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The purpose of this paper is first to introduce the concept of total quasi-φ-asymptotically nonexpansive
mapping which contains many kinds of mappings as its special cases and then to use a hybrid
algorithm to introduce a new iterative scheme for finding a common element of the set of solutions
for a system of generalized mixed equilibrium problems and the set of common fixed points
for a countable family of total quasi-φ-asymptotically nonexpansive mappings. Under suitable
conditions some strong convergence theorems are established in an uniformly smooth and strictly
convex Banach space with Kadec-Klee property. The results presented in the paper improve and
extend some recent results.

1. Introduction

Throughout this paper, we denote by R and R
+ the set of all real numbers and all nonnegative

real numbers, respectively. We also assume that E is a real Banach space, E∗ is the dual space
of E, C is a nonempty closed convex subset of E, and 〈·, ·〉 is the pairing between E and E∗.
In the sequel, we denote the strong convergence and weak convergence of a sequence {xn}
by xn → x and xn ⇀ x, respectively, and J : E → 2E

∗
is the normalized duality mapping

defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ = ‖x∗‖}, x ∈ E. (1.1)
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Let ψ : C → R be a proper real-valued function, A : C → E∗ a nonlinear mapping, and
F : C × C → R a bifunction. The “so called” generalized mixed equilibrium problem for
F,A, ψ is to find x∗ ∈ C such that

F
(
x∗, y

)
+
〈
Ax∗, y − x∗〉 + ψ

(
y
) − ψ(x∗) ≥ 0, ∀y ∈ C. (1.2)

We denote the set of solutions of (1.2) by GMEP(F,A, ψ), that is,

GMEP
(
F,A, ψ

)
=
{
x∗ ∈ C : F

(
x∗, y

)
+
〈
Ax∗, y − x∗〉 + ψ

(
y
) − ψ(x∗) ≥ 0, ∀y ∈ C}. (1.3)

Special Examples

(i) If A = 0, then the problem (1.2) is reduced to the mixed equilibrium problem
(MEP), and the set of its solutions is denoted by

MEP
(
F, ψ
)
=
{
x∗ ∈ C : Θ

(
x∗, y

)
+ ψ
(
y
) − ψ(x∗) ≥ 0, ∀y ∈ C}. (1.4)

(ii) If ψ ≡ 0, then the problem (1.2) is reduced to the generalized equilibrium problem
(GEP), and the set of its solutions is denoted by

GEP(F,A) =
{
x∗ ∈ C : F

(
x∗, y

)
+
〈
Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C}. (1.5)

(iii) If A = 0, ψ = 0, then the problem (1.2) is reduced to the equilibrium problem (EP),
and the set of its solutions is denoted by

EP(F) =
{
x∗ ∈ C : F

(
x∗, y

) ≥ 0, ∀y ∈ C}. (1.6)

(iv) If F = 0, then the problem (1.2) is reduced to the mixed variational inequality of
Browder type (VI), and the set of its solutions is denoted by

VI
(
C,A, ψ

)
=
{
x∗ ∈ C :

〈
Ax∗, y − x∗〉 + ψ

(
y
) − ψ(x∗) ≥ 0, ∀y ∈ C}. (1.7)

These show that the problem (1.2) is very general in the sense that numerous problems
in physics, optimization, and economics reduce to finding a solution of (1.2). Recently, some
methods have been proposed for the generalizedmixed equilibrium problem in Banach space
(see, e.g., [1–5]).

A Banach space E is said to be strictly convex if ‖x+y‖/2 < 1 for all x, y ∈ U = {z ∈ E :
‖z‖ = 1} with x /=y. E is said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0
such that ‖x + y‖/2 < 1 − δ for all x, y ∈ U with ‖x − y‖ ≥ ε. E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.8)
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exists for all x, y ∈ U. E is said to be uniformly smooth if the above limit exists uniformly in
x, y ∈ U.

Remark 1.1. The following basic properties for Banach space E and for the normalized duality
mapping J can be found in Cioranescu [6].

(i) If E is an arbitrary Banach space, then J is monotone and bounded;

(ii) If E is a strictly convex Banach space, then J is strictly monotone;

(iii) If E is a a smooth Banach space, then J is single-valued, and hemicontinuous; that
is, J is continuous from the strong topology of E to the weak star topology of E∗;

(iv) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E;

(v) If E is a reflexive and strictly convex Banach space with a strictly convex dual E∗

and J∗ : E∗ → E is the normalized duality mapping in E∗, then J−1 = J∗, JJ∗ = IE∗

and J∗J = IE;

(vi) If E is a smooth, strictly convex and reflexive Banach space, then the normalized
duality mapping J is single valued, one to one and onto;

(vii) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex. If E is
uniformly smooth, then it is smooth and reflexive.

Recall that a Banach space E has the Kadec-Klee property, if for any sequence {xn} ⊂ E
and x ∈ E with xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x (as n → ∞). It is well known that
if E is a uniformly convex Banach space, then E has the Kadec-Klee property.

Next we assume that E is a smooth, strictly convex and reflexive Banach space and C
is a nonempty closed convex subset of E. In the sequel, we always use φ : E × E → R

+ to
denote the Lyapunov functional defined by

φ
(
x, y
)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y
∥∥2, ∀x, y ∈ E. (1.9)

It is obvious from the definition of φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ(x, y) ≤ (‖x‖ + ∥∥y∥∥)2, ∀x, y ∈ E. (1.10)

Following Alber [7], the generalized projection ΠC : E → C is defined by

ΠC(x) = arg inf
y∈C

φ
(
y, x
)
, ∀x ∈ E. (1.11)

Let T : C → C be a mapping and F(T) be the set of fixed points of T .
Recall that a point p ∈ C is said to be an asymptotic fixed point of T if there exists a

sequence {xn} ⊂ C such that xn ⇀ p and ‖xn−Txn‖ → 0. We denoted the set of all asymptotic
fixed points of T by F̃(T). A point p ∈ C is said to be a strong asymptotic fixed point of T , if there
exists a sequence {xn} ⊂ C such that xn → p and ‖xn − Txn‖ → 0. We denoted the set of all
strong asymptotic fixed points of T by F̂(T).



