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This paper is concerned with the existence of solutions for the discrete second-order boundary
value problem Δ2u(t − 1) + λ1u(t) + g(Δu(t)) = f(t), t ∈ {1, 2, . . . , T}, u(0) = u(T + 1) = 0, where
T > 1 is an integer, f : {1, . . . , T} → R, g : R → R is bounded and continuous, and λ1 is the first
eigenvalue of the eigenvalue problem Δ2u(t − 1) + λu(t) = 0, t ∈ T, u(0) = u(T + 1) = 0.

1. Introduction

Let g : R → R and p : [0, π] → R be continuous. The nonlinear two-point boundary value
problem of ordinary differential equation

u′′(t) + u(t) + g
(
u′
)
= p(t), t ∈ (0, π),

u(0) = u(π) = 0,
(1.1)

is very important in applications. Let us mention the problems arising in viscosity, nonlinear
oscillations, electric circuits, and so forth. The term g(u′) may be regarded as a nonlinear
damping term in resonance problems and its appears, for example, in Rayleigh’s equation
(which is closely connected with a theory of oscillation of violin string), in oscillations of a
simple pendulum under the action of viscous damping, in dry (Coulomb) friction (which
occurs when the surfaces of two solids are contact and relative motion without lubrication),
and in some cases of van der Pol oscillator, see [1–4] and the references therein.
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Since the pioneer work of Landesman and Lazer [5], the problems of the type

u′′(t) + u(t) + g(u) = f(t), t ∈ (0, π),

u(0) = u(π) = 0,
(1.2)

(where g is independent of u′) have been extensively studied in the past forty years, see
Iannacci and Nkashama [6] and the references therein.

It has been remarked (see [7, 8]) that conditions of the Landesmen-Lazer type are not
appropriated to yield the existence of solutions to (1.1). Thus, it is usually muchmore difficult
to deal with (1.1) than to deal with (1.2), see Kannan et al. [7], Cañada andDrábek [8], Habets
and Sanchez [9], Drábek et al. [10], and Del Toro and Roca [11].

In [8], Cañada and Drábek used the well-known Lyapunov-Schmidt method and the
Schauder fixed point theorem to find a necessary and sufficient condition for the existence of
solutions of (1.1). To wit, they proved

Theorem A (See [8, Theorem 3.1]). Let p : [0, π] → R be continuous and let

p(t) = s

√
2
π

sin t + p̃(t), s ∈ R,

∫π

0
p̃(t) sin t dt = 0. (1.3)

Let g : R → R be continuous and bounded with g(−∞) = g(+∞) and g(ξ) < g(+∞) for ξ ∈ R,
where

g(−∞) := lim
s→−∞

g(s), g(+∞) := lim
s→+∞

g(s). (1.4)

Then for any p̃ ∈ C[0, π] with
∫π
0 p̃(t) sin t dt = 0, there exists a real number gp̃ <

2
√
2/πg(+∞) such that (1.1) has at least one solution u ∈ C2[0, π] if and only if

s ∈
⎡

⎣gp̃, 2

√
2
π
g(+∞)

⎞

⎠. (1.5)

It is the purpose of this paper to establish the similar results for the discrete analogue of (1.1)
of the form

Δ2u(t − 1) + λ1u(t) + g(Δu(t)) = f(t), t ∈ T,

u(0) = u(T + 1) = 0,
(1.6)

where T > 1 is an integer, T := {1, . . . , T}, g : R → R is bounded and continuous, f : T → R,
λ1 is the first eigenvalue of the linear eigenvalue problem

Δ2u(t − 1) + λu(t) = 0, t ∈ T,

u(0) = u(T + 1) = 0.
(1.7)
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Finally, it is worth remarking that the existence of solutions for nonlinear problem

Δ2u(t − 1) + λ1u(t) + g(u(t)) = f(t), t ∈ T,

u(0) = u(T + 1) = 0,
(1.8)

which is a discrete analogue of (1.2), has been studied by Rodriguez [12] and Ma [13]. For
other recent results on the existence of solutions of discrete problems, see [14–21] and the
reference therein.

The rest of this paper is arranged as follows. In Section 2, we give some preliminaries
and develop the methods of lower and upper solutions for the more generalized problems,
that is, the case of the nonlinearity g = g(t, u,Δu); in Section 3, we state our main result and
provide the proof.

