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This paper investigates the set-valued complementarity problems (SVCP) which poses rather different features from those that
classical complementarity problems hold, due to tthe fact that he index set is not fixed, but dependent on 𝑥. While comparing the
set-valued complementarity problems with the classical complementarity problems, we analyze the solution set of SVCP.Moreover,
properties of merit functions for SVCP are studied, such being as level bounded and error bounded. Finally, some possible research
directions are discussed.

1. Motivations and Preliminaries

The set-valued complementarity problem (SVCP) is to find 𝑥 ∈
R𝑛 such that

𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥
𝑇

𝑦 = 0, for some 𝑦 ∈ Θ (𝑥) , (1)

where Θ : R𝑛

+
 R𝑛 is a set-valued mapping. The set-

valued complementarity problem plays an important role in
the sensitivity analysis of complementarity problems [1] and
economic equilibrium problems [2]. However, there has been
very little study on the set-valued complementarity problems
compared to the classical complementarity problems. In fact,
the SVCP (1) can be recast as follows, which is denoted by
SVNCP(𝐹, Ω) to find 𝑥 ∈ R𝑛, such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝑤) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝑤) = 0,

for some 𝑤 ∈ Ω (𝑥) ,
(2)

where 𝐹 : R𝑛

×R𝑚

→ R𝑛 andΩ : R𝑛

 R𝑚 are a set-valued
mapping. To see this, if letting

Θ (𝑥) = ⋃

𝑤∈Ω(𝑥)

{𝐹 (𝑥, 𝑤)} , (3)

then (1) reduces to (2). Conversely, if 𝐹(𝑥, 𝑤) = 𝑤 andΩ(𝑥) =
Θ(𝑥), then (2) takes the form of (1).

The SVNCP(𝐹, Ω) given as in (2) provides an unified
framework for several interesting and important problems in
optimization fields described as below.

(i) Nonlinear complementarity problem [1], which is to
find 𝑥 ∈ R𝑛, such that

𝑥 ≥ 0, 𝐹 (𝑥) ≥ 0, ⟨𝑥, 𝐹 (𝑥)⟩ = 0. (4)

This corresponds to 𝐹(𝑥, 𝑤) := 𝐹(𝑥) + 𝑤 and Ω(𝑥) =
{0} for all 𝑥 ∈ R𝑛. In other words, the set-valued
complementarity problem reduces to the classical
complementarity problem under such case.

(ii) Extended linear complementarity problem [3, 4],
which is to find 𝑥, 𝑤 ∈ R𝑛, such that

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑥
𝑇

𝑤 = 0,

with 𝑀
1
𝑥 −𝑀

2
𝑤 ∈ 𝑃,

(5)

where𝑀
1
,𝑀

2
∈ R𝑚×𝑛 and𝑃 ⊆ R𝑚 are a poly-hedron.

This corresponds to 𝐹(𝑥, 𝑤)=𝑤 andΩ(𝑥)={𝑤|𝑀
1
𝑥−

𝑀
2
𝑤∈𝑃}. In particular, when 𝑃= {𝑞}, it further red-

uces to the horizontal linear complementarity prob-
lem and to the usual linear complementarity problem,
in addition to𝑀

2
being an identify matrix.
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(iii) Implicit complementarity problem [5], which is to find
𝑥, 𝑤 ∈ R𝑛 and 𝑧 ∈ R𝑚, such that

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑥
𝑇

𝑤 = 0, with 𝐹 (𝑥, 𝑤, 𝑧) = 0, (6)

where 𝐹 : R2𝑛×𝑚

→ R𝑙. This can be rewritten as

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑥
𝑇

𝑤 = 0,

with 𝑤 satisfying 𝐹 (𝑥, 𝑤, 𝑧) = 0 for some 𝑧.
(7)

This is clearly an SVNCP(𝐹, Ω)where𝐹(𝑥, 𝑤)=𝑤 andΩ(𝑥) =
∪
𝑧∈R𝑚{𝑤 | 𝐹(𝑥, 𝑤, 𝑧) = 0} .

(iv) Mixed nonlinear complementarity problem, which is to
find 𝑥 ∈ R𝑛, and 𝑤 ∈ R𝑚 such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝑤) ≥ 0, ⟨𝑥, 𝐹 (𝑥, 𝑤)⟩ = 0,

with 𝐺 (𝑥, 𝑤) = 0.
(8)

This is an SVNCP(𝐹, Ω) where it corresponds to Ω(𝑥) = {𝑥|
𝐺(𝑥, 𝑤) = 0} . Note that the mixed nonlinear complemen-
tarity problem is a natural extension of Karush-Kuhn-Tucker
(KKT) conditions for the following nonlinear programming:

min 𝑓 (𝑥)

s.t. 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚,

ℎ
𝑗
(𝑥) = 0, 𝑗 = 1, . . . , 𝑙.

(9)

To see this, we first write out the KKT conditions as follows:

∇𝑓 (𝑥) +

𝑚

∑

𝑖=1

𝜆
𝑖
∇𝑔

𝑖
(𝑥) +

𝑙

∑

𝑗=1

𝜇
𝑗
∇ℎ

𝑗
(𝑥) = 0,

ℎ (𝑥) = 0,

𝑔 (𝑥) ≤ 0, 𝜆 ≥ 0, ⟨𝜆, 𝑔 (𝑥)⟩ = 0,

(10)

where 𝑔(𝑥) := (𝑔
1
(𝑥), . . . , 𝑔

𝑚
(𝑥)), ℎ(𝑥) := (ℎ

1
(𝑥), . . . , ℎ

𝑙
(𝑥)),

and 𝜆 := (𝜆
1
, . . . , 𝜆

𝑚
). Then, letting 𝑤 := (𝜆, 𝜇), 𝐹(𝑥, 𝑤) :=

−𝑔(𝑥), and

𝐺 (𝑥, 𝑤) := (

∇𝑓 (𝑥) +

𝑚

∑

𝑖=1

𝜆
𝑖
∇𝑔

𝑖
(𝑥) +

𝑙

∑

𝑗=1

𝜇∇ℎ
𝑗
(𝑥)

ℎ (𝑥)

) (11)

implies that the KKT system (10) becomes a mixed comple-
mentarity problem.

Besides the above various complementarity problems,
SVNCP(𝐹, Ω) has a close relation with the Quasi-variational
inequality, a special of the extended general variational
inequalities [6, 7], and min-max programming, which is
elaborated as below.

(v) Quasi-variational inequality [2]. Given a point-to-
point map 𝐹 from R𝑛 to itself and a point-to-set map
𝐾 from R𝑛 into subsets of R𝑛, the Quasi-variational
inequality QVI(𝐾, 𝐹) is to find a vector 𝑥 ∈ 𝐾(𝑥),
such that

⟨𝐹 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝑥) . (12)

It is well-known that QVI(𝐾, 𝐹) reduces to the classical non-
linear complementarity problem when 𝐾(𝑥) is independent
of 𝑥, say, 𝐾(𝑥) = R𝑛

+
for all 𝑥. Now, let us explain why it is

related to SVNCP(𝐹, Ω). To this end, given 𝑥 ∈ R𝑛, we define
𝐼(𝑥) = {𝑖 | 𝐹

𝑖
(𝑥) > 0}, and let

𝐾 (𝑥) = {𝑥 | 𝑥
𝑖
≥ 0 for 𝑖 ∈ 𝐼 \ 𝐼 (𝑥)

and 𝑥
𝑖
= 0 for 𝑖 ∈ 𝐼 (𝑥)} .

(13)

Clearly, 0 ∈ 𝐾(𝑥) which says ⟨𝑥, 𝐹(𝑥)⟩ ≤ 0 by taking 𝑦 = 0
in (12). Note that 𝑥 ≥ 0 because 𝑥 ∈ 𝐾(𝑥). Next, we will
claim that 𝐹

𝑖
(𝑥) ≥ 0 for all 𝑖 = 1, 2, . . . , 𝑛. It is enough to

consider the casewhere 𝑖 ∈ 𝐼\𝐼(𝑥). Under such case, by taking
𝑦 = 𝛽𝑒

𝑖
in (12) with 𝛽 being an arbitrarily positive scalar, we

have 𝛽𝐹
𝑖
(𝑥) ≥ 𝐹(𝑥)

𝑇

𝑥. Since 𝛽 can be made sufficiently large,
it implies that 𝐹

𝑖
(𝑥) ≥ 0. Thus, we obtain 𝐹(𝑥)𝑇𝑥 ≥ 0. In

summary, under such case, QVI(𝐾, 𝐹) becomes

𝑥 ≥ 0, 𝐹 (𝑥) ≥ 0, 𝑥
𝑇

𝐹 (𝑥) = 0, with 𝑥 ∈ 𝐾 (𝑥) (14)

which is an SVNCP(𝐹, Ω).