4 Journal of Applied Mathematics

Definition 1.2. (1) A mapping T : C → C is said to be nonexpansive if

∥
∥Tx − Ty∥∥ ≤ ∥∥x − y∥∥, ∀x, y ∈ C. (1.12)

(2) A mapping T : C → C is said to be relatively nonexpansive [8] if F(T)/= ∅, F(T) =
F̃(T) and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (1.13)

(3) A mapping T : C → C is said to be weak relatively nonexpansive [9] if F(T)/= ∅,
F(T) = F̂(T) and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (1.14)

(4) A mapping T : C → C is said to be closed, if for any sequence {xn} ⊂ C with
xn → x and Txn → y, then Tx = y.

Definition 1.3. (1) A mapping T : C → C is said to be quasi-φ-nonexpansive [10] if F(T)/= ∅
and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (1.15)

(2) A mapping T : C → C is said to be quasi-φ-asymptotically nonexpansive [11], if
F(T)/= ∅ and there exists a real sequence {kn} ⊂ [1,∞)with kn → 1 such that

φ
(
p, Tnx

) ≤ knφ
(
p, x
)
, ∀n ≥ 1, x ∈ C, p ∈ F(T). (1.16)

(3) A mapping T : C → C is said to be uniformly L-Lipschitz continuous, if there exists
a constant L > 0 such that

∥∥Tnx − Tny∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ C, ∀n ≥ 1. (1.17)

Definition 1.4. (1) A mapping T : C → C is said to be total quasi-φ-asymptotically nonexpansive
if F(T)/= ∅ and there exist nonnegative real sequences {νn}, {μn} with νn → 0, μn → 0 (as
n → ∞) and a strictly increasing continuous function ζ : R

+ → R
+ with ζ(0) = 0 such that

for all x ∈ C, P ∈ F(T)

φ
(
p, Tnx

) ≤ φ(p, x) + νnζ
(
φ
(
p, x
))

+ μn, ∀n ≥ 1. (1.18)

(2) A countable family of mappings {Tn} : C → C is said to be uniformly total quasi-
φ-asymptotically nonexpansive, if

⋂∞
i=1 F(Ti)/= ∅ and there exist nonnegative real sequences

{νn}, {μn} with νn → 0, μn → 0 (as n → ∞) and a strictly increasing continuous function
ζ : R

+ → R
+ with ζ(0) = 0 such that for all x ∈ C, p ∈ ⋂∞

i=1 F(Ti)

φ
(
p, Tni x

) ≤ φ(p, x) + νnζ
(
φ
(
p, x
))

+ μn, ∀n ≥ 1. (1.19)
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Remark 1.5. From the definition, it is easy to know that

(1) each relatively nonexpansive mapping is closed;

(2) taking ζ(t) = t, t ≥ 0, νn = (kn − 1) and μn = 0, then (1.16) can be rewritten as

φ
(
p, Tni x

) ≤ φ(p, x) + νnζ
(
φ
(
p, x
))

+ μn, ∀n ≥ 1, x ∈ C, p ∈ F(T). (1.20)

This implies that each quasi-φ-asymptotically nonexpansive mapping must be a
total quasi-φ-asymptotically nonexpansive mapping, but the converse is not true;

(3) the class of quasi-φ-asymptotically nonexpansive mappings contains properly the
class of quasi-φ-nonexpansive mappings as a subclass, but the converse is not true;

(4) the class of quasi-φ-nonexpansive mappings contains properly the class of weak
relatively nonexpansive mappings as a subclass, but the converse is not true;

(5) the class of weak relatively nonexpansive mappings contains properly the class of
relatively nonexpansive mappings as a subclass, but the converse is not true.

A mapping A : C → E∗ is said to be α-inverse strongly monotone, if there exists α > 0
such that

〈
x − y,Ax −Ay〉 ≥ α∥∥Ax −Ay∥∥2. (1.21)

Remark 1.6. If A is an α-inverse strongly monotone mapping, then it is 1/α-Lipschitz
continuous.

Iterative approximation of fixed points for relatively nonexpansive mappings in the
setting of Banach spaces has been studied extensively by many authors. In 2005, Matsushita
and Takahashi [12] obtained some weak and strong convergence theorems to approximate
a fixed point of a single relatively nonexpansive mapping. Recently, Ofoedu and Malonza
[4], Zhang [5], Su et al. [13], Zegeye and Shahzad [14], Wattanawitoon and Kumam [15],
Qin et al. [16], Takahashi and Zembayashi [17], Chang et al. [18, 19], Yao et al. [20, 21],
Qin et al. [22], and Cho et al. [23, 24] extend the notions from relatively nonexpansive
mappings, weakly relatively nonexpansive mappings or quasi-φ-nonexpansive mappings to
quasi-φ-asymptotically nonexpansive mappings and also prove some strongence theorems
to approximate a common fixed point of quasi-φ-nonexpansive mappings or quasi-φ-
asymptotically nonexpansive mappings.

The purpose of this paper is first to introduce the concept of total quasi-φ-asymptoti-
cally nonexpansive mappingwhich contains many kinds of mappings as its special cases, and
then by using a hybrid algorithm to introduce a new iterative scheme for finding a common
element of the set of solutions for a system of generalized mixed equilibrium problems
and the set of common fixed points for a countable family of total quasi-φ-asymptotically
nonexpansivemappings in a uniformly smooth and strictly convex Banach space with Kadec-
Klee property. The results improve and extend the corresponding results in [8, 11–25].

2. Preliminaries

First, we recall some definitions and conclusions.
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Lemma 2.1 (see [7, 26]). Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty closed convex subset of E. Then the following conclusions hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
(b) if x ∈ E and z ∈ C, then

z = ΠCx ⇐⇒ 〈z − y, Jx − Jz〉 ≥ 0, ∀y ∈ C; (2.1)

(c) for x, y ∈ E, φ(x, y) = 0 if and only if x = y.

Remark 2.2. If E is a real Hilbert space H, then φ(x, y) = ‖x − y‖2 and ΠC is the metric
projection PC ofH onto C.

Lemma 2.3 (see [18]). Let E be a uniformly convex Banach space, r > 0 a positive number, and
Br(0) a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for any given sequence
{λi}∞i=1 of positive numbers with

∑∞
i=1λi = 1, then there exists a continuous, strictly increasing and

convex function g : [0, 2r) → [0,∞) with g(0) = 0 such that for any positive integers i, j with
i < j,

∥∥∥∥∥

∞∑

n=1

λnxn

∥∥∥∥∥

2

≤
∞∑

n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.2)

Lemma 2.4. Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, and letC be a nonempty closed convex subset ofE. Let T : C → C be a closed and total quasi-
φ-asymptotically nonexpansive mapping with nonnegative real sequences {νn}, {μn} and a strictly
increasing continuous functions ζ : R

+ → R
+ such that μ1 = 0, νn → 0, μn → 0 (as n → ∞) and

ζ(0) = 0. Then F(T) is a closed convex subset of C.