2. Preliminaries

Recall that T = {1, 2, . . . , T}. Let T̂ = {0, 1, . . . , T + 1}. Let X := {u | u : T̂ → R}, Y := {u | u :
T → R} be equipped with the norm

‖u‖X = max
k∈T̂

|u(k)|, ‖u‖Y = max
k∈T

|u(k)|, (2.1)

respectively. It is easy to see that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces.
Assume that g0 : T × R

2 → R is a continuous function, bounded by a constantM > 0:

∣∣g0
(
t, η, ξ

)∣∣ ≤M (2.2)

for t ∈ T and (η, ξ) ∈ R
2. Consider the following problem:

Δ2u(t − 1) + λ1u(t) + g0(t, u(t),Δu(t)) = f(t), t ∈ T, (2.3)

u(0) = u(T + 1) = 0. (2.4)

Definition 2.1. If x ∈ X satisfies

Δ2x(t − 1) + λ1x(t) ≥ f(t) − g0(t, x(t),Δx(t)), t ∈ T,

x(0) ≤ 0, x(T + 1) ≤ 0,
(2.5)

then one says x(t) is a lower solution of (2.3), (2.4). If y ∈ X satisfies

Δ2y(t − 1) + λ1y(t) ≤ f(t) − g0
(
t, y(t),Δy(t)

)
, t ∈ T,

y(0) ≥ 0, y(T + 1) ≥ 0,
(2.6)

then one says y(t) is an upper solution of (2.3), (2.4).
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Theorem 2.2. Suppose that x(t), y(t) are the lower and upper solutions of (2.3), (2.4), respectively,
and x(t) ≤ y(t), t ∈ T. Then BVP (2.3) and (2.4) have at least one solution u(t) satisfies

x(t) ≤ u(t) ≤ y(t). (2.7)

Proof. Define the function p : T × R → R by

p(t, u(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

x(t), u(t) < x(t),
u(t), x(t) ≤ u(t) ≤ y(t),
y(t), u(t) > y(t).

(2.8)

Set f∗(t, u, v) = f(t) − g0(t, u, v) − λ1u. Consider the auxiliary problems:

Δ2u(t − 1) = f∗(t, p(t, u),Δp(t, u)
)
, t ∈ T,

u(0) = u(T + 1) = 0.
(2.9)

From (2.8) and the boundness of g0, we know f∗(t, p(t, u),Δp(t, u)) is bounded. So, by the
Schauder fixed point theorem, (2.9) has a solution u ∈ X.

Now, we only prove u(t) ≤ y(t), the other case u(t) ≥ x(t) is similar.
Set z(t) = u(t)−y(t). Suppose that z(t) > 0, for t ∈ {t0+1, t0+2, . . . , t0+p}, and z(t0) ≤ 0,

z(t0 + p + 1) ≤ 0, where t0 ∈ {0, 1, . . . , T}, p ∈ {1, 2, . . . , T}.
On the other hand, by the definition of upper solution, for t ∈ {t0 + 1, t0 + 2, . . . , t0 + p},

Δ2y(t − 1) ≤ f∗(t, y(t),Δy(t)
)

= f(t) − λ1y(t) − g0
(
t, y(t),Δy(t)

)

= f(t) − λ1p(t, u) − g0
(
t, p(t, u(t)),Δp(t, u(t))

)

= Δ2u(t − 1).

(2.10)

Then

Δ2z(t − 1) ≥ 0, t ∈ {t0 + 1, t0 + 2, . . . , t0 + p
}
,

z(t0) ≤ 0, z
(
t0 + p + 1

) ≤ 0.
(2.11)

Now, by the convexity of z on {t0+1, t0+2, . . . , t0+p}, we get z(t) ≤ 0, t ∈ {t0+1, t0+2, . . . , t0+p},
that is, u(t) ≤ y(t), t ∈ {t0 + 1, t0 + 2, . . . , t0 + p}. This contradicts u(t) > y(t), t ∈ {t0 + 1, t0 +
2, . . . , t0 + p}. Thus, u(t) ≤ y(t), t ∈ T̂.

Lemma 2.3. See
∑T

t=1 sin
2(πt/(T + 1)) = (T + 1)/2.