(vi) Min-max programming [8], which is to solve the
following problem:

min
𝑥∈R𝑛
+

max
𝑤∈Ω

𝑓 (𝑥, 𝑤) , (15)

where 𝑓 : R𝑛

× Ω → R is a continuously differentiable
function, and Ω is a compact subset in R𝑚. First, we define
𝜓(𝑥) := max

𝑤∈Ω
𝑓(𝑥, 𝑤). Although 𝜓 is not necessarily

Frechet differentiable, it is directional differentiable (even
semi-smooth), see [9]. Now, let us check the first-order
necessary conditions for problem (15). In fact, if 𝑥∗ is a local
minimizer of (15), then

𝜓


(𝑥
∗

; 𝑥 − 𝑥
∗

) = max
𝑤∈Ω(𝑥

∗
)

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤) , 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ R
𝑛

+
,

(16)

which is equivalent to

inf
𝑥∈R𝑛
+

max
𝑤∈Ω(𝑥

∗
)

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤) , 𝑥 − 𝑥
∗

⟩ = 0, (17)

where Ω(𝑥) means the active set at 𝑥, that is, Ω(𝑥) := {𝑤 ∈
Ω|𝜓(𝑥) = 𝑓(𝑥, 𝑤)}. At our first glance, the formula (17) is not
related to SVNCP(𝐹, Ω). Nonetheless, we will show that if Ω
is convex and the function 𝑓(𝑥, ⋅) is concave overΩ, then the
first-order necessary conditions form an SVNCP(𝐹, Ω), see
below proposition.

Proposition 1. Let Ω be nonempty, compact, and convex set
in R𝑚. Suppose that, for each 𝑥, the function 𝑓(𝑥, ⋅) is concave
overΩ. If 𝑥∗ is a local optimal solution of (15), then there exists
𝑤

∗

∈ Ω(𝑥
∗

), such that

𝑥
∗

≥ 0, ∇
𝑥
𝑓 (𝑥

∗

, 𝑤
∗

) ≥ 0, ⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
∗

) , 𝑥
∗

⟩ = 0.

(18)
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Proof. Note first that for each 𝑥 the inner problem

𝜓 (𝑥) := max
𝑤∈Ω

𝑓 (𝑥, 𝑤) (19)

is a concave optimization problem, since 𝑓(𝑥, ⋅) is concave
and Ω is convex. This ensures that Ω(𝑥), which denotes the
optimal solution set of (19), is convex as well. Now we claim
that the function

ℎ (𝑤) := ⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤) , 𝑥 − 𝑥
∗

⟩ (20)

is concave over Ω(𝑥∗). Indeed, for 𝑤
1
, 𝑤

2
∈ Ω(𝑥

∗

) and 𝛼 ∈
[0, 1], we have

ℎ (𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
)

= ⟨∇
𝑥
𝑓 (𝑥

∗

, 𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
) , 𝑥 − 𝑥

∗

⟩

= lim
𝑡↓0

(𝑓 (𝑥
∗

+ 𝑡 (𝑥 − 𝑥
∗

) , 𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
)

− 𝑓 (𝑥
∗

, 𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
)) (𝑡)

−1

= lim
𝑡↓0

𝑓 (𝑥
∗

+ 𝑡 (𝑥 − 𝑥
∗

) , 𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
) − 𝜓 (𝑥

∗

)

𝑡

≥ lim
𝑡↓0

(𝛼𝑓 (𝑥
∗

+ 𝑡 (𝑥 − 𝑥
∗

) , 𝑤
1
) + (1 − 𝛼)

× 𝑓 (𝑥
∗

+ 𝑡 (𝑥 − 𝑥
∗

) , 𝑤
2
) − 𝜓 (𝑥

∗

)) (𝑡)
−1

= lim
𝑡↓0

𝛼 [𝑓 (𝑥
∗

+ 𝑡 (𝑥 − 𝑥
∗

) , 𝑤
1
) − 𝑓 (𝑥

∗

, 𝑤
1
)]

𝑡

+ lim
𝑡↓0

(1 − 𝛼) [𝑓 (𝑥
∗

+ 𝑡 (𝑥 − 𝑥
∗

) , 𝑤
2
) − 𝑓 (𝑥

∗

, 𝑤
2
)]

𝑡

= 𝛼 ⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
1
) , 𝑥 − 𝑥

∗

⟩ + (1 − 𝛼)

× ⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
2
) , 𝑥 − 𝑥

∗

⟩

= 𝛼ℎ (𝑤
1
) + (1 − 𝛼) ℎ (𝑤

2
) ,

(21)

where we use the fact that 𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
∈ Ω(𝑥

∗

) (since
Ω(𝑥

∗

) is convex) and 𝑓(𝑥∗, 𝑤) = 𝜓(𝑥∗) for all 𝑤 ∈ Ω(𝑥∗).
On the other hand, applying the Min-Max Theorem [10,
Corollary 37.3.2] to (17) yields

max
𝑤∈Ω(𝑥

∗
)

inf
𝑥∈R𝑛
+

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤) , 𝑥 − 𝑥
∗

⟩ = 0. (22)

Hence, for arbitrary 𝜀 > 0, we can find 𝑤
𝜀
∈ Ω(𝑥

∗

), such that

inf
𝑥∈R𝑛
+

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
𝜀
) , 𝑥 − 𝑥

∗

⟩ ≥ −𝜀, (23)

that is,

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
𝜀
) , 𝑥 − 𝑥

∗

⟩ ≥ −𝜀, ∀𝑥 ∈ R
𝑛

+
. (24)

In particular, plugging in 𝑥 = 0 in (24) implies

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
𝜀
) , 𝑥

∗

⟩ ≤ 𝜀. (25)

Since Ω is bounded and Ω(𝑥∗) is closed, we can assume,
without loss of generality, that 𝑤

𝜀
→ 𝑤

∗

∈ Ω(𝑥
∗

) as 𝜀 → 0.
Thus, taking the limit in (25) gives

⟨∇
𝑥
𝑓 (𝑥

∗

, 𝑤
∗

) , 𝑥
∗

⟩ ≤ 0. (26)

Now, let 𝑥 = 𝑥∗ + 𝑘𝑒
𝑖
∈ R𝑛

+
. It follows from (24) that

(∇
𝑥
𝑓 (𝑥

∗

, 𝑤
𝜀
))

𝑖
≥ −

𝜀

𝑘

, (27)

which implies that (∇
𝑥
𝑓(𝑥

∗

, 𝑤
𝜀
))

𝑖
≥ 0 by letting 𝑘 → ∞,

and hence (∇
𝑥
𝑓(𝑥

∗

, 𝑤
∗

))
𝑖
≥ 0 for all 𝑖 = 1, 2, . . . , 𝑛, that

is, ∇
𝑥
𝑓(𝑥

∗

, 𝑤
∗

) ≥ 0. This together with (26) means that
⟨∇

𝑥
𝑓(𝑥

∗

, 𝑤
∗

), 𝑥
∗

⟩ = 0. Thus, (18) holds.

From all the above, we have seen that SVNCP(𝐹, Ω) given
as in (2) covers a range of optimization problems. Therefore,
in this paper, we mainly focus on SVNCP(𝐹, Ω). Due to
its equivalence to SVCP (1), our analysis and results for
SVNCP(𝐹, Ω) can be carried over to SVCP (1). This paper
is organized as follows. In Section 1, connection between
SVNCP(𝐹, Ω) and various optimization problems is intro-
duced. We recall some background materials in Section 2.
Besides comparing the set-valued complementarity problems
with the classical complementarity problems, we analyze the
solution set of SVCP in Section 3. Moreover, properties of
merit functions for SVCP are studied in Section 4, such
as level bounded and error bound. Finally, some possible
research directions are discussed.

A few words about the notations used throughout the
paper. For any 𝑥, 𝑦 ∈ R𝑛, the inner product is denoted by
𝑥
𝑇

𝑦 or ⟨𝑥, 𝑦⟩. We write 𝑥 ≥ 𝑦 (or 𝑥 > 𝑦) if 𝑥
𝑖
≥ 𝑦

𝑖
(or

𝑥
𝑖
> 𝑦

𝑖
) for all 𝑖 = 1, 2, . . . , 𝑛. Let 𝑒 be the vector with all

components being 1, and let 𝑒
𝑖
be the 𝑖-row of identitymatrix.