Proof. Letting {pn} be a sequence in F(T) with pn → p (as n → ∞), we prove that p ∈ F(T).
In fact, from the definition of T , we have

φ
(
pn, Tp

) ≤ φ(pn, p
)
+ ν1ζ

(
φ
(
pn, p

))
+ μ1 −→ 0 (as n −→ ∞). (2.3)

Therefore we have

lim
n→∞

φ
(
pn, Tp

)
= lim

n→∞

(∥∥pn
∥∥2 − 2

〈
pn, JTp

〉)
+
∥∥Tp
∥∥2

=
∥∥p
∥∥2 − 2

〈
p, JTp

〉
+
∥∥Tp
∥∥2 = φ

(
p, Tp

)
= 0,

(2.4)

that is, p ∈ F(T).
Next we prove that F(T) is convex. For any p, q ∈ F(T), t ∈ (0, 1), puttingw = tp+(1−

t)q, we prove that w ∈ F(T). Indeed, in view of the definition of φ(x, y), we have

φ(w, Tnw) = ‖w‖2 − 2〈w, JTnw〉 + ‖Tnw‖2

= ‖w‖2 − 2t
〈
p, JTnw

〉 − 2(1 − t)〈q, JTnw〉 + ‖Tnw‖2
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= ‖w‖2 + tφ(p, Tnw) + (1 − t)φ(q, Tnw) − t∥∥p∥∥2 − (1 − t)∥∥q∥∥2

≤ ‖w‖2 + t(φ(p,w) + νnζ
(
φ
(
p,w

))
+ μn

)
+ (1 − t)(φ(q,w) + νnζ

(
φ
(
q,w
))

+ μn
)

− t∥∥p∥∥2 − (1 − t)∥∥q∥∥2

= ‖w‖2 + t
(∥
∥p
∥
∥2 − 2

〈
p, Jw

〉
+ ‖w‖2

)
+ t
(
νnζ
(
φ
(
p,w

))
+ μn

)
+ (1 − t)

×
(∥
∥q
∥
∥2 − 2

〈
q, Jw

〉
+ ‖w‖2

)
+ (1 − t)(νnζ

(
φ
(
q,w
))

+ μn
) − t∥∥p∥∥2 − (1 − t)∥∥q∥∥2

= ‖w‖2 − 2〈w, Jw〉 + ‖w‖2 + tνnζ
(
φ
(
p,w

))
+ (1 − t)(νnζ

(
φ
(
q,w
))

+ μn

= tνnζ
(
φ
(
p,w

))
+ (1 − t)(νnζ

(
φ
(
q,w
))

+ μn.

(2.5)

Since μn → 0 and νn → 0, we have φ(w, Tnw) → 0 (as n → ∞). From (1.10) we have
‖Tnw‖ → ‖w‖. Consequently ‖JTnw‖ → ‖Jw‖. This implies that {JTnw} is a bounded
sequence. Since E is reflexive, E∗ is also reflexive. So we can assume that

JTnw ⇀ f0 ∈ E∗. (2.6)

Again since E is reflexive, we have J(E) = E∗. Therefore there exists x ∈ E such that Jx = f0.
By virtue of the weakly lower semicontinuity of norm ‖ · ‖, we have

0 = lim inf
n→∞

φ(w, Tnw) = lim inf
n→∞

(
‖w‖2 − 2〈w, J(Tnw)〉 + ‖Tnw‖2

)

= lim inf
n→∞

(
‖w‖2 − 2〈w, J(Tnw)〉 + ‖J(Tnw)‖2

)

≥ ‖w‖2 − 2
〈
w, f0

〉
+
∥∥f0
∥∥2

= ‖w‖2 − 2〈w, Jx〉 + ‖Jx‖2

= ‖w‖2 − 2〈w, Jx〉 + ‖x‖2 = φ(w,x),

(2.7)

that is, w = x which implies that f0 = Jw. Hence from (2.6) we have JTnw ⇀ Jw ∈ E∗.
Since ‖JTnw‖ → ‖w‖ and E∗ has the Kadec-Klee property, we have JTnw → Jw. Since E
is uniformly smooth, E∗ is uniformly convex, which in turn implies that E∗ is smooth. From
Remark 1.1(iii) it yields that J−1 : E∗ → E is hemi-continuous. Therefore we have Tnw ⇀ w.
Again since ‖Tnw‖ → ‖w‖, by using the Kadec-Klee property of E, we have Tnw → w. This
implies that TTnw = Tn+1w → w. Since T is closed, we have w = Tw.

This completes the proof of Lemma 2.4.

Lemma 2.5. Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty
closed convex subset of E. Let f : C × C → R be a bifunction satisfying the following conditions:

(A1) f(x, x) = 0, for all x ∈ C,
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C,
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(A3) lim supt↓0f(x + t(z − x), y) ≤ f(x, y) for all x, z, y ∈ C,
(A4) The function y �→ f(x, y) is convex and lower semi-continuous.

Then the following conclusions hold:

(1) (Blum and Oettli [27]) for any given r > 0 and x ∈ E, there exists a unique z ∈ C such
that

f
(
z, y
)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C; (2.8)

(2) (Takahashi and Zembayashi [28]) for any given r > 0 and x ∈ E, define a mapping Kf
r :

E → C by

K
f
r (x) =

{
z ∈ C : f

(
z, y
)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
, x ∈ E. (2.9)

Then, the following conclusions hold:

(a) Kf
r is single-valued;

(b) Kf
r is firmly nonexpansive-type mapping, that is, for all z, y ∈ E,

〈
K
f
r z −Kf

r y, JK
f
r z − JKf

r y
〉
≤
〈
K
f
r z −Kf

r y, Jz − Jy
〉
; (2.10)

(c) F(Kf
r ) = EP(f) and Kf

r is quasi-φ-nonexpansive;

(d) EP(f) is closed and convex;

(e) φ(q,Kf
r x) + φ(K

f
r x, x) ≤ φ(q, x), for all q ∈ F(Kf

r ).