Proof. Let ω = cos(2π/(T + 1)) + i sin(2π/(T + 1)). Then ωT+1 = 1 and (1 −ω)(1 +ω +
ω2 + · · · +ωT ) = 0. Since 1 −ω/= 0, we have

∑T
t=1 cos(2πt/(T + 1)) = −1. This together with the

fact that
∑T

t=1 sin
2(πt/(T + 1)) =

∑T
t=1(1− cos(2πt/(T + 1)))/2 implies the assertion holds.
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Now, let ψ1(t) :=
√
2/(T + 1) sin(πt/(T + 1)), t ∈ T, denote the positive eigenfunction

corresponding to the first eigenvalue λ1 = 4sin2(π/2(T + 1)) of (1.7). Then by Lemma 2.3,∑T
t=1 ψ

2
1(t) = 1.
Since ψ1(t) is located on

√
2/(T + 1) sin t, t ∈ [0, π], by the direct computation, we can

obtain the following result.

Lemma 2.4. If T is an odd number, then

Δψ1(t) > 0, for t ∈
{
0, . . .

[
T

2

]}
, Δψ1(t) < 0, for t ∈

{[
T

2

]
+ 1, . . . , T

}
, (2.12)

if T is an even number, then Δψ1(T/2) = 0,

Δψ1(t) > 0, for t ∈
{
0, . . .

T

2
− 1
}
, Δψ1(t) < 0, for t ∈

{
T

2
+ 1, . . . , T

}
. (2.13)

Define the operator L : D(L) ⊂ X → Y by

Lu(t) = Δ2u(t − 1) + λ1u(t), (2.14)

where D(L) = {u ∈ X | u(0) = u(T + 1) = 0}.
DefineN : X → Y by

(Nu)(t) = f(t) − g0(t, u(t),Δu(t)). (2.15)

Then (2.3), (2.4) is equivalent to the operator equation Lu =Nu.
In Theorem 2.2, we established the methods of lower and upper solutions under well

order. Now, we can also develop the methods of lower and upper solutions for (2.3), (2.4)
when x(t) ≤ y(t) is not necessary, its proofs are based on the following lemma, that is, the
connectivity properties of the solution sets of parameterized families of compact vector fields,
they are a direct consequence of Mawhin [22, Lemma 2.3].

Lemma 2.5 (see [22, Lemma 2.3]). Let E be a Banach space andC ⊂ E a nonempty, bounded, closed
convex subset. Suppose that T : [a, b] × C → C is completely continuous. Then the set

S = {(λ, x) | T(λ, x) = x, λ ∈ [a, b]} (2.16)

contains to be a closed connected subset Σ which connects {a} × C to {b} × C.

Theorem 2.6. Assume that x(t), y(t) are the lower solution and the upper solution of (2.3), (2.4),
respectively. Then (2.3) and (2.4) have at least one solution.

Proof. Define the projections P : X → X, Q : Y → R by

(Pu)(t) =

[
T∑

t=1

u(t)ψ1(t)

]

ψ1(t),
(
Qy
)
(t) =

T∑

t=1

y(t)ψ1(t). (2.17)
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Then ImP = KerL, KerQ = ImL, and X = (KerP ⊕ KerL),Y = (ImL ⊕ ImQ). Now, the
operator equation Lu =Nu is equivalent to the alternative system

u − Pu = K(I −Q)Nu,

QNu = 0,
(2.18)

where K is the inverse of mapping L : (D(L) ∩ KerP) → ImL.
Writing u ∈ D(L) in the form u(t) = cψ1(t) +w(t), c ∈ R,

∑T
t=1 ψ1(t)w(t) = 0, (2.3) and

(2.4) are equivalent to the system

w = K(I −Q)N
(
cψ1(·) +w

)
, (2.19)

QN
(
cψ1(·) +w

)
= 0. (2.20)

SinceX is finite dimensional, it is easy to see thatK(I −Q)N is completely continuous, by the
Schauder fixed point theorem and the fact N(cψ1(t) +w(t)) is bounded, we get that for any
fixed c ∈ R,W(c) := {w ∈ X ∩ KerP | (c,w) satisfies (2.19)}/= ∅ andW(c) is bounded. Then
there exist positive constants α > τ such that −τψ1 ≤ w ≤ τψ1 for allw ∈W(c), (α−τ)ψ1 ≥ x(t)
and −(α − τ)ψ1 ≤ y(t). Let

γ(c,w) =
T∑

t=1

N
(
cψ1(t) +w(t)

)
ψ1(t) (2.21)

for all (c,w) ∈ R × W(c). Observe that Lemma 2.5 is applicable. Hence there exists a
connected subset of {(c,w) ∈ R × (X ∩ Ker P) | (c,w) satisfies (2.19)}, Σα(ψ1), which
connected {−α} ×W(−α) and {α} ×W(α). Since γ : Σα(ψ1) → R is continuous, I := γ(Σα(ψ1))
is an interval. If 0 ∈ I, then (2.3) and (2.4) have a solution. If I ⊂ (0,∞), then every cψ1 + w
with (c,w) ∈ Σα(ψ1) is an upper solution. Indeed, it is obvious that

L
(
cψ1(t) +w(t)

) −N(cψ1(t) +w(t)
)
= −γ(c,w) ≤ 0, t ∈ T,

(
cψ1 +w

)
(0) =

(
cψ1 +w

)
(T + 1) = 0.