Denote 𝑁
∞
:= ∪

∞

𝑛=1
{{𝑛, 𝑛 + 1, . . .}}. While SVNCP(𝐹,Ω)

meaning the set-valued nonlinear complementary problem
(2), SVLCP(𝑀, 𝑞,Ω) denotes the linear case, that is,𝐹(𝑥, 𝑤) =
𝑀(𝑤)𝑥 + 𝑞(𝑤), where𝑀 : R𝑚

→ R𝑛×𝑛 and 𝑞 : R𝑚

→ R𝑛.
For a continuously differentiable function 𝐹 : R𝑛

× R𝑚

→

R𝑙, we denote the 𝑙 × 𝑛 Jacobian matrix of partial derivatives
of 𝐹 at (𝑥, 𝑤) with respect to 𝑥 by 𝐽

𝑥
𝐹(𝑥, 𝑤), whereas the

transposed Jacobian is denoted by ∇
𝑥
𝐹(𝑥, 𝑤). For a mapping

𝐻 : R𝑛

→ R𝑚, define

lim inf
𝑥→𝑥

𝐻(𝑥) :=(

lim inf
𝑥→𝑥

𝐻
1
(𝑥)

lim inf
𝑥→𝑥

𝐻
2
(𝑥)

...
lim inf
𝑥→𝑥

𝐻
𝑚
(𝑥)

). (28)

Given a set-valued mapping𝑀 : R𝑛

 R𝑚, define

lim sup
𝑥→𝑥

𝑀(𝑥)

:= {𝑢 | ∃𝑥
𝑛

→ 𝑥, ∃𝑢
𝑛

→ 𝑢 with 𝑢𝑛 ∈ 𝑀(𝑥𝑛)} ,

lim inf
𝑥→𝑥

𝑀(𝑥)

:= {𝑢 ∀𝑥
𝑛

→ 𝑥, ∃𝑢
𝑛

→ 𝑢 with 𝑢𝑛 ∈ 𝑀(𝑥𝑛)} .

(29)
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We say that𝑀 is outer semicontinuous at 𝑥, if

lim sup
𝑥→𝑥

𝑀(𝑥) ⊂ 𝑀 (𝑥) , (30)

and inner semicontinuous at 𝑥 if

lim inf
𝑥→𝑥

𝑀(𝑥) ⊃ 𝑀 (𝑥) . (31)

We say that𝑀 is continuous at𝑥 if it is both outer semicontin-
uous and inner semicontinuous at 𝑥. For more details about
these functions, please refer to [9, 11]. Throughout this paper,
we always assume that the set-valued mappingΩ : R𝑛

 R𝑚

is closed valued; that is, Ω(𝑥) is closed for all 𝑥 ∈ R𝑛 [11,
Chapter 1].

2. Focus on SVLCP(𝑀, 𝑞, Ω)

It is well known that variousmatrix classes paly different roles
in the theory of linear complementarity problem, such as 𝑃-
matrix, 𝑆-matrix,𝑄-matrix, and𝑍-matrix, see [1, 12] formore
details. Here we recall some of them which will be needed in
the subsequent analysis.

Definition 2. A matrix𝑀 ∈ R𝑛×𝑛 is said to be an 𝑆-matrix if
there exists 𝑥 ∈ R𝑛, such that

𝑥 > 0, 𝑀𝑥 > 0. (32)

Note that𝑀∈R𝑛×𝑛 is an 𝑆-matrix, if and only if the classi-
cal linear complementarity problem LCP(𝑀, 𝑞) is feasible for
all 𝑞 ∈ R𝑛, see [12, Prop. 3.1.5]. Moreover, the above condition
in Definition 2 is equivalent to

𝑥 ≥ 0, 𝑀𝑥 > 0, (33)

see [13, Remark 2.2]. However, such equivalence fails to hold
for its corresponding cases in set-valued complementarity
problem. In other words,

𝑥 > 0, 𝑀 (𝑤) 𝑥 > 0, for some 𝑤 ∈ Ω (𝑥) (34)

is not equivalent to

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 > 0, for some 𝑤 ∈ Ω (𝑥) . (35)

It is clear that (34) implies (35). But, the converse implication
does not hold, which is illustrated in Example 3.

Example 3. Let

𝑀(𝑤) = (

𝑤 0

0 𝑤
) , Ω (𝑥) = {

{0, 1} , 𝑥 = (1, 0) ∈ R2

;

{0} , otherwise.
(36)

If𝑀(𝑤)𝑥 > 0, then 𝑤 = 1, and such case holds only when
𝑥 = (1, 0). Therefore, (35) is satisfied, but (34) is not.

We point out that the set-valued mapping Ω(𝑥) in
Example 3 is indeed outer semi-continuous. A natural ques-
tion arises: what happens if Ω(𝑥) is inner semi-continuous?
The answer is given inTheorem 4 as below.

Theorem 4. If Ω(𝑥) is inner semicontinuous, and 𝑀(𝑤) is
continuous, then (34) and (35) are equivalent.

Proof. We only need to show (35)⇒(34). Let 𝐻(𝑥) =
max

𝑤∈Ω(𝑥)
𝑀(𝑤)𝑥, and denote by 𝑎

𝑖
(𝑥) the 𝑖th row of𝑀(𝑤).

Hence 𝐻
𝑖
(𝑥) = max

𝑤∈Ω(𝑥)
𝑎
𝑖
(𝑥)

𝑇

𝑥. With this, suppose 𝑥
0
is

an arbitrary but fixed point, we know that for any 𝜀 > 0, there
exists 𝑤

0
∈ Ω(𝑥

0
) such that 𝑎

𝑖
(𝑤

0
)
𝑇

𝑥
0
> 𝐻

𝑖
(𝑥

0
) − 𝜀. Since

Ω(𝑥) is inner semi-continuous, for any 𝑥
𝑛
→ 𝑥

0
, there exists

𝑤
𝑛
∈ Ω(𝑥

𝑛
) satisfying 𝑤

𝑛
→ 𝑤

0
. This implies

𝐻
𝑖
(𝑥

𝑛
) = max

𝑤∈Ω(𝑥𝑛)

𝑎
𝑖
(𝑤)

𝑇

𝑥
𝑛
≥ 𝑎

𝑖
(𝑤

𝑛
)
𝑇

𝑥
𝑛
. (37)

Then, taking the lower limit yields

lim inf
𝑛→∞

𝐻
𝑖
(𝑥

𝑛
) ≥ lim

𝑛→∞

𝑎
𝑖
(𝑤

𝑛
)
𝑇

𝑥
𝑛
= 𝑎

𝑖
(𝑤

0
)
𝑇

𝑥
0
> 𝐻

𝑖
(𝑥

0
) − 𝜀,

(38)

where the equality follows from the continuity of 𝑎
𝑖
(𝑤), which

is ensured by the continuity of 𝑀(𝑤). Because 𝜀 > 0 is
arbitrary, and {𝑥

𝑛
} is an arbitrary sequence converging to 𝑥

0
,

we obtain

lim inf
𝑥→𝑥

0

𝐻
𝑖
(𝑥) ≥ 𝐻

𝑖
(𝑥

0
) , (39)

which says𝐻
𝑖
is lower semi-continuous. This further implies

lim inf
𝑥→𝑥

0

𝐻(𝑥) = (

lim inf
𝑥→𝑥

0

𝐻
1
(𝑥)

...
lim inf
𝑥→𝑥

0

𝐻
𝑛
(𝑥)

)

≥ (

𝐻
1
(𝑥

0
)

...
𝐻

𝑛
(𝑥

0
)

) = 𝐻(𝑥
0
) ,

(40)

that is,

lim inf
𝑥→𝑥

0

max
𝑤∈Ω(𝑥)

𝑀(𝑤) 𝑥 ≥ max
𝑤∈Ω(𝑥

0
)

𝑀(𝑤) 𝑥
0
. (41)

If 𝑥 satisfies (35), then

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 > 0, for some 𝑤 ∈ Ω (𝑥) (42)

which is equivalent to

𝑥 ≥ 0, 𝐻 (𝑥) > 0. (43)

On the other hand, lim inf
𝜆→0

+𝐻(𝑥 + 𝜆𝑒) ≥ 𝐻(𝑥) > 0, and
𝑥 + 𝜆𝑒 > 0 for 𝜆 > 0. By taking 𝜆 > 0 small enough, we know
𝑥 + 𝜆𝑒 satisfies (34). Thus, the proof is complete.

There is another point worthy of pointing out. We
mentioned that the classical linear complementarity problem
LCP(𝑀, 𝑞) is feasible for all 𝑞 ∈ R𝑛 if and only if𝑀 ∈ R𝑛×𝑛 is
a 𝑆-matrix; that is, there exists 𝑥 ∈ R𝑛, such that

𝑥 > 0, 𝑀𝑥 > 0. (44)

Is there any analogous result in the set-valued set? Yes, we
have an answer for it in Theorem 5 below.
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Theorem 5. Consider the set-valued linear complementarity
problem SVLCP(𝑀, 𝑞, Ω). If there exists 𝑥 ∈ R𝑛, such that

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 > 0, for some 𝑤 ∈ ⋂
�̃�∈𝑁
∞

⋃

𝑛∈�̃�

Ω (𝑛𝑥) ,

(45)

then SVLCP(𝑀, 𝑞, Ω) is feasible for all 𝑞 : R𝑚

→ R𝑛 being
bounded from below.