For solving the generalized mixed equilibrium problem (1.2), let us assume that the following
conditions are satisfied:

(1) E is a smooth, strictly convex, and reflexive Banach space and C is a nonempty closed
convex subset of E;

(2) A : C → E∗ is β-inverse strongly monotone mapping;

(3) F : C × C → R is bifunction satisfying the conditions (A1), (A3), (A4) in Lemma 2.5 and
the following condition (A2)′:

(A2)′ for some γ ≥ 0 with γ ≤ β

F
(
x, y
)
+ F
(
y, x
) ≤ γ∥∥Ax −Ay∥∥2, ∀x, y ∈ C; (2.11)

(4) ψ : C → R is a lower semicontinuous and convex function.

Under the assumptions as above, we have the following results.
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Lemma 2.6. Let E,C,A, F, ψ satisfy the above conditions (1)–(4). Denote by

Γ
(
x, y
)
= F
(
x, y
)
+ ψ
(
y
) − ψ(x) + 〈Ax, y − x〉, ∀x, y ∈ C. (2.12)

For any given r > 0 and x ∈ E, define a mapping KΓ
r : E → C by

KΓ
r (x) =

{
z ∈ C : Γ

(
z, y
)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
. (2.13)

Then, the following hold:

(a) KΓ
r is single-valued;

(b) KΓ
r is a firmly nonexpansive-type mapping, that is, for all z, y ∈ E,
〈
KΓ
r (z) −KΓ

r

(
y
)
, JKΓ

r (z) − JKΓ
r
(
y
)〉 ≤

〈
KΓ
r (z) −KΓ

r

(
y
)
, Jz − Jy

〉
; (2.14)

(c) F(KΓ
r ) = EP(Γ) = GMEP(F,A, ψ);

(d) GMEP(F,A, ψ) is closed and convex;

(e)

φ
(
q,KΓ

r x
)
+ φ
(
KΓ
r x, x

)
≤ φ(q, x), ∀q ∈ F

(
KΓ
r

)
. (2.15)

Proof. It follows from Lemma 2.5 that in order to prove the conclusions of Lemma 2.6 it is
sufficient to prove that the function Γ : C × C → R satisfies the conditions (A1)–(A4) in
Lemma 2.5.

In fact, by the similar method as given in the proof of Lemma 2.4 in [1], we can prove
that the function Γ satisfies the conditions (A1), (A3), and (A4). Now we prove that Γ also
satisfies the conditions (A2).

Indeed, for any x, y ∈ C, by condition (A2)′, we have

Γ
(
x, y
)
+ Γ
(
y, x
)
= F
(
x, y
)
+ ψ
(
y
) − ψ(x) + 〈Ax, y − x〉

+ F
(
y, x
)
+ ψ(x) − ψ(y) + 〈Ay, x − y〉

= F
(
x, y
)
+ F
(
y, x
) − 〈Ax −Ay, x − y〉

≤ (γ − β)∥∥Ax −Ay∥∥2 ≤ 0.

(2.16)

This implies that the function Γ satisfies the conditions (A2). Therefore the conclusions of
Lemma 2.6 can be obtained from Lemma 2.3 immediately.

Remark 2.7. It follows from Lemma 2.5 that the mapping KΓ
r is a relatively nonexpansive

mapping. Thus, it is quasi-φ-nonexpansive.



10 Journal of Applied Mathematics

3. Main Results

In this section, we shall use the hybrid method to prove some strong convergence theorems
for finding a common element of the set of solutions for a system of the generalized mixed
equilibrium problems (1.2) and the set of common fixed points of a countable family of total
quasi-φ-asymptotically nonexpansive mappings in Banach spaces.

In the sequel, we assume that E,C, {Si}∞i=1, {Ai}Mi=1, {Fi}Mi=1, {ψi}Mi=1 satisfy the following
conditions.

(1) Let E be a uniformly smooth and strictly convex Banach space with Kleac-Klee
property and C a nonempty closed convex subset of E.

(2) Let Si : C → C be a countable family of closed and uniformly total quasi-φ-
asymptotically nonexpansivemappingswith nonnegative real sequences {νn}, {μn}
and a strictly increasing continuous functions ζ : R

+ → R
+ such that νn → 0, μn →

0 (as n → ∞) and μ1 = 0, ζ(0) = 0. Suppose further that for each i ≥ 1, Si is a
uniformly Li-Lipschitz mapping, that is, there exists a constant Li > 0 such that

∥∥Sni x − Sni y
∥∥ ≤ Li

∥∥x − y∥∥, ∀x, y ∈ C, ∀n ≥ 1. (3.1)

(3) Let Ai : C → E∗ (i = 1, 2, . . . ,M) be a finite family of βi-inverse strongly monotone
mappings.

(4) Let Fi : C → R (i = 1, 2, . . . ,M) be a finite family of bifunction satisfying the
conditions (A1), (A3), (A4), and the following condition (A2)′:

(A2)′ For each i = 1, 2, . . . ,M there exists γi ≥ 0 with γi ≤ βi such that

Fi
(
x, y
)
+ Fi
(
y, x
) ≤ γi

∥∥Aix −Aiy
∥∥2, ∀x, y ∈ C; (3.2)

(5) Let ψi : C → R(i = 1, 2, . . . ,M) be a finite family of lower semicontinuous and
convex functions.

Theorem 3.1. Let E,C, {Si}∞i=1, {Ai}Mi=1, {Fi}Mi=1, {ψi}Mi=1 be the same as above. Suppose that

F :=
∞⋂

i=1

F(Ti)
⋂ M⋂

j=1

GMEP
(
Fj,Aj , ψj

)
(3.3)

is a nonempty and bounded subset of C. For any given x0 ∈ C, let {xn} be the sequence generated by

x0 ∈ C0 = C,

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,
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yn = J−1(αnJzn + (1 − αn)Jxn),

un = KΓM
rM,n

KΓM−1
rM−1,n · · ·KΓ2

r2,nK
Γ1
r1,nyn,

Cn+1 =
{
v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ηn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.4)

where

ηn = νn sup
u∈F

ζ
(
φ(u, xn)

)
+ μn, ∀n ≥ 1, (3.5)

KΓi
ri,n : E → C, i = 1, 2, . . . ,M is the mapping defined by (2.13) with Γ = Γi, r = ri,n, and

Γi
(
x, y
)
= Fi
(
x, y
)
+
〈
Aix, y − x〉 + ψi

(
y
) − ψi(x), ∀x, y ∈ C. (3.6)

rk,n ∈ [d,∞), k = 1, 2, . . . ,M, n ≥ 1 for some d > 0, ΠCn+1 is the generalized projection of E onto the
set Cn+1, and {αn,i}, {αn} are sequences in [0, 1] satisfying the following conditions:

(a)
∑∞

i=0αn,i = 1 for all n ≥ 0;

(b) lim infn→∞αn,0 · αn,i > 0 for all i ≥ 1;

(c) 0 < α ≤ αn < 1 for some α ∈ (0, 1).