(2.22)

By construction, αψ1 + w with (α,w) ∈ Σα(ψ1) satisfies x(t) ≤ αψ1 + w. Hence, from
Theorem 2.2, (2.3) and (2.4) have a solution. A similar argument applies if I ⊂ (−∞, 0).

Theorem 2.7. Suppose that f satisfies

f(t) = sψ1(t) + f̃(t), s ∈ R, (2.23)

where f̃ satisfies

T∑

t=1

f̃(t)ψ1(t) = 0. (2.24)
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Then, there exists a nonempty, connected, and bounded set Jf̃ ⊂ R such that (2.3) and (2.4) have at
least one solution u ∈ X if and only if s ∈ Jf̃ .

Proof. As the proof of Theorem 2.6, (2.3) and (2.4) are equivalent to the system (2.19), (2.20).
SinceN is bounded, applying the Schauder fixed point theorem we obtain that for any fixed
c ∈ R, there exits at least one wc ∈ X such that (2.19) holds.

Now, (2.20) becomes

T∑

t=1

g0
(
t, cψ1(t) +wc(t), cΔψ1(t) + Δwc(t)

)
ψ1(t) = s. (2.25)

Hence, for a given f̃ ,
∑T

t=1 f̃(t)ψ1(t) = 0, (2.3), (2.4) with f(t) = cψ1(t) + f̃(t) has at least
one solution if and only if s belongs to the range of the (multivalued, in general) function
Γf̃ : R → Γf̃(R),

Γf̃(c) =
T∑

t=1

g0
(
t, cψ1(t) +wc(t), cΔψ1(t) + Δwc(t)

)
ψ1(t), (2.26)

where wc ∈ {w ∈ D(L) : w is a solution of (2.19) for fixed c}. But Jf̃ ≡ Γf̃(R) is a connected

set. In fact, let s1 and s2 belong to Jf̃ and s1 ≤ s2. Then (2.3), (2.4) with f1 = s1ψ1 + f̃ and

f2 = s2ψ1 + f̃ has solutions u1 and u2, respectively. If we consider (2.3), (2.4)with f = sψ1 + f̃ ,
where s ∈ [s1, s2], then u1 is an upper solution and u2 is a lower solution to this problem.
By Theorem 2.6, there exists at least one solution, that is, s belongs to Jf̃ . Moreover, since g is
bounded, the range of Γf̃ is bounded.

3. Main Results

In this section, we deal with (1.6). First, let us make the following assumptions:
(H1) g : R → R is a bounded and continuous function and satisfies g(+∞) = g(−∞)

and g(ξ) < g(+∞) for any ξ ∈ R,
(H2) f : T → R satisfies

f(t) = sψ1(t) + f̃(t), s ∈ R,
T∑

t=1

f̃(t)ψ1(t) = 0. (3.1)

Theorem 3.1. Suppose that (H1), (H2) hold. Then there exists a real number gf̃ , gf̃ <
√
2/(T + 1)g(+∞)

∑T
t=1 sin(πt/(T + 1)), such that (1.6) has at least one solution u ∈ X if and

only if

s ∈
⎡

⎣gf̃ ,

√
2

T + 1
g(+∞)

T∑

t=1

sin
πt

T + 1

⎞

⎠. (3.2)
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Proof. Note that ψ1(t) =
√
2/(T + 1) sin(πt/(T +1)). Due to the consideration in the the proof

of Theorem 2.7. It is sufficient to show that for a given f̃ with
∑T

t=1 f̃(t)ψ1(t) = 0, we have

Γf̃(R) =

⎡

⎣gf̃ ,

√
2

T + 1
g(+∞)

T∑

t=1

sin
πt

T + 1

⎞

⎠. (3.3)

The (possibly multivalued) function Γf̃ has the following form:

Γf̃(c) =

√
2

T + 1

T∑

t=1

g
(
cΔψ1(t) + Δwc(t)

)
sin

πt

T + 1
, (3.4)

where c ∈ R and wc verify (2.19). From the boundedness of g and (2.19), there exists a
constant D > 0 (independent of c) such that ‖wc‖X ≤ D for any c ∈ R, furthermore,

max
t∈{0,1,...,T}

|Δwc(t)| ≤ 2D. (3.5)

Now, we divide the proof into two cases.