Proof. Let 𝑞 be any mapping from R𝑚 to R𝑛 being bounded
from below, that is, there exists 𝛽 ∈ R, such that 𝑞(𝑤) ≥ 𝛽𝑒.
Suppose that 𝑥

0
and 𝑤

0
satisfy (45), which means

𝑥
0
≥ 0, 𝑀 (𝑤

0
) 𝑥

0
> 0, 𝑤

0
∈ ⋂

�̃�∈𝑁
∞

⋃

𝑛∈�̃�

Ω(𝑛𝑥
0
) .

(46)

Then, for any �̃�∈𝑁
∞
, we have𝑤

0
∈∪

𝑛∈�̃�
Ω(𝑛𝑥

0
). In particular,

we observe the following:

(1) if taking �̃� = {1, 2, . . . , }, then there exists 𝑛
1
, such

that 𝑤
0
∈ Ω(𝑛

1
𝑥
0
);

(2) if taking �̃� = {𝑛
1
+ 1, . . . , }, then there exists 𝑛

2
with

𝑛
2
> 𝑛

1
, such that 𝑤

0
∈ Ω(𝑛

2
𝑥
0
).

Repeating the above process yields a sequence {𝑛
𝑘
}, such that

𝑤
0
∈ Ω(𝑛

𝑘
𝑥
0
) and 𝑛

𝑘
→ ∞. Since𝑀(𝑤

0
)𝑥

0
> 0, it ensures

the existence of 𝛼 > 0, such that 𝑀(𝑤
0
)𝑥

0
> 𝛼𝑒. Taking

𝑘 large enough to satisfy 𝑛
𝑘
> max{−𝛽/𝛼, 0} gives 𝛼𝑛

𝑘
𝑒 >

−𝛽𝑒 ≥ −𝑞(𝑤). Then, it implies that

𝑀(𝑤
0
) 𝑛

𝑘
𝑥
0
> 𝛼𝑛

𝑘
𝑒 ≥ −𝑞 (𝑤) , (47)

and hence

𝑛
𝑘
𝑥
0
≥ 0, 𝑀 (𝑤

0
) (𝑛

𝑘
𝑥
0
) + 𝑞 (𝑤) > 0, 𝑤

0
∈ Ω (𝑛

𝑘
𝑥
0
) ,

(48)

which says 𝑛
𝑘
𝑥
0
is a feasible point of SVLCP(𝑀, 𝑞, Ω).

Definition 6. A matrix 𝑀 ∈ R𝑛×𝑛 is said to be a 𝑃-matrix
if all its principal minors are positive, or equivalently [12,
Theorem 3.3.4],

∀𝑥 ̸= 0, ∃𝑘 ∈ {1, 2, . . . , 𝑛} such that 𝑥
𝑘
(𝑀𝑥)

𝑘
> 0. (49)

From [12, Corollary 3.3.5], we know that every 𝑃-matrix
is an 𝑆-matrix. In other words, if 𝑀 satisfies (49), then the
following system is solvable:

𝑥 ≥ 0, 𝑀𝑥 > 0. (50)

Their respective corresponding conditions in set-valued com-
plementarity problem are

∀𝑥 ̸= 0, ∃𝑘 ∈ {1, . . . , 𝑛} such that 𝑥
𝑘
(𝑀 (𝑤) 𝑥)

𝑘
> 0,

for some 𝑤 ∈ Ω (𝑥) ,
(51)

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 > for some 𝑤 ∈ Ω (𝑥) . (52)

Example 7 shows that the aforementioned implication is not
valid as well in set-valued complementarity problem.

Example 7. Let

𝑀(𝑤) = (

𝑤 0

0 −𝑤
) , Ω (𝑥) = {

−1, 𝑥
1
= 0;

1, otherwise.
(53)

For 𝑥
1
̸= 0, we have 𝑀(𝑤)𝑥 = (𝑥

1
, −𝑥

2
), and hence

𝑥
1
(𝑀(𝑤)𝑥)

1
= 𝑥

2

1
>0. For 𝑥

1
=0, we know 𝑥

2
̸= 0 (since 𝑥 ̸= 0)

which says 𝑀(𝑤)𝑥 = (−𝑥
1
, 𝑥

2
), and hence 𝑥

2
(𝑀(𝑤)𝑥)

2
=

𝑥
2

2
> 0. Therefore, condition (51) is satisfied. But, condition

(52) fails to hold because 𝑀(𝑤)𝑥 = (𝑥
1
, −𝑥

2
) or (−𝑥

1
, 𝑥

2
).

Hence, 𝑀(𝑤)𝑥 > 0 implies that 𝑥
2
< 0 or 𝑥

1
< 0, which

contradicts with 𝑥 ≥ 0.

Definition 8. Amatrix𝑀 ∈ R𝑛×𝑛 is said to be semimonotone
if

∀ 0 ̸= 𝑥 ≥ 0 ⇒ ∃𝑥
𝑘
> 0 such that (𝑀𝑥)

𝑘
≥ 0. (54)

For the classical linear complementarity problem, we
know that 𝑀 is semimonotone if and only if LCP(𝑀, 𝑞)
with 𝑞 > 0 has a unique solution (zero solution), see [12,
Theorem 3.9.3]. One may wonder whether such fact still
holds in set-valued case. Before answering it, we need to
know how to generalize concept of semi-monotonicity to its
corresponding definition in the set-valued case.

Definition 9. The set of matrices {𝑀(𝑤) | 𝑤 ∈ Ω(𝑥)} is said
to be

(a) strongly semimonotone if for any nonzero 𝑥 ≥ 0,

∃𝑥
𝑘
> 0 such that (𝑀 (𝑤) 𝑥)

𝑘
≥ 0 ∀𝑤 ∈ Ω (𝑥) ; (55)

(b) weakly semimonotone if for any nonzero 𝑥 ≥ 0,

∃𝑥
𝑘
> 0 such that (𝑀 (𝑤) 𝑥)

𝑘
≥ 0 for some 𝑤 ∈ Ω (𝑥) .

(56)

Unlike the classical linear complementarity problem case,
here are parallel results regarding set-valued linear comple-
mentarity problem which strong (weak) semi-monotonicity
plays in.

Theorem 10. For the SVLCP(𝑀, 𝑞, Ω), the following state-
ments hold.

(a) If the set of matrices {𝑀(𝑤) | 𝑤 ∈ Ω(𝑥)} is strongly
semi-monotone, then for any positive mapping 𝑞, that
is, 𝑞(𝑤) > 0 for all 𝑤, SVLCP(𝑀, 𝑞, Ω) has zero as its
unique solution.

(b) If SVLCP(𝑀, 𝑞, Ω)with 𝑞(𝑤) > 0 has zero as its unique
solution, then the set of matrices {𝑀(𝑤) | 𝑤 ∈ Ω(𝑥)} is
weakly semi-monotone.

Proof. (a) It is clear that, for any positive mapping 𝑞, 𝑥 = 0
is a solution of SVLCP(𝑀, 𝑞,Ω). Suppose there is another
nonzero solution 𝑥, that is, ∃𝑤 ∈ Ω(𝑥), such that

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 + 𝑞 (𝑤) ≥ 0, 𝑥
𝑇

(𝑀 (𝑥) + 𝑞 (𝑤)) = 0.

(57)
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It follows from (55) that there exists 𝑘 ∈ {1, 2, . . . , 𝑛}, such that
𝑥
𝑘
> 0 and (𝑀(𝑤)𝑥)

𝑘
≥ 0, and hence (𝑀(𝑤)𝑥 + 𝑞(𝑤))

𝑘
> 0,

which contradicts condition (57).
(b) Suppose {𝑀(𝑤) |𝑤 ∈ Ω(𝑥)} is not weakly semi-mono-

tone. Then, there exists a nonzero 𝑥 ≥ 0, for all 𝑘 ∈ 𝐼+(𝑥) :=
{𝑖 | 𝑥

𝑖
> 0} , (𝑀(𝑤)𝑥)

𝑘
< 0 for all 𝑤 ∈ Ω(𝑥). Choose 𝑤 ∈

Ω(𝑥). Let 𝑞(𝑤) = 1 for all 𝑤 ̸=𝑤 and

𝑞
𝑘
(𝑤) = {

−(𝑀 (𝑤) 𝑥)
𝑘
, 𝑘 ∈ 𝐼

+

(𝑥) ;

max {(𝑀 (𝑤) 𝑥)
𝑘
, 0} + 1, otherwise.

(58)

Therefore, 𝑞(𝑤) > 0 for all 𝑤. According to the above
construction, we have

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 + 𝑞 (𝑤) ≥ 0, 𝑥
𝑇

(𝑀 (𝑤) 𝑥 + 𝑞 (𝑤)) = 0,

with 𝑤 ∈ Ω (𝑥) ,
(59)

that is, the nonzero vector 𝑥 is a solution of SVLCP(𝑀, 𝑞, Ω),
which is a contradiction.

Theorem 10(b) says that the weak semi-monotonicity is
a necessary condition for zero being the unique solution of
SVLCP(𝑀, 𝑞, Ω). However, it is not the sufficient condition,
see Example 11.

