14
= ±√

2 (1 + 𝑙)

𝑚

sc√𝑙 + 2𝜉

𝑑 = −

2 (𝑙 + 1)

𝑚

.

(42)
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Combining (7), (22), (23), the above result (42), and 𝑝(𝑥, 𝑡) =
𝐶, 𝑅 = 𝑈(𝜉), we can get the following six Jacobi elliptic doubly
periodic wave solutions of (1):

𝑢
9
(𝑥, 𝑡) = ±

√
𝑘
3
− 𝜔

8𝑘

cn√𝑘
3
− 𝜔

2𝑘
3
𝜉

𝑑 =

𝜔
3
− 𝑘
6

16𝑘
4

𝑢
10
(𝑥, 𝑡) = ±

𝑘

2

dn√2𝑘
3
+ 𝜔

𝑘
3

𝜉

𝑑 = −

𝜔 + 𝑘
3

4𝑘

𝑢
11
(𝑥, 𝑡) = ±

√
−

𝑘
3
+ 𝜔

8𝑘

nc√𝑘
3
− 𝜔

2𝑘
3
𝜉

𝑑 =

𝜔
2
− 𝑘
6

16𝑘
4

𝑢
12
(𝑥, 𝑡) = ±

√
−

𝑘
3
+ 𝜔

4𝑘

nd√2𝑘
3
+ 𝜔

𝑘
3

𝜉

𝑑 = −

𝑘
3
+ 𝜔

4𝑘

𝑢
13
(𝑥, 𝑡) = ±

√
𝑘
6
− 𝜔
2

16𝑘
4

sd√𝜔 − 𝑘
3

2𝑘
3
𝜉

𝑑 =

𝜔
2
− 𝑘
6

16𝑘
4

𝑢
14
(𝑥, 𝑡) = ±

√
𝜔 + 𝑘
3

4𝑘
3

sc√𝜔 + 2𝑘
3

𝑘
3

𝜉

𝑑 = −

𝜔 + 𝑘
3

4𝑘
3
,

(43)

where 𝜉 = 𝑘(𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔(∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0
, 𝐶, 𝐶
1
are

arbitrary parameters, and 𝜉
0
is an arbitrary constant.

(2) In the case of deg[𝑎
1
(𝑅)] − 1 = deg[𝛼(𝑅)].

In this case, we assume that deg[𝛼(𝑅)] = 𝑘
1
, deg[𝑎

0
(𝑅)] =

𝑘
2
; then we have deg[𝑎

1
(𝑅)] = 𝑘

1
+ 1. Now, by balancing the

degrees of both sides of (32), we can deduce that 𝑘
2
= 4.

By balancing the degrees of both sides of (31), we can also
conclude that 𝑘

1
= 1 or 𝑘

1
= 0. If 𝑘

1
= 0, assuming that

𝛼(𝑅) = 𝐴
0
, 𝑎
1
(𝑅) = 𝐴

1
𝑅 + 𝐴

2
, 𝑎
0
(𝑅) = 𝐶

4
𝑅
4
+ 𝐶
3
𝑅
3
+

𝐶
2
𝑅
2
+ 𝐶
1
𝑅 + 𝐶

0
and substituting them into (30)–(32), by

equating the coefficients of the different powers of𝑋 on both
sides of (30) to (32), we can get that 𝛼(𝑅) = 𝑎

1
(𝑅) = 0.

This is contradicting with our assumption. It indicates that
𝑘
1
̸= 0. While 𝑘

1
= 1, assuming that 𝑎

0
(𝑅) = 𝐶

4
𝑅
4
+ 𝐶
3
𝑅
3
+

𝐶
2
𝑅
2
+ 𝐶
1
𝑅 + 𝐶

0
, 𝑎
1
= 𝐴
2
𝑅
2
+ 𝐴
1
𝑅 + 𝐴

0
, 𝛼(𝑋) = 𝐵

1
𝑅 + 𝐵

0
,

then substituting these representations into (30)–(32), and by
equating the coefficients of the different powers of 𝑅 on both

sides of (30) to (32), we can obtain an overdetermined system
of nonlinear algebraic equations:

2𝐴
2
= 𝐵
1

𝐴
1
= 𝐵
0

4𝐶
4
− 2𝑚 = 𝐴

2
𝐵
1

3𝐶
3
= 𝐴
1
𝐵
1
+ 𝐴
2
𝐵
0

2𝐶
2
− 2𝑙 = 𝐴

1
𝐵
0
+ 𝐴
0
𝐵
1

𝐶
1
= 𝐴
2
𝐵
0
− 2𝐸

−𝑚𝐴
2
= 𝐵
1
𝐶
4

−𝑚𝐴
1
= 𝐵
1
𝐶
3
+ 𝐶
4
𝐵
0

−𝑚𝐴
0
− 𝑙𝐴
2
= 𝐵
1
𝐶
2
+ 𝐵
0
𝐶
3

𝐸𝐴
2
− 𝑙𝐴
1
= 𝐵
1
𝐶
1
+ 𝐵
0
𝐶
2

𝐸𝐴
1
− 𝑙𝐴
2
= 𝐵
1
𝐶
0
+ 𝐵
0
𝐶
1

𝐸𝐴
0
= 𝐵
0
𝐶
0
.

(44)

By analyzing all kinds of possibilities, we have the follow-
ing.

(a) While 𝐵
0
= 𝐶
0
= 0, it leads to a contradiction.

(b) While 𝐵
0
̸= 0, 𝐶
0
= 0, it also leads to a contradiction.

(c) While 𝐵
0
= 0, 𝐶

0
̸= 0, we can derive that

𝐸 = 0, 𝐴
1
= 𝐶
1
= 𝐶
3
= 0, 𝐶

4
= −

𝑚

2

,

𝐶
2
= −𝑙, 𝐶

0
= −

𝑙
2

2𝑚

, 𝐴
2

2
= −2𝑚, 𝐴

0
=

𝑙

𝑚

𝐴
2
.

(45)

Setting (45) in (27) yields

𝑑𝑅

𝑅
2
+ (𝑙/𝑚)

= ±

√−2𝑚

2

𝑑𝜉. (46)

Solving (46), we can obtain solutions𝑅
4
, 𝑅
5
, 𝑅
6
, and𝑅

7
again.

Consequently, we obtain explicit exact solutions 𝑢
4
, 𝑢
5
, 𝑢
6
,

and 𝑢
7
to (1). Here we will not list them one by one.

We obtain various of explicit and exact solutions of (1) by
using the extended hyperbolic functions method presented
in [26] by author. we can get the following explicit exact
solutions to (1):

𝑅
15
= ±√−

2

𝑚

𝑎 sinh (𝜉) + 𝑏 cosh (𝜉)
𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)

, (47)

when 𝑙 = 2, where 𝑎, 𝑏, and 𝑟 are arbitrary constants

𝑅
16
= ±

√
2 (𝑎
2
− 𝑏
2
)

𝑚

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)
,

(48)
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when 𝑙 = −1, where 𝑎, 𝑏, and 𝑟 are arbitrary constants such
that (𝑎2 − 𝑏2)𝑚 > 0

𝑅
17
= ±

√
𝑎
2
− 𝑏
2
− 𝑟
2

2𝑚

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)

± √−

1

2𝑚

𝑎 sinh (𝜉) + 𝑏 cosh (𝜉)
𝑎 cosh (𝜉) + 𝑏 sinh (𝜉) + 𝑟

,

(49)

when 𝑙 = 1/2, where 𝑎, 𝑏, and 𝑟 are arbitrary constants

𝑅
18
= ±

√
𝑎
2
− 𝑏
2
− 𝑟
2

2𝑚

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)

± √−

1

2𝑚

𝑏 cosh (𝜉) − 𝑎 sinh (𝜉)
𝑎 cosh (𝜉) + 𝑏 sinh (𝜉) + 𝑟

,

(50)

when 𝑙 = −1/2, where 𝑎, 𝑏, and 𝑟 are arbitrary constants

𝑅
19
= ±

√
−

2 (𝑎
2
+ 𝑏
2
)

𝑚

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)
,

(51)

when 𝑙 = 1, where 𝑎, 𝑏, and 𝑟 are arbitrary constants

𝑅
20
= ±√−

2

𝑚

𝑏 cosh (𝜉) − 𝑎 sinh (𝜉)
𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)

, (52)

when 𝑙 = −2, where 𝑎, 𝑏, and 𝑟 are arbitrary constants.
Combining (7), (22), (23), the above result (47)–(52), and

𝑝(𝑥, 𝑡) = 𝐶, 𝑅 = 𝑈(𝜉), theVC-mKdV equation (1) has explicit
and exact solitary wave solutions:

𝑢
15
(𝑥, 𝑡) = ±

𝑘𝑖 (𝑎 sinh (𝜉) + 𝑏 cosh (𝜉))
2 (𝑎 cosh (𝜉) + 𝑏 sinh (𝜉))

, (53)

where 𝑘, 𝜔, 𝑎, and 𝑏 are arbitrary constants such that 𝜔 = 2𝑘
3,

𝜉 = 𝑘(𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔(∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0

𝑢
16
(𝑥, 𝑡) = ±

𝑘√𝑎
2
− 𝑏
2

2

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)
, (54)

where 𝑘, 𝜔, 𝑎, and 𝑏 are arbitrary constants such that𝜔 = −𝑘
3,

𝜉 = 𝑘 (𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔 (∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0

𝑢
17
(𝑥, 𝑡) = ±

𝑘√𝑎
2
− 𝑏
2
− 𝑟
2

4

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)

± √−

1

2𝑚

𝑎 sinh (𝜉) + 𝑏 cosh (𝜉)
𝑎 cosh (𝜉) + 𝑏 sinh (𝜉) + 𝑟

,

(55)

where 𝑘, 𝜔, 𝑎, and 𝑏 are arbitrary constants such that 2𝜔 = 𝑘
3,

𝜉 = 𝑘 (𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔 (∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0

𝑢
18
(𝑥, 𝑡) = ±

𝑘√𝑎
2
− 𝑏
2
− 𝑟
2

2 (𝑎 cosh (𝜉) + 𝑏 sinh (𝜉))

± √−

1

2𝑚

𝑏 cosh (𝜉) − 𝑎 sinh (𝜉)
𝑎 cosh (𝜉) + 𝑏 sinh (𝜉) + 𝑟

,

(56)

where 𝑘, 𝜔, 𝑎, and 𝑏 are arbitrary constants such that −2𝜔 =

𝑘
3, 𝜉 = 𝑘 (𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔 (∫ 𝑟(𝑡)𝑑𝑡 + 𝐶

1
) + 𝜉
0

𝑢
19
(𝑥, 𝑡) = ±

√
−

2 (𝑎
2
+ 𝑏
2
)

𝑚

1

𝑎 cosh (𝜉) + 𝑏 sinh (𝜉)
,

(57)

where 𝑘, 𝜔, 𝑎, and 𝑏 are arbitrary constants such that 𝜔 = 𝑘
3,

𝜉 = 𝑘 (𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔 (∫ 𝑟(𝑡)𝑑𝑡 + 𝐶
1
) + 𝜉
0

𝑢
20
(𝑥, 𝑡) = ±

𝑘𝑖 (𝑏 cosh (𝜉) − 𝑎 sinh (𝜉))
2 (𝑎 cosh (𝜉) + 𝑏 sinh (𝜉))

, (58)

where 𝑘, 𝜔, 𝑎, and 𝑏 are arbitrary constants such that 𝜔 =

−2𝑘
3, 𝜉 = 𝑘 (𝑥 − ∫ 𝑎(𝑡)𝑑𝑡) + 𝜔 (∫ 𝑟(𝑡)𝑑𝑡 + 𝐶

1
) + 𝜉
0
.

5. Summary and Conclusions

In summary,motivated by [27], we establish a transform from
VC-mKdV equation to the constant coefficient mKdV equa-
tion firstly. Then we employ the first integral method and the
extended hyperbolic functionmethod to uniformly construct
a series of explicit exact solutions for VC-mKdV equations.
Abundant explicit exact solutions to VC-mKdV equations
are obtained through an exhaustive analysis and discussion
for different parameters. The exact solutions obtained in this
paper include that of the solitary wave solutions of kink-type,
singular traveling wave solutions, periodic wave solutions of
triangle functions, Jacobi elliptic function doubly periodic
solutions, Weierstrass elliptic function doubly periodic wave
solutions, and so forth. In particular, the six explicit exact
Jacobi elliptic function doubly periodic solutions 𝑅

9
–𝑅
14
and

Weierstrass elliptic function doubly periodic wave solution
𝑅
8
are uniformly obtained. Some known results of previous

references are enriched greatly. The results indicate that the
first integral method and extended hyperbolic function
method are very effective methods to solve nonlinear differ-
ential equation. The methods also are readily applicable to
a large variety of other nonlinear evolution equations in
physical mathematics.
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