Then {xn} converges strongly toΠFx0, whereΠF is the generalized projection from E onto F.

Proof. We divide the proof of Theorem 3.1 into five steps.
(i)We first prove that F and Cn both are closed and convex subset of C for all n ≥ 0.
In fact, it follows from Lemmas 2.4 and 2.6 that F(Si), i ≥ 1 and GMEP(Fj,Aj , ψj) (j =

1, 2, . . . ,M) both are closed and convex. Therefore F is a closed and convex subset in C.
Furthermore, it is obvious that C0 = C is closed and convex. Suppose that Cn is closed and
convex for some n ≥ 1. Since the inequality φ(v, un) ≤ φ(v, xn) + ηn is equivalent to

2〈v, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ηn, (3.7)

therefore, we have

Cn+1 =
{
v ∈ Cn : 2〈v, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ηn

}
. (3.8)

This implies that Cn+1 is closed and convex. The desired conclusions are proved. These
in turn show that ΠFx0 and ΠCnx0 are well defined.

(ii)We prove that {xn} and {Sni xn}∞n=0 for all i ≥ 1 are both bounded sequences in C.
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By the definition of Cn, we have xn = ΠCnx0 for all n ≥ 0. It follows from Lemma 2.1
(a) that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(u, x0) − φ(u,ΠCnx0)

≤ φ(u, x0), ∀n ≥ 0, u ∈ F.
(3.9)

This implies that {φ(xn, x0)} is bounded. By virtue of (1.10), {xn} is bounded. Since
φ(u, Sni xn) ≤ φ(u, xn) + νnζ(φ(u, xn)) + μn for all u ∈ F and i ≥ 1, {Sni xn} is bounded for
all i ≥ 1, and so {zn}is bounded in E. DenoteM by

M = sup
n≥0,i≥1

{‖xn‖,
∥
∥Sni xn

∥
∥, ‖zn‖

}
<∞. (3.10)

In view of the structure of {Cn}, we have Cn+1 ⊂ Cn, xn = ΠCnx0 and xn+1 = ΠCn+1x0.
This implies that xn+1 ∈ Cn and

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1. (3.11)

Therefore {φ(xn, x0)} is convergent. Without loss of generality, we can assume that

lim
n→∞

φ(xn, x0) = r ≥ 0. (3.12)

(iii) Next, we prove that F :=
⋂∞
i=1 F(Si)

⋂⋂M
i=1 GMEP(Fi,Ai, ψi) ⊂ Cn for all n ≥ 0.

Indeed, it is obvious that F ⊂ C0 = C. Suppose that F ⊂ Cn for some n ≥ 0. Since
un = KΓM

rM,n
KΓM−1
rM−1,n · · ·KΓ2

r2,nK
Γ1
r1,nyn, by Lemma 2.6 and Remark 2.7,KΓi

ri,n is quasi-φ-nonexpansive.
Again since E is uniformly smooth, E∗ is uniformly convex. Hence, For any given u ∈ F ⊂ Cn

and for any positive integer j > 0, from Lemma 2.3 we have

φ(u, un) = φ
(
u,KΓM

rM,n
KΓM−1
rM−1,n · · ·KΓ2

r2,nK
Γ1
r1,nyn

)
≤ φ(u, yn

)

= φ
(
u, J−1(αnJzn + (1 − αn)Jxn)

)

≤ ‖u‖2 − 2〈u, αnJzn + (1 − αn)Jxn〉 + ‖αnJzn + (1 − αn)Jxn‖2

≤ ‖u‖2 − 2〈u, αnJzn + (1 − αn)Jxn〉 + αn‖Jzn‖2 + (1 − αn)‖Jxn‖2

= ‖u‖2 − 2〈u, αnJzn + (1 − αn)Jxn〉 + αn‖zn‖2 + (1 − αn)‖xn‖2

= αnφ(u, zn) + (1 − αn)φ(u, xn)

= αnφ

(

u, J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

))

+ (1 − αn)φ(u, xn)
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= αn

⎛

⎝‖u‖2 − 2αn,0〈u, Jxn〉 − 2
∞∑

i=1

αn,i
〈
u, JSni xn

〉
+

∥
∥
∥
∥
∥
αn,0Jxn +

∞∑

i=1

αn,iJS
n
i xn

∥
∥
∥
∥
∥

2
⎞

⎠

+ (1 − αn)φ(u, xn)

≤ αn
(

‖u‖2 − 2αn,0〈u, Jxn〉 − 2
∞∑

i=1

αn,i
〈
u, JSni xn

〉
+ αn,0‖Jxn‖2 +

∞∑

i=1

αn,i
∥
∥JSni xn

∥
∥2

−αn,0αn,jg
(∥∥
∥Jxn − JSnj xn

∥
∥
∥
))

+ (1 − αn)φ(u, xn)

≤ αn
(

‖u‖2 − 2αn,0〈u, Jxn〉 − 2
∞∑

i=1

αn,i
〈
u, JSni xn

〉
+ αn,0‖xn‖2 +

∞∑

i=1

αn,i
∥
∥Sni xn

∥
∥2

−αn,0αn,jg
(∥∥∥Jxn − JSnj xn

∥∥∥
))

+ (1 − αn)φ(u, xn)

= αn

(

αn,0φ(u, xn) +
∞∑

i=1

αn,iφ
(
u, Sni xn

) − αn,0αn,jg
(∥∥∥Jxn − JSnj xn

∥∥∥
))

+ (1 − αn)φ(u, xn)

≤ αn
(

αn,0φ(u, xn) +
∞∑

i=1

αn,i
{
φ(u, xn) + νnζ

(
φ(u, xn)

)
+ μn

}

−αn,0αn,jg
(∥∥∥Jxn − JSnj xn

∥∥∥
))

+ (1 − αn)φ(u, xn)

≤ αn
(

φ(u, xn) +
∞∑

i=1

αn,i
(
νnζ
(
φ(u, xn)