Example 11. Let

𝑀(𝑤) = (

−𝑤 1 0

0 0 1

1 0 0

) , Ω (𝑥) = {0, 1} . (60)

For any nonzero 𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
) ≥ 0, we have𝑀(0)𝑥 = (𝑥

2
,

𝑥
3
, 𝑥

1
)≥0. If we plug in 𝑞= (1, 1, 1), by a simple cal-culation,

𝑥 = (1, 0, 0) satisfies

𝑥 ≥ 0, 𝑀 (1) 𝑥 + 𝑞 ≥ 0, 𝑥
𝑇

(𝑀 (1) + 𝑞) = 0 (61)

which means that SVLCP(𝑀, 𝑞, Ω) has a nonzero solution.
We also notice that the set-valued mapping Ω(𝑥) is even
continuous in Example 11.

So far, we have seen some major difference between the
classical complementarity problem and set-valued comple-
mentarity problem. Such phenomenon undoubtedly con-
firms that it is an interesting, important, and challenging task
to study the set-valued complementarity problem, which, to
some extent, is the main motivation of this paper.

To close this section, we introduce some other concepts
which will be used later too. A function 𝑓 : R𝑛

→ R is level
bounded, if the level set {𝑥 | 𝑓(𝑥) ≤ 𝛼} is bounded for all 𝛼 ∈
R. The metric projection of 𝑥 to a closed convex subset 𝐴 ⊂
R𝑛 is denoted byΠ

𝐴
(𝑥), that is,Π

𝐴
(𝑥) := arg min

𝑦∈𝐴
‖𝑥−𝑦‖.

The distance function is defined as dist(𝑥, 𝐴) := ‖𝑥−Π
𝐴
(𝑥)‖.

3. Properties of Solution Sets

Recently, many authors study other classes of complemen-
tarity problems, in which another type of vector 𝑤 ∈ Ω is

involved, for example, the stochastic complementarity problem
[14–17], to find 𝑥 ∈ R𝑛, such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝑤) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝑤) = 0, a.e. 𝑤 ∈ Ω,
(62)

where 𝑤 is a random vector in a given probability space and
the semi-infinite complementarity problem [18] to find 𝑥 ∈ R𝑛,
such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝑤) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝑤) = 0, ∀𝑤 ∈ Ω, (63)

which we denote it by SINCP(𝐹, Ω). In addition, the authors
introduce the following two complementarity problems in
[18] to find 𝑥 ∈ R𝑛, such that

𝑥 ≥ 0, 𝐹min (𝑥) ≥ 0, 𝑥
𝑇

𝐹min (𝑥) = 0,

𝑥 ≥ 0, 𝐹max (𝑥) ≥ 0, 𝑥
𝑇

𝐹max (𝑥) = 0,
(64)

where

𝐹min (𝑥) := (

min
𝑤∈Ω

𝐹
1
(𝑥, 𝑤)

...
min
𝑤∈Ω

𝐹
𝑛
(𝑥, 𝑤)

) , (65)

𝐹max (𝑥) := (

max
𝑤∈Ω

𝐹
1
(𝑥, 𝑤)

...
max
𝑤∈Ω

𝐹
𝑛
(𝑥, 𝑤)

) . (66)

These two problems are denoted by NCP(𝐹min) and
NCP(𝐹max), respectively. Is there any relationship among
their solutions sets? In order to further describing such
relationship, we adapt the following notations:

(i) SOL(𝐹,Ω) means the solution set of SVNCP(𝐹, Ω),
(ii) SOL(𝑀, 𝑞,Ω) means the solution set of SVLCP(𝐹, Ω),

(iii)̂SOL(𝐹, Ω)means the solution set of SINCP(𝐹, Ω),
(iv) SOL(𝐹min)means the solution set of NCP(𝐹min),
(v) SOL(𝐹max)means the solution set of NCP(𝐹max).

Besides, for the purpose of comparison, we restrict thatΩ(𝑥)
is fixed; that is, there exists a subsetΩ inR𝑚, such thatΩ(𝑥) =
Ω for all 𝑥 ∈ R𝑛.

It is easy to see that the solution set of SINCP(𝐹, Ω) is
⋂

𝑤∈Ω
SOL(𝐹

𝑤
), but that of SVNCP(𝑓,Ω) is ⋃

𝑤∈Ω
SOL(𝐹

𝑤
),

where𝐹
𝑤
(𝑥):=𝐹(𝑥, 𝑤). Hence, the solution set of SINCP(𝐹,Ω)

is included in that of SVNCP(𝐹,Ω). In other words, we have

̂SOL (𝐹, Ω) ⊆ SOL (𝐹, Ω) . (67)

The inclusion (67) can be strict as shown in Example 12.

Example 12. Let 𝐹(𝑥, 𝑤) = (𝑤, 1) andΩ(𝑥) = [0, 1]. Then, we
can verify that̂SOL(𝐹, Ω) = {0, 0}, whereas SOL(𝐹,Ω) = {𝑥 |
𝑥
1
≥ 0, 𝑥

2
= 0}.
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However, the solution set of SVNCP(𝐹, Ω), NCP(𝐹min),
andNCP(𝐹max) are not included each other.This is illustrated
in Examples 13–14.

Example 13. SOL(𝐹min) ̸⊆ SOL(𝐹, Ω) and SOL(𝐹,Ω) ̸⊆

SOL(𝐹min).

(a) Let 𝐹(𝑥, 𝑤) = (1 − 𝑤,𝑤) and Ω = [0, 1]. Then,
SOL(𝐹min) = R2

+
, SOL(𝐹,Ω) = ⋃

𝑤∈Ω
SOL(𝐹

𝑤
) =

{(𝑥
1
, 𝑥

2
)
𝑇

|𝑥
1
≥ 0, 𝑥

2
≥ 0, and 𝑥

1
𝑥
2
= 0}.

(b) Let 𝐹(𝑥, 𝑤) = (𝑤 − 1, 𝑥
2
) and Ω = [0, 1]. Then,

SOL(𝐹min) = 0 and SOL(𝐹, Ω) = {(𝑥
1
, 𝑥

2
) | 𝑥

1
≥ 0,

𝑥
2
= 0}.

Example 14. SOL(𝐹max) ̸⊆ SOL(𝐹,Ω) and SOL(𝐹, Ω) ̸⊆

SOL(𝐹max).

(a) Let 𝐹(𝑥, 𝑤) = (𝑤 − 1, −𝑤) and Ω = [0, 1]. Then,
SOL(𝐹max) = R

2

+
and SOL(𝐹,Ω) = 0.

(b) Let𝐹(𝑥, 𝑤)=(𝑤, −𝑤) andΩ=[0, 1].Then, SOL(𝐹max)=
{(𝑥

1
, 𝑥

2
) |𝑥

1
= 0, 𝑥

2
≥ 0} and SOL(𝐹, Ω) = R2

+
.

Similarly, Example 15 shows that the solution set of NCP
(𝐹max) and NCP(𝐹min) cannot be included each other.

Example 15. SOL(𝐹max) ̸⊆ SOL(𝐹min) and SOL(𝐹min) ̸⊆

SOL(𝐹max).

(a) Let 𝐹(𝑥, 𝑤) = (𝑤 − 1, 0) and Ω = [0, 1]. Then,
SOL(𝐹min) = 0 and SOL(𝐹max) = R

2

+
.

(b) Let𝐹(𝑥, 𝑤)=(𝑤, 𝑤) andΩ=[0, 1].Then, SOL(𝐹min) =
R2

+
and SOL(𝐹max) = {(0, 0)}.

In spite of these, we obtain some results which describe
the relationship among them.

Theorem 16. Let Ω(𝑥) = Ω for all 𝑥 ∈ R𝑛. Then, we have

(a) SOL(𝐹, Ω) ∩ {𝑥 | 𝐹min(𝑥) ≥ 0} ⊆ SOL(𝐹min);
(b) SOL(𝐹max) ∩ {𝑥 | 𝐹(𝑥, 𝑤) ≥ 0 for some 𝑤 ∈ Ω} ⊆

SOL(𝐹, Ω);
(c) SOL(𝐹min) ∩ {𝑥 | 𝑥

𝑇

𝐹max(𝑥) ≤ 0} = SOL(𝐹max) ∩ {𝑥 |
𝐹min(𝑥) ≥ 0} ⊆ S𝑂𝐿(𝐹,Ω).

Proof. Parts (a) and (b) follow immediately from the fact

𝑥
𝑇

𝐹min (𝑥) ≤ 𝑥
𝑇

𝐹 (𝑥, 𝑤) ≤ 𝑥
𝑇

𝐹max (𝑥) ∀𝑤 ∈ Ω, 𝑥 ∈ R
𝑛

+
.

(68)

Part (c) is from (67), since the two sets in the left side of (c) is
̂SOL(𝐹, Ω) by [18].