Case 1. T is an odd number. By Lemma 2.4, we obtain that

T∑

t=1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1

=
[T/2]∑

t=1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1

+
T∑

t=[T/2]+1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1

−→
[T/2]∑

t=1

g(±∞) sin
πt

T + 1
+

T∑

s=[T/2]+1

g(∓∞) sin
πt

T + 1
,

(3.6)

as c → ±∞. Due to g(+∞) = g(−∞), we get

Γf̃(c) →
√

2
T + 1

g(+∞)
T∑

t=1

sin
πt

T + 1
. (3.7)

The assumption g(ξ) < g(+∞), ξ ∈ R, and (3.5) yields

Γf̃(c) <

√
2

T + 1
g(+∞)

T∑

t=1

sin
πt

T + 1
(3.8)

for any c ∈ R.
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Case 2. T is an even number. By Lemma 2.4, we know that

Δψ1

(
T

2

)
=

√
2

T + 1
Δ sin

πT

2(T + 1)
= 2

√
2

T + 1
sin

π

2(T + 1)
cos

π(2T/2 + 1)
2(T + 1)

= 0. (3.9)

Hence,

T∑

t=1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1

=
(T/2)−1∑

t=1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1

+
T∑

t=(T/2)+1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1

+ g
(
Δwc

(
T

2

))
sin

πT

2(T + 1)
.

(3.10)

By (3.5) and the assumption g(ξ) < g(+∞), ξ ∈ R, we know that for any c ∈ R, g(Δwc(T/
2)) < g(+∞). Thus, for any c ∈ R,

Γf̃(c) <

√
2

T + 1
g(+∞)

T∑

t=1

sin
πt

T + 1
. (3.11)

It is sufficient to prove that this infimum is achieved. Let us denote

gf̃ = inf
c∈R

Γf̃(c). (3.12)

Suppose that {sn} ⊂ Γf̃(R) satisfies sn → gf̃ and {cn} is the corresponding minimizing se-

quence, that is, un(t) = cn
√
2/(T + 1) sin(πt/(T + 1)) + wcn(t), are the solution of (1.1), with

the right-hand sides fn(t) = sn
√
2/(T + 1) sin(πt/(T + 1)) + f̃(t).

We claim that {cn} is bounded. In fact, if cn → ∞ as n → ∞, then we can get two
contradictions in the following two cases.

Case 1. If T is an odd number, then by (2.20),

√
2

T + 1

T∑

t=1

g

⎛

⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwcn(t)

⎞

⎠ sin
πt

T + 1
= sn, (3.13)
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letting n → ∞ in (3.13), we get

√
2

T + 1

T∑

t=1

g(+∞) sin
πt

T + 1
= gf̃ . (3.14)

From (H1), we arrive for any ξ ∈ R, g(ξ) < g(+∞), which together with (3.14) implies
that

√
2

T + 1

T∑

t=1

g

⎛

⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞

⎠ sin
πt

T + 1
< gf̃ . (3.15)

This contradicts (3.12).

Case 2. If T is an even number, then by (2.20) and Δψ1(T/2) = 0, we get

sn =

√
2

T + 1

(T/2)−1∑

t=1

g

⎛

⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
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(3.16)

This implies that

gf̃ ≥
√

2
T + 1

(T/2)−1∑

t=1

g(+∞) sin
πt

T + 1
+

√
2

T + 1

T∑

t=(T/2)+1

g(+∞) sin
πt

T + 1

+

√
2

T + 1
inf

wcn∈X
g

(
Δwcn

(
T

2

))
sin

πT

2(T + 1)
.

(3.17)

On the other hand, by (3.12) and (H1), we get that for any fixed n ∈ N,
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<

√
2

T + 1

(T/2)−1∑

t=1

g(+∞) sin
πt

T + 1
+

√
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(3.18)

Now, we obtain a contradiction. Thus, cn is bounded.
Since X is finite dimensional and wcn is bounded, we obtain that cn → c, wcn → wc

(at least for a subsequence), and u(t) = c
√
2/(T + 1) sin(πt/(T + 1)) + wc(t) is a solution of

(1.1) with f(t) = gf̃
√
2/(T + 1) sin(πt/(T + 1)) + f̃(t). Hence, the infimum is achieved in c.
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