)
+ μn

) − αn,0αn,jg
(∥∥∥Jxn − JSnj xn

∥∥∥
))

+ (1 − αn )φ(u, xn)

≤ φ(u, xn) + αn
(

νnsup
u∈F

ζ
(
φ(u, xn)

)
+ μn

)

− αnαn,0αn,jg
(∥∥∥Jxn − JSnj xn

∥∥∥
))

= φ(u, xn) + αnηn − αnαn,0αn,jg
(∥∥∥Jxn − JSnj xn

∥∥∥
)

≤ φ(u, xn) + ηn.
(3.13)

Hence u ∈ Cn+1 and so F ⊂ Cn for all n ≥ 0. By the way, from the definition of {ηn} and ζ and
(3.10), it is easy to see that

ηn = νn sup
u∈F

ζ
(
φ(u, xn)

)
+ μn ≤ νn sup

u∈F
ζ
(
(‖u‖ +M)2

)
+ μn −→ 0 (as n −→ ∞). (3.14)
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(IV) Now, we prove that {xn} converges strongly to some point

p ∈ F :=
∞⋂

i=1

F(Si)
⋂ ∞⋂

j=1

GMEP
(
Fj,Aj , ψj

)
. (3.15)

First, we prove that {xn} converges strongly to some point p ∈ ⋂∞
i=1 F(Si).

In fact, since {xn} is bounded in C and E is reflexive, there exists a subsequence {xni} ⊂
{xn} such that xni ⇀ p. Again since Cn is closed and convex for each n ≥ 1, it is weakly closed,
and so p ∈ Cn for each n ≥ 0. Since xn = ΠCnx0, from the definition of ΠCn , we have

φ(xni , x0) ≤ φ
(
p, x0

)
, n ≥ 0. (3.16)

Since

lim inf
ni →∞

φ(xni , x0) = lim inf
ni →∞

{
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

}

≥ ∥∥p∥∥2 − 2
〈
p, Jx0

〉
+ ‖x0‖2 = φ

(
p, x0

)
,

(3.17)

we have

φ
(
p, x0

) ≤ lim inf
ni →∞

φ(xni , x0) ≤ lim sup
ni →∞

φ(xni , x0) ≤ φ
(
p, x0

)
. (3.18)

This implies that limni →∞φ(xni , x0) = φ(p, x0), that is, ‖xni‖ → ‖p‖. In view of the Kadec-Klee
property of E, we obtain that limn→∞xni = p.

Now we prove that xn → p (n → ∞). In fact, if there exists a subsequence {xnj} ⊂
{xn} such that xnj → q, then we have

φ
(
p, q
)
= lim

ni →∞,nj →∞
φ
(
xni , xnj

)
≤ lim

ni →∞,nj →∞
φ(xnix0) − φ

(
ΠCnj

x0, x0
)

= lim
ni →∞,nj →∞

φ(xni , x0) − φ
(
xnj , x0

)
= 0

(
by (3.12)

)
.

(3.19)

Therefore we have p = q. This implies that

lim
n→∞

xn = p. (3.20)

Now we prove that p ∈ ⋂∞
i=1 F(Si). In fact, by the construction of Cn, we have that

Cn+1 ⊂ Cn and xn+1 = ΠCn+1x0. Therefore by Lemma 2.1(a) we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0) −→ 0 (as n −→ ∞).

(3.21)
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In view of xn+1 ∈ Cn and noting the construction of Cn+1 we obtain that

φ(xn+1, un) ≤ φ(xn+1, xn) + ηn −→ 0 (as n −→ ∞). (3.22)

From (1.10) it yields (‖xn+1‖ − ‖un‖)2 → 0. Since‖xn+1‖ → ‖p‖, we have

‖un‖ −→ ∥∥p∥∥ (as n −→ ∞). (3.23)

Hence we have

‖Jun‖ −→ ∥∥Jp∥∥ (as n −→ ∞). (3.24)

This implies that {Jun} is bounded in E∗. Since E is reflexive, and so E∗ is reflexive,
there exists a subsequence {Juni} ⊂ {Jun} such that Juni ⇀ p0 ∈ E∗. In view of the reflexive
of E, we see that J(E) = E∗. Hence there exists x ∈ E such that Jx = p0. Since

φ(xni+1, uni) = ‖xni+1‖2 − 2〈xni+1, Juni〉 + ‖uni‖2

= ‖xni+1‖2 − 2〈xni+1, Juni〉 + ‖Juni‖2
(3.25)

taking lim infn→∞ on the both sides of above equality and in view of the weak lower
semicontinuity of norm ‖ · ‖, then it yields that

0 ≥ ∥∥p∥∥2 − 2
〈
p, p0

〉
+
∥∥p0
∥∥2 =

∥∥p
∥∥2 − 2

〈
p, Jx

〉
+ ‖Jx‖2

=
∥∥p
∥∥2 − 2

〈
p, Jx

〉
+ ‖x‖2 = φ(p, x).

(3.26)

That is p = x. This implies that p0 = Jp, and so Jun ⇀ Jp. It follows from (3.24) and the
Kadec-Klee property of E∗ that Juni → Jp (as n → ∞). Note that J−1 : E∗ → E is hemi-
continuous, it yields that uni ⇀ p. It follows from (3.23) and the Kadec-Klee property of E
that limni →∞uni = p.

By the similar way as given in the proof of (3.20), we can also prove that

lim
n→∞

un = p. (3.27)

From (3.20) and (3.27) we have that

‖xn − un‖ −→ 0 (as n −→ ∞). (3.28)

Since J is uniformly continuous on any bounded subset of E, we have

‖Jxn − Jun‖ −→ 0 (as n −→ ∞). (3.29)
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For any j ≥ 1 and any u ∈ F, it follows from (3.13), (3.20), and (3.27) that

αnαn,0αn,jg
(∥∥
∥Jxn − JSnj xn

∥
∥
∥
)
≤ φ(u, xn) − φ(u, un) + αnηn. (3.30)

Since

φ(u, xn) − φ(u, un) = ‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉

≤
∣
∣
∣‖xn‖2 − ‖un‖2

∣
∣
∣ + 2‖u‖ · ‖Jxn − Jun‖

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖ · ‖Jxn − Jun‖,

(3.31)

from (3.28) and (3.29), it follows that

φ(u, xn) − φ(u, un) −→ 0 (n −→ ∞). (3.32)