For further characterizing the solution sets, we recall that
for a set-valued mapping𝑀 : R𝑛

 R𝑚, its inverse mapping
(see [9, Chapter 5]) is defined as

𝑀
−1

(𝑦) := {𝑥 | 𝑦 ∈ 𝑀 (𝑥)} . (69)

Theorem 17. For SVNCP(𝐹,Ω), we have

S𝑂𝐿 (𝐹,Ω) = ⋃
𝑤∈R𝑚

[SOL (𝐹
𝑤
) ∩ Ω

−1

(𝑤)] . (70)

Proof. In fact, the desired result follows from

SOL (𝐹,Ω)

= {𝑥 | 𝑥 ∈ SOL (𝐹
𝑤
) and 𝑤 ∈ Ω (𝑥)

for some 𝑤 ∈ R𝑚

}

= {𝑥 | 𝑥 ∈ SOL (𝐹
𝑤
) and 𝑥 ∈ Ω−1

(𝑤)

for some 𝑤 ∈ R𝑚

}

= ⋃

𝑤∈R𝑚

[SOL (𝐹
𝑤
) ∩ Ω

−1

(𝑤)] ,

(71)

where the second equality is due to the definition of inverse
mapping given as above.

4. Merit Functions for SVNCP and SVLCP

It is well known that one of the important approaches for
solving the complementarity problems is to transfer it to
a system of equations or an unconstrained optimization
via NCP functions or merit functions. Hence, we turn our
attention in this section to address merit functions for
SVNCP(𝐹, Ω) and SVLCP(𝑀, 𝑞, Ω).

A function 𝜙 : R2

→ R is called an NCP function if it
satisfies

𝜙 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. (72)

For example, the natural residual 𝜙NR(𝑎, 𝑏) = min{𝑎, 𝑏} and
the Fischer-Burmeister function𝜙FB(𝑎, 𝑏) = √𝑎2 + 𝑏2−(𝑎+𝑏)
are popular NCP-functions. Please also refer to [19] for a
detailed survey on the existing NCP-functions. In addition,
a real-valued function 𝑓 : R𝑛

→ R is called a merit (or
residual) function for a complementarity problem if𝑓(𝑥) ≥ 0
for all 𝑥 ∈ R𝑛 and 𝑓(𝑥) = 0 if and only if 𝑥 is a solution of
the complementarity problem. Given an NCP-function 𝜙, we
define

𝑟 (𝑥, 𝑤) := ‖Φ (𝑥, 𝐹 (𝑥, 𝑤))‖

where Φ(𝑥, 𝑦) := (𝜙 (𝑥
1
, 𝑦

1
) , . . . , 𝜙 (𝑥

𝑛
, 𝑦

𝑛
)) .

(73)

Then, it is not hard to verify that the function given by

𝑟 (𝑥) := min
𝑤∈Ω(𝑥)

𝑟 (𝑥, 𝑤) (74)

is a merit function for SVNCP(𝐹,Ω). Note that the merit
function (74) is rather different from the traditional one,
because the index set is not a fixed set, but dependent on 𝑥.
We say that a merit function 𝑟(𝑥) has a global error bound
with a modulus 𝑐 > 0 if

dist (𝑥, SOL (𝐹, Ω)) ≤ 𝑐 ⋅ 𝑟 (𝑥) , ∀𝑥 ∈ R𝑛

. (75)

For more information about the error bound, please see [20]
which is an excellent survey paper regarding the issue of error
bounds.
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Theorem 18. Assume that there exists a setΩ ⊂ R𝑚, such that
Ω(𝑥) = Ω for all 𝑥 ∈ R𝑛, and that for each 𝑤 ∈ Ω, 𝑟(𝑥, 𝑤) is
a global error bound of𝑁𝐶𝑃(𝐹

𝑤
) with the modulus 𝜂(𝑤) > 0,

that is,

dist (𝑥, S𝑂𝐿 (𝐹
𝑤
)) ≤ 𝜂 (𝑤) 𝑟 (𝑥, 𝑤) , ∀𝑥 ∈ R

𝑛

. (76)

In addition, if

𝜂 := max
𝑤∈Ω

𝜂 (𝑤) < +∞, (77)

then 𝑟(𝑥) = min
𝑤∈Ω
𝑟(𝑥, 𝑤) provides a global error bound for

SVNCP(𝐹,Ω) with the modulus 𝜂.

Proof. Noticing that ifΩ(𝑥) = Ω for all 𝑥 ∈ R𝑛, then

Ω
−1

(𝑤) = {

R𝑛

, 𝑤 ∈ Ω,

0, 𝑤 ∉ Ω.

(78)

It then follows fromTheorem 17 that

SOL (𝐹,Ω) = ⋃
𝑤∈R𝑚

[SOL (𝐹
𝑤
) ∩ Ω

−1

(𝑤)] = ⋃

𝑤∈Ω

SOL (𝐹
𝑤
) .

(79)

Therefore,

dist (𝑥, SOL (𝐹, Ω))

= dist(𝑥, ⋃
𝑤∈Ω

SOL (𝐹
𝑤
))

≤ min
𝑤∈Ω

dist (𝑥, SOL (𝐹
𝑤
))

≤ min
𝑤∈Ω

𝜂 (𝑤) ⋅ 𝑟 (𝑥, 𝑤)

≤ min
𝑤∈Ω

max
𝑤∈Ω

𝜂 (𝑤) ⋅ 𝑟 (𝑥, 𝑤)

= max
𝑤∈Ω

𝜂 (𝑤) min
𝑤∈Ω

𝑟 (𝑥, 𝑤)

= 𝜂 ⋅ 𝑟 (𝑥) .

(80)

Thus, the proof is complete.

Onemay ask when condition (77) is satisfied? Indeed, the
condition (77) is satisfied if

(i) Ω is a finite set;
(ii) 𝐹(𝑥, 𝑤) = 𝑀(𝑤)𝑥 + 𝑞(𝑤) where𝑀(𝑤) is continuous,

and for each𝑤 ∈ Ω the matrix𝑀(𝑤) is a 𝑃-matrix. In
this case themodulus 𝜂(𝑤) takes an explicitly formula,
that is,

𝜂 (𝑤) = max
𝑑∈[0,1]

𝑛






(𝐼 − 𝐷 + 𝐷𝑀(𝑤))

−1





, (81)

see [21, 22]. Hence, we see that

𝜂 = max
𝑑∈[0,1]

𝑛

𝑤∈Ω






(𝐼 − 𝐷 + 𝐷𝑀(𝑤))

−1




 (82)

is well defined because 𝑀(𝑤) is continuous, and Ω is
compact.

For simplification of notations, wewrite𝑥→ ∞ instead of
‖𝑥‖→∞. We now introduce the following definitions which
are similar to (29):

lim sup
𝑥→∞

𝑀(𝑥)

:= {𝑢 | ∃𝑥
𝑛

→ ∞,∃𝑢
𝑛

→ 𝑢 with 𝑢𝑛 ∈ 𝑀(𝑥𝑛)} ,

lim inf
𝑥→∞

𝑀(𝑥)

:= {𝑢 ∀𝑥
𝑛

→ ∞,∃𝑢
𝑛

→ 𝑢 w𝑖𝑡ℎ 𝑢𝑛 ∈ 𝑀(𝑥𝑛)} .
(83)

Definition 19. For SVLCP(𝑀, 𝑞, Ω), the set of matrices
{𝑀(𝑤) | 𝑤 ∈ Ω(𝑥)} is said to have the limit-𝑅

0
property

if

𝑥 ≥ 0, 𝑀 (𝑤) 𝑥 ≥ 0, 𝑥
𝑇

𝑀(𝑤) 𝑥 = 0

for some 𝑤 ∈ lim sup
𝑥→∞

Ω (𝑥) ⇒ 𝑥 = 0.

(84)

In the case of a linear complementarity problem, that is,
Ω(𝑥) is a fixed single-point set, Definition 19 coincides with
that of 𝑅

0
-matrix.

Theorem 20. For SVLCP(𝑀, 𝑞, Ω), suppose that there exists a
bounded set Ω, such that Ω(𝑥) ⊂ Ω for all 𝑥 ∈ R𝑛, and𝑀(𝑤)
and 𝑞(𝑤) are continuous on Ω. If the set of matrices {𝑀(𝑤) |
𝑤 ∈ Ω(𝑥)} has the limit-𝑅

0
property, then the merit function

𝑟(𝑥) = min
𝑤∈Ω(𝑥)

‖min{𝑥,𝑀(𝑤)𝑥 + 𝑞(𝑤)}‖ is level bounded.

Proof. We argue this result by contradiction. Suppose there
exists a sequence {𝑥

𝑛
} satisfying ‖𝑥

𝑛
‖ → ∞, and 𝑟(𝑥

𝑛
) is

bounded. Then,

𝑟 (𝑥
𝑛
)





𝑥
𝑛






= min
𝑤∈Ω(𝑥𝑛)











min{
𝑥
𝑛





𝑥
𝑛






,𝑀 (𝑤)

𝑥
𝑛





𝑥
𝑛






+

𝑞 (𝑤)





𝑥
𝑛






}











=











min{
𝑥
𝑛





𝑥
𝑛






,𝑀 (𝑤
𝑛
)

𝑥
𝑛





𝑥
𝑛






+

𝑞 (𝑤
𝑛
)





𝑥
𝑛






}











,

(85)

where we assume the minimizer is attained at 𝑤
𝑛
∈ Ω(𝑥

𝑛
),

whose existence is ensured by the compactness of Ω(𝑥
𝑛
),

sinceΩ(𝑥) is closed andΩ is bounded. Taking a subsequence
if necessary, we can assume that {𝑥

𝑛
/‖𝑥

𝑛
‖} and {𝑤

𝑛
} are both

convergent in which 𝑥 and 𝑤 represent their corresponding
limit point. Thus, we have

𝑤 ∈ lim sup
𝑛→∞

Ω(𝑥
𝑛
) ⊂ lim sup

‖𝑥‖→∞

Ω (𝑥) . (86)

Now, taking the limit in (85) yields

‖min {𝑥,𝑀 (𝑤) 𝑥}‖ = 0, (87)

where we have used the fact that 𝑞(𝑤
𝑛
)/‖𝑥

𝑛
‖ → 0, because 𝑞

is continuous, and 𝑤
𝑛
∈ Ω is bounded. This contradicts (84)

since 𝑥 is a nonzero vector.



Abstract and Applied Analysis 9

Note that the condition (84) is equivalent to

⋃

𝑤∈lim sup
𝑥→∞

Ω(𝑥)

SOL (𝑀 (𝑤)) = {0} , (88)

which is also equivalent to saying that each matrix𝑀(𝑤) for
𝑤 ∈ lim sup

𝑥→∞
Ω(𝑥) is a 𝑅

0
-matrix.

Theorem 21. For SVLCP(𝑀, 𝑞, Ω), suppose that there exists
a compact set Ω, such that Ω(𝑥) ⊂ Ω for all 𝑥 ∈
R𝑛, and 𝑀(𝑤) and 𝑞(𝑤) are continuous on Ω. If 𝑟(𝑥) =
min

𝑤∈Ω(𝑥)
‖min{𝑥,𝑀(𝑤)𝑥 + 𝑞(𝑤)}‖ is level bounded, then the

following implication holds

𝑥 ≥ 0, 𝑀 (w) 𝑥 ≥ 0, 𝑥𝑇𝑀(𝑤) 𝑥 = 0

for some 𝑤 ∈ ⋂
�̃�∈𝑁
∞

⋃

𝑛∈�̃�

Ω (𝑛𝑥) ⇒ 𝑥 = 0.
(89)

Proof. Suppose that there exist a nonzero vector 𝑥
0
, and𝑤

0
∈

∩
�̃�∈𝑁
∞

∪
𝑛∈�̃�
Ω(𝑛𝑥

0
), such that

𝑥
0
≥ 0, 𝑀 (𝑤

0
) 𝑥

0
≥ 0, 𝑥

𝑇

0
𝑀(𝑤

0
) 𝑥

0
= 0. (90)

Similar to the argument as in Theorem 5, there exists a
sequence {𝑛

𝑘
} with 𝑛

𝑘
→ ∞ and 𝑤

0
∈ Ω(𝑛

𝑘
𝑥
0
). Hence,

𝑟 (𝑛
𝑘
𝑥
0
) = min

𝑤∈Ω(𝑛𝑘𝑥0)





min {𝑛

𝑘
𝑥
0
, 𝑛

𝑘
𝑀(𝑤) 𝑥

0
+ 𝑞 (𝑤)}






≤




min {𝑛

𝑘
𝑥
0
, 𝑛

𝑘
𝑀(𝑤

0
) 𝑥

0
+ 𝑞 (𝑤

0
)}





≤

𝑛

∑

𝑖=1





min {𝑛

𝑘
(𝑥

0
)
𝑖
, 𝑛

𝑘
(𝑀 (𝑤

0
) 𝑥

0
)
𝑖
+ 𝑞(𝑤

0
)
𝑖
}




.

(91)

Next, we proceed the arguments by discussing the following
two cases.

Case 1. For (𝑥
0
)
𝑖
> 0, we have (𝑀(𝑤

0
)𝑥

0
)
𝑖
= 0 from (90).

Since max
𝑤∈Ω
𝑞(𝑤) is finite due to the compactness of Ω

and the continuity of 𝑞(𝑤), 𝑛
𝑘
(𝑥

0
)
𝑖
> max

𝑤∈Ω
𝑞(𝑤) for 𝑘

sufficiently large. Therefore, we obtain




min {𝑛

𝑘
(𝑥

0
)
𝑖
, 𝑛

𝑘
(𝑀 (𝑤

0
) 𝑥

0
)
𝑖
+ 𝑞

𝑖
(𝑤

0
)}




=




𝑞
𝑖
(𝑤

0
)




.

(92)

Case 2. For (𝑥
0
)
𝑖
= 0, by a simple calculation, we have





min {𝑛

𝑘
(𝑥

0
)
𝑖
, 𝑛

𝑘
(𝑀 (𝑤

0
) 𝑥

0
)
𝑖
+ 𝑞

𝑖
(𝑤

0
)}





× {

= 0, if 𝑛
𝑘
(𝑀 (𝑤

0
) 𝑥

0
)
𝑖
+ 𝑞

𝑖
(𝑤

0
) ≥ 0,

≤




𝑞
𝑖
(𝑤

0
)




, if 𝑛

𝑘
(𝑀 (𝑤

0
) 𝑥

0
)
𝑖
+ 𝑞

𝑖
(𝑤

0
) < 0,

} ,

(93)

where the inequality in the latter case comes from the fact that
𝑞
𝑖
(𝑤

0
) ≤ 𝑛

𝑘
(𝑀(𝑤

0
)𝑥

0
)
𝑖
+ 𝑞

𝑖
(𝑤

0
) < 0. Thus,

𝑟 (𝑛
𝑘
𝑥
0
) ≤

𝑛

∑

𝑛=1





𝑞
𝑖
(𝑤

0
)




. (94)

This contradicts the level boundedness of 𝑟(𝑥) since 𝑛
𝑘
𝑥
0
→

∞.

The above conclusion is equivalent to say that for each
𝑤 ∈ ∩

�̃�∈𝑁
∞

∪
𝑛∈�̃�
Ω(𝑛𝑥), the matrix 𝑀(𝑤) is a 𝑅

0
-matrix.

Finally, let us discuss a special case where the set-valued
mappingΩ(𝑥) has an explicit form, for example,Ω(𝑥) = {𝑤 |
𝐻(𝑥, 𝑤) = 0 and 𝐺(𝑥, 𝑤) ≥ 0}, where𝐻 : R𝑛

× R𝑚

→ R𝑙
1

and𝐺 : R𝑛

×R𝑚

→ R𝑙
2 .Then, the solution set can be further

characterized.

Theorem 22. If Ω(𝑥) :={𝑤|𝐺(𝑥, 𝑤)≥0, 𝐻(𝑥, 𝑤) = 0}, then

SOL (𝐹,Ω) = ⋃
𝑤∈R𝑚

{

{

{

𝑥 | (

𝑥

0

𝛼

) ∈ SOL (Θ
𝑤
)

with 𝛼 ∈ R𝑙
2

++
and 0 ∈ R𝑙

1

}

}

}

,

(95)

where Θ
𝑤
: R𝑛

→ R𝑛+𝑙
1
+𝑙
2 is defined as Θ

𝑤
(𝑥) := (

𝐹(𝑥,𝑤)

𝐺(𝑥,𝑤)

𝐻(𝑥,𝑤)

)

and R𝑙
2

++
:= {𝛼 ∈ R𝑙

2
| 𝛼

𝑖
> 0 for all 𝑖 = 1, . . . , 𝑙

2
}.

Proof. Noting that the problem (2) is to find 𝑤 ∈ R𝑚 and
𝑥 ∈ R𝑛, such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝑤) ≥ 0, ⟨𝐹 (𝑥, 𝑤) , 𝑥⟩ = 0,

𝐺 (𝑥, 𝑤) ≥ 0, 𝐻 (𝑥, 𝑤) = 0,

(96)

namely, to find 𝑤 ∈ R𝑚 and 𝑥 ∈ R𝑛 satisfying

𝑥 ≥ 0, 𝐹 (𝑥, 𝑤) ≥ 0, ⟨𝐹 (𝑥, 𝑤) , 𝑥⟩ = 0,

0 ≥ 0, 𝐺 (𝑥, 𝑤) ≥ 0, 0 ⋅ 𝐺 (𝑥, 𝑤) = 0,

𝛼 > 0, 𝐻 (𝑥, 𝑤) ≥ 0, ⟨𝛼,𝐻 (𝑥, 𝑤)⟩ = 0.