In view of condition (b) and condition (c), we have that

g
(∥∥∥Jxn − JSnj xn

∥∥∥
)
−→ 0 (as n −→ ∞). (3.33)

It follows from the property of g that

∥∥∥Jxn − JSnj xn
∥∥∥ −→ 0, (as n −→ ∞). (3.34)

Since xn → p and J is uniformly continuous, it yields Jxn → Jp. Hence from (3.34)we have

JSnj xn −→ Jp (as n −→ ∞). (3.35)

Since J−1 : E∗ → E is hemicontinuous, it follows that

Snj xn ⇀ p
(∀j ≥ 1

)
. (3.36)

On the other hand, for each j ≥ 1 we have

∣∣∣
∥∥∥Snj xn

∥∥∥ −
∥∥p
∥∥
∣∣∣ =
∣∣∣
∥∥∥J
(
Snj xn

)∥∥∥ −
∥∥Jp
∥∥
∣∣∣ ≤
∥∥∥JSnj xn − Jp

∥∥∥ −→ 0 (as n −→ ∞). (3.37)

This together with (3.36) shows that

Snj xn −→ p
(
for each j ≥ 1

)
. (3.38)
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Furthermore, by the assumption that for each j ≥ 1, Sj is uniformly Li-Lipschitz
continuous, hence we have

∥
∥
∥Sn+1j xn − Snj xn

∥
∥
∥ ≤
∥
∥
∥Sn+1j xn − Sn+1j xn+1

∥
∥
∥ +
∥
∥
∥Sn+1j xn+1 − xn+1

∥
∥
∥

+ ‖xn+1 − xn‖ +
∥
∥
∥xn − Snj xn

∥
∥
∥

≤ (Lj + 1
)‖xn+1 − xn‖ +

∥
∥
∥Sn+1j xn+1 − xn+1

∥
∥
∥ +
∥
∥
∥xn − Snj xn

∥
∥
∥.

(3.39)

This together with (3.20) and (3.38), yields ‖Sn+1j xn − Snj xn‖ → 0 (as n → ∞). Hence from
(3.36) we have Sn+1j xn → p, that is, SjSnj xn → p. In view of (3.38) and the closeness of Sj , it
yields that Sjp = p, for all j ≥ 1. This implies that p ∈ ⋂∞

i=1 F(Si).
Next, we prove that p ∈ ⋂M

i=1 GMEP(Fi,Ai, ψi). Denote that

u
(m)
n = KΓm

rm,nK
Γm−1
rm−1,n · · ·KΓ2

r2,nK
Γ1
r1,nyn, m = 1, 2, . . . ,M − 1, u(M)

n = un. (3.40)

By the similar method as in the proof of (3.13), we can prove that

φ
(
u, u

(m)
n

)
≤ φ(u, xn) + ηn, m = 1, 2, . . . ,M, u ∈ F, ∀n ≥ 1. (3.41)

It follows from Lemma 2.6, (2.15), (3.32) that for any u ∈ F,

φ
(
u
(M)
n , u

(M−1)
n

)
= φ
(
KΓM
rn u

(M−1)
n , u

(M−1)
n

)

≤ φ
(
u, u

(M−1)
n

)
− φ
(
u,KΓM

rn u
(M−1)
n

)

≤ φ(u, xn) + ηn − φ
(
u,ΓMrn u

(M−1)
n

)

= φ(u, xn) + ηn − φ
(
u, u

(M)
n

)

= φ(u, xn) + ηn − φ(u, un) −→ 0 (as n −→ ∞).

(3.42)

From (1.10) it yields (‖u(M)
n ‖ − ‖u(M−1)

n ‖)2 → 0. Since ‖u(M)
n ‖ = ‖un‖ → ‖p‖, we have

∥∥∥u(M−1)
n

∥∥∥ −→ ∥∥p∥∥ (as n −→ ∞). (3.43)

Hence we have

∥∥∥Ju(M−1)
n

∥∥∥ → ∥∥Jp
∥∥ (as n −→ ∞). (3.44)
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This implies that {Ju(M−1)
n } is bounded in E∗. Since E is reflexive, and so E∗ is reflexive,

there exists a subsequence {Ju(M−1)
ni } ⊂ {Ju(M−1)

n } such that Ju(M−1)
ni ⇀ p0 ∈ E∗. In view of the

reflexive of E, we see that J(E) = E∗. Hence there exists x ∈ E such that Jx = p0. Since

φ
(
u
(M)
ni , u

(N−1)
ni

)
=
∥
∥
∥u(M)

ni

∥
∥
∥
2 − 2

〈
u
(M)
ni , Ju

(M−1)
ni

〉
+
∥
∥
∥u(M−1)

ni

∥
∥
∥
2

=
∥
∥
∥u(M)

ni

∥
∥
∥
2 − 2

〈
u
(M)
ni , Ju

(M−1)
ni

〉
+
∥
∥
∥Ju(M−1)

ni

∥
∥
∥
2

(3.45)

taking lim infni →∞ on the both sides of above equality and in view of the weak lower semi-
continuity of norm ‖ · ‖, it yields that

0 ≥ ∥∥p∥∥2 − 2
〈
p, p0

〉
+
∥
∥p0
∥
∥2 =

∥
∥p
∥
∥2 − 2

〈
p, Jx

〉
+ ‖Jx‖2

=
∥∥p
∥∥2 − 2

〈
p, Jx

〉
+ ‖x‖2 = φ(p, x).

(3.46)

This is, p = x. This implies that p0 = Jp, and so Ju(M−1)
ni ⇀ Jp. It follows from (3.44) and the

Kadec-Klee property of E∗ that Ju(M−1)
ni → Jp (as ni → ∞). Note that J−1 : E∗ → E is hemi-

continuous it yields that u(M−1)
ni ⇀ p. It follows from (3.43) and the Kadec-Klee property of E

that limni →∞u
(M−1)
ni = p.

By the similar way as given in the proof of (3.20), we can also prove that

lim
n→∞

u
(M−1)
n = p. (3.47)

From (3.27) and (3.47) we have that

∥∥∥u(M)
n − u(M−1)

n

∥∥∥ −→ 0 (as n −→ ∞). (3.48)

Since J is uniformly continuous on any bounded subset of E, we have

∥∥∥Ju(M)
n − Ju(M−1)

n

∥∥∥ −→ 0 (as n −→ ∞). (3.49)

Since

u
(i)
n = KΓi

rnu
(i−1)
n , i = 2, 3, . . . ,M, u

(0)
n = yn, u

(M)
n = un. (3.50)

By the similar way as above, we can also prove that

u
(i)
n → p,

∥∥∥u(i)n − u(i−1)n

∥∥∥ −→ 0,
∥∥∥Ju(i)n − Ju(i−1)n

∥∥∥ −→ 0, i = 2, 3, . . . ,M
∥∥∥yn − u(1)n

∥∥∥ −→ 0,
∥∥∥Jyn − Ju(1)n

∥∥∥ −→ 0 (as n −→ ∞).
(3.51)
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From (3.51) and the assumption that rn ≥ d, ∀n ≥ 0, we have

lim
n→∞

∥
∥
∥Ju(i)n − Ju(i−1)n

∥
∥
∥

ri,n
= 0, i = 2, 3, . . . ,M; lim

n→∞

∥
∥
∥Jyn − Ju(1)n

∥
∥
∥

r1,n
= 0. (3.52)

In the proof of Lemma 2.6 we have proved that the function Γi, i = 1, 2, . . . ,M defined by (3.6)
satisfies the condition (A1)–(A4) and

Γi
(
u
(i)
n , y

)
+

1
ri,n

〈
y − u(i)n , Ju(i)n − Ju(i−1)n

〉
≥ 0, ∀y ∈ C. (3.53)

Therefore for any y ∈ C we have

1
ri,n

〈
y − u(i)n , Ju(i)n − Ju(i−1)n

〉
≥ −Γi

(
u
(i)
n , y

)
≥ Γi
(
y, u

(i)
n

)
. (3.54)

This implies that

Γi
(
y, u

(i)
n

)
≤ 1
ri,n

〈
y − u(i)n , Ju(i)n − Ju(i−1)n

〉

≤ (M1 +
∥∥y
∥∥)
∥∥∥Juin − Ju(i−1)n

∥∥∥

ri,n

(3.55)

for some constant M1 > 0. Since the function y �→ Γi(x, y) is convex and lower semi-
continuous, letting n → ∞ in (3.55), from (3.52) and (3.55), for each i, we have Γi(y, p) ≤
0, for all y ∈ C.

For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p, there are yt ∈ C and Γi(yt, p) ≤ 0. By
condition (A1) and (A4), we have

0 = Γi
(
yt, yt

) ≤ tΓi
(
yt, y

)
+ (1 − t)Γi

(
yt, p

) ≤ tΓi
(
yt, y

)
. (3.56)

Dividing both sides of the above equation by t, we have Γi(yt, y) ≥ 0, for all y ∈ C. Letting
t ↓ 0, from condition (A3), we have Γi(p, y) ≥ 0, for all y ∈ C, for all i = 1, 2, . . . ,M, that is,
for each i = 1, 2, . . . ,M, we have

Fi
(
p, y
)
+
〈
Aip, y − p〉 + ψi

(
y
) − ψi

(
p
) ≥ 0, ∀y ∈ C. (3.57)

This implies that p ∈ ⋂M
j=1 GMEP(Fj,Aj , ψj). Therefore, we have that

p ∈ F. (3.58)

(V) Now, we prove xn → ΠFx0.
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Let w = ΠFx0. From w ∈ F ⊂ Cn+1 and xn+1 = ΠCn+1x0, we have φ(xn+1, x0) ≤ φ(w,x0),
for all n ≥ 0. This implies that

φ
(
p, x0

)
= lim

n→∞
φ(xn, x0) ≤ φ(w,x0). (3.59)

By the definition of ΠFx0 and (3.59), we have p = w. Therefore, xn → ΠFx0. This
completes the proof of Theorem 3.1.

Theorem 3.2. Let E,C, {KΓi
ri,n}Mi=1, {Ai}Mi=1, {Fi}Mi=1, {ψi}Mi=1, {GMEP(Fj,Aj , ψj)}Mj=1 be the same as

above. Let {Si}∞i=1 : C → C be an infinite family of closed and uniformly quasi-φ-asymptotically
nonexpansive mappings with a sequence {kn} ⊂ [1,∞) and kn → 1. Suppose that for each i ≥ 1, Si
is uniformly Li-Lipschitz continuous and that

G :=
∞⋂

i=1

F(Si)
⋂ M⋂

j=1

GMEP
(
Fj,Aj , ψj

)
(3.60)

is a nonempty and bounded subset of C. For any given x0 ∈ C, let {xn} be the sequence generated by

x0 ∈ C0 = C,

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

yn = J−1(αnJzn + (1 − αn)Jxn),

un = KΓM
rM,n

KΓM−1
rM−1,n · · ·KΓ2

r2,nK
Γ1
r1,nyn,

Cn+1 =
{
v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ξn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.61)

where ξn = supu∈G(kn − 1)φ(u, xn), rn ∈ [d,∞) for some d > 0, and for i ≥ 0, {αn,i}, {αn} are
sequences in [0, 1] satisfying the following conditions:

(a)
∑∞

i=0αn,i = 1 for all n ≥ 0;

(b) lim infn→∞αn,0 · αn,i > 0 for all i ≥ 1;

(c) 0 < α ≤ αn < 1 for some α ∈ (0, 1).

Then {xn} converges strongly toΠGx0.

Proof. Since {Si}∞i=1 : C → C is an infinite family of closed quasi-φ-asymptotically
nonexpansive mappings, it is an infinite family of closed and uniformly total quasi-φ-
asymptotically nonexpansive mappings with sequence ζ(t) = t, t ≥ 0, νn = kn − 1, μn = 0.
Hence ζn = νnsupu∈Gζ(φ(u, xn)) + μn = supu∈G(kn − 1)φ(u, xn) → 0. Therefore all conditions
in Theorem 3.1 are satisfied. The conclusion of Theorem 3.2 is obtained from Theorem 3.1
immediately.
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Remark 3.3. Theorems 3.1 and 3.2 improve and extend the corresponding results in [8, 11, 15,
16, 18–24, 28] and others in the following aspects.

(a) For the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property (note that each uniformly convex Banach space
must have Kadec-Klee property).

(b) For the mappings, we extend the mappings from nonexpansive mappings,
relatively nonexpansive mappings, quasi-φ-nonexpansive mapping or quasi-φ-
asymptotically nonexpansive mappings to a countable family of total quasi-φ-
asymptotically nonexpansive mappings.

(c) We extend a single generalized mixed equilibrium problem to a system of general-
ized mixed equilibrium problems.
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