(97)

In other words,

(

𝑥

0

𝛼

) ≥ 0, (

𝐹 (𝑥, 𝑤)

𝐺 (𝑥, 𝑤)

𝐻 (𝑥, 𝑤)

) ≥ 0, (

𝑥

0

𝛼

)

𝑇

(

𝐹(𝑥, 𝑤)

𝐺 (𝑥, 𝑤)

𝐻 (𝑥, 𝑤)

) = 0.

(98)

Then, the desired result follows.

The foregoing result indicates that the set-valued comple-
mentarity problem is different from the classical complemen-
tarity problem, since it restricts that some components of the
solutionmust be positive or zero, which is not required in the
classical complementarity problems.

Moreover, the set-valued complementarity problem can
be further reformulated to be an equation, that is, finding 𝑥 ∈
R𝑛 and 𝑤 ∈ R𝑚 to satisfy the following equation

Γ (𝑥, 𝑤) = (

𝜉 (𝑥, 𝑤)

𝐻 (𝑥, 𝑤)

dist2 (𝐺 (𝑥, 𝑤) | R𝑙
2

+
)

) = 0, (99)

where 𝜉(𝑥, 𝑤) = (1/2)‖ΦFB(𝑥, 𝐹(𝑥, 𝑤))‖
2. Note that when 𝐴

is a closed convex set, then 𝜃(𝑥) := dist2(𝑥, 𝐴) is continuously
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differentiable, and ∇𝜃(𝑥) = 2(𝑥 − Π
𝐴
(𝑥)). This fact together

with ‖𝜙FB‖
2 being continuously differentiable implies the

following immediately.

Theorem 23. Suppose that 𝐺 and 𝐻 are continuously differ-
entiable, and 𝜙 is the Fischer-Burmeister function, then Γ is
continuously differentiable and

𝐽𝑇 (𝑥, 𝑤)=
(

(

𝐽
𝑥
𝜉 (𝑥, 𝑤)

𝐽
𝑥
𝐻(𝑥,𝑤)

2(𝐺 (𝑥, 𝑤)−∏

R
𝑙
2

+

(𝐺 (𝑥, 𝑤)))

𝑇

𝐽
𝑥
𝐺 (𝑥, 𝑤)

𝐽
𝑤
𝜉 (𝑥, 𝑤)

𝐽
𝑤
𝐻(𝑥,𝑤)

2(𝐺 (𝑥, 𝑤)−∏

R
𝑙
2

+

(𝐺 (𝑥, 𝑤)))

𝑇

𝐽
𝑤
𝐺 (𝑥, 𝑤)

)

)

,

(100)

where

𝐽
𝑥
𝜉 (𝑥, 𝑤) = ΦFB(𝑥, 𝐹 (𝑥, 𝑤))

𝑇

× [D
𝑎
(𝑥, 𝐹 (𝑥, 𝑤))

+D
𝑏
(𝑥, 𝐹 (𝑥, 𝑤)) 𝐽

𝑥
𝐹 (𝑥, 𝐹 (𝑥, 𝑤))] ,

𝐽
𝑤
𝜉 (𝑥, 𝑤) = ΦFB(𝑥, 𝐹 (𝑥, 𝑤))

𝑇

D
𝑏
(𝑥, 𝐹 (𝑥, 𝑤))

× 𝐽
𝑤
𝐹 (𝑥, 𝑤) .

(101)

HereD
𝑎
(𝑥, 𝐹(𝑥, 𝑤)) andD

𝑏
(𝑥, 𝐹(𝑥, 𝑤))mean the sets of n × n

diagonalmatrices diag (𝑎
1
(𝑥, 𝐹(𝑥, 𝑤)), . . . , 𝑎

𝑛
(𝑥, 𝐹(𝑥, 𝑤))) and

diag (𝑏
1
(𝑥, 𝐹(𝑥, 𝑤)),. . .,𝑏

𝑛
(𝑥, 𝐹(𝑥, 𝑤))), respectively, and

(𝑎
𝑖
(𝑥, 𝐹 (𝑥, 𝑤)) , 𝑏

𝑖
(𝑥, 𝐹 (𝑥, 𝑤)))

{
{
{
{
{

{
{
{
{
{

{

=

(𝑥
𝑖
, 𝐹

𝑖
(𝑥, 𝑤))

√𝑥
2

𝑖
+ 𝐹

2

𝑖
(𝑥, 𝑤)

−(1, 1) , if (𝑥
𝑖
, 𝐹

𝑖
(𝑥, 𝑤)) ̸=0,

∈ ⋃

𝜃∈[0,2𝜋]

{cos 𝜃, sin 𝜃}−(1, 1) , if (𝑥
𝑖
, 𝐹

𝑖
(𝑥, 𝑤))=0.

(102)

5. Further Discussions

In this paper, we have paid much attention to the set-valued
complementarity problems which posses rather different
features from those of classical complementarity problems.
As suggested by one referee, we here briefly discuss the
relation between stochastic variational inequalities and the
set-valued complementarity problems. Given 𝐹 : R𝑛

× Ξ →

R, 𝑋
𝜉
⊂ R𝑛 and Ξ ⊂ R𝑙, a set representing future states

of knowledge, the stochastic variational inequalities is to find
𝑥 ∈ 𝑋

𝜉
, such that

(𝑦 − 𝑥)
𝑇

𝐹 (𝑥, 𝜉) ≥ 0, ∀𝑦 ∈ 𝑋
𝜉
, 𝜉 ∈ Ξ. (103)

If𝑋
𝜉
= R𝑛

+
, then the stochastic variational inequalities reduce

to the stochastic complementarity problem as follows:

𝑥 ≥ 0, 𝐹 (𝑥, 𝜉) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝜉) = 0, 𝜉 ∈ Ξ. (104)

The optimization problem corresponding to stochastic com-
plementarity problem is

min
𝑥∈R𝑛
+

E {




Φ (𝑥, 𝐹 (𝑥, 𝜉))





} . (105)

When Ξ is a discrete set, say Ξ := {𝜉
1
, 𝜉

2
, . . . , 𝜉

𝑣
}, then

E {




Φ (𝑥, 𝐹 (𝑥, 𝜉))





} =

𝑣

∑

𝑖=1

𝑃 (𝜉
𝑖
)




Φ (𝑥, 𝐹 (𝑥, 𝜉

𝑖
))




, (106)

where 𝑃(𝜉
𝑖
) is the probability of 𝜉

𝑖
. If the optimal value of

(105) is zero, then it follows from (106) that (104) coincides
with

𝑥 ≥ 0, 𝐹 (𝑥, 𝜉
𝑖
) ≥ 0, 𝑥

𝑇

𝐹 (𝑥, 𝜉
𝑖
) = 0,

∀𝜉
𝑖
∈ Ξ satisfying 𝑃 (𝜉

𝑖
) > 0.

(107)

When Ξ is a continuous set, then

E {




Φ (𝑥, 𝐹 (𝑥, 𝜉))





} = ∫

Ω





Φ (𝑥, 𝐹 (𝑥, 𝜉

𝑖
))




𝑃 (𝑥) 𝑑𝑥, (108)

where 𝑃(𝑥) is the density function. In this case, (104) takes
the form of

𝑥 ≥ 0, 𝐹 (𝑥, 𝜉) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝜉) = 0, a.e. 𝜉 ∈ Ξ, (109)

or equivalently there exists a subset Ξ
0
⊂ Ξ with 𝑃(Ξ

0
) = 0,

such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝜉) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝜉) = 0, ∀𝜉 ∈ Ξ \ Ξ
0
.

(110)

Hence the stochastic complementarity problem is, in certain
extent, a semi-infinite complementarity problem (SICP).

Due to some major difference between set-valued com-
plementarity problems and classical complementarity prob-
lems, there are still many interesting, important, and chal-
lenging questions for further investigation as below, to name
a few.

(i) How to extend other important concepts used in
classical linear complementarity problems to set-
valued cases (like 𝑃

0
, 𝑃

∗
, 𝑍, 𝑄, 𝑄

0
, 𝑆, 𝑆, copositive,

column sufficient matrix, etc.)?
(ii) How to propose an effective algorithm to solve (99)?
(iii) Can we provide some sufficient conditions to ensure

the existence of solutions? One possible direction
is to use fixed-point theory. In fact, the set-valued
complementarity problem is to find 𝑥 ∈ R𝑛, such that

𝑥 = max {0, 𝑥 − 𝐹 (𝑥, 𝑤)} = ΠR𝑛
+

(𝑥 − 𝐹 (𝑥, 𝑤))

for some 𝑤 ∈ Ω (𝑥) ,
(111)
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that is,

𝑥 ∈ ΠR𝑛
+

(𝑥 − 𝐹 (𝑥)) , (112)

where𝐹(𝑥) := ⋃
𝑤∈Ω(𝑥)

𝐹(𝑥, 𝑤). Note that (112) is a fixed point
of a set-valued mapping ΠR𝑛

+

(𝐼 − 𝐹), where 𝐼 denotes the
identify mapping.
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