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We study the dynamicmathematical model for an infinitely long cylinder composed of an isotropic
incompressible Ogden material with a microvoid at its center, where the outer surface of the
cylinder is subjected to a uniform radial tensile load. Using the incompressibility condition and
the boundary conditions, we obtain a second-order nonlinear ordinary differential equation that
describes the motion of the microvoid with time. Qualitatively, we find that this equation has
two types of solutions. One is a classical nonlinear periodic solution which describes that the
motion of the microvoid is a nonlinear periodic oscillation; the other is a blow-up solution.
Significantly, for the isotropic incompressible Ogden material, there exist some special values of
material parameters, the phase diagrams of the motion equation have homoclinic orbits, which
means that the amplitude of a nonlinear periodic oscillation increases discontinuously with the
increasing load.

1. Introduction

Cylindrical structures are very common used in social productions and human lives. The
researches on the dynamic oscillation problems of such structures composed of hyperelastic
materials are of important significance. As is well known, such problems can be formulated
as initial (boundary) value problems of nonlinear evolution equation(s). Knowles [1] firstly
studied the free radial oscillation of an incompressible cylindrical tube composed of an
isotropic Mooney-Rivlin material; in the limiting case of a thin walled cylindrical tube,
the equation reduces to the Ermakov-Pinney equation. Then, Shahinpoor and Nowinski
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[2] and Rogers and Baker [3] used the nonlinear superposition principle for the Ermakov-
Pinney equation to derive solutions. The works appeared in this area have been reviewed
by Rogers and Ames [4]. In 2007, Mason and Maluleke [5] introduced the Lie point
symmetry into this area and investigated the nonlinear radial oscillations of a transversely
isotropic incompressible cylindrical tube subjected to time dependent net applied surface
pressures; moreover, they proved that for radial and tangential transversely isotropic tubes
the differential equations may be reduced to the Abel equations of the second kind. In
addition, with the development of the mathematical theory, Yuan et al. [6] investigated
the dynamic inflation problems for infinitely long cylindrical tubes composed of a class of
transversely isotropic incompressible Ogden materials from the equation itself and discussed
the influences of material parameters, structure parameter and applied pressures on the
dynamic behaviors of the tubes in detail. Ren [7] studied the dynamical responses, such
as motion and destruction of hyperelastic cylindrical shells subjected to dynamic loads on
the inner surface. Other references on the dynamic responses for hyperelastic cylindrical
structures may be found in Dai and Kong [8], Yuan et al. [9], and so on.

The purpose of this paper is to investigate the nonlinear periodic oscillation of a
cylindrical microvoid centered at an infinitely long cylinder, where the cylinder is composed
of an isotropic incompressible Ogden material [10] and its outer surface is subjected to
a uniform radial tensile load. In Section 2, the basic governing equations, the boundary
conditions and the initial conditions are presented. In Section 3, a second order nonlinear
ordinary differential equation describing the motion of the microvoid is obtained. Then,
in Section 4, some nonlinear dynamic analyses of the equation are performed in detail.
Meanwhile, some numerical examples are given.

2. Mathematical Model

The mathematical model examined in this paper is listed as follows.

(a) Basic Governing Equations

In the absence of body force, the equilibrium differential equation, the incompressibility
condition and the strain-energy function associatedwith the knownOgdenmaterial are given
by

∂σr(r, t)
∂r

+
1
r
(σr(r, t) − σθ(r, t)) = ρ0

∂2r(R, t)
∂t2

, (2.1)

λrλθ = 1, (2.2)

W =
μ1

α1

[
λα1
r + λα1

θ − 2
]
+
μ2

α2

[
λα2
r + λα2

θ − 2
]
. (2.3)

(b) Boundary Conditions and Initial Conditions

The boundary conditions are given by

σr(r(A), t) = 0, σr(r(B), t) = p0

[
B

r(B)

]
. (2.4)
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The initial conditions are as follows:

r(R, 0) = R, ṙ(R, 0) = 0. (2.5)

In (2.1)∼(2.5), σi(r, t) = λi(∂W/∂λi) − p(r, t), i = r, θ are the principal Cauchy stresses,
p(r, t) is the hydrostatic pressure related to the incompressibility condition, λr = ∂r/∂R, λθ =
r/R are the radial and the circumference stretches, respectively, r = r(R, t), 0 < A ≤ R ≤ B is
the radial deformation function with time to be determined, andA and B are the radius of the
microvoid and the outer radius of the cylinder in the undeformed configuration, respectively.
ρ0 is the constant mass density of the material. μi, αi (i = 1, 2) are material parameters. The
boundary conditions in (2.4) mean that the surface of the microvoid is traction free and the
outer surface of the cylinder is subjected to a uniform radial tensile load, denoted by p0. The
initial conditions in (2.5)mean that the cylinder is in an undeformed state at time t = 0.

3. Solutions

From the incompressibility condition (2.2)we find that

r(R, t) =
(
R2 −A2 + r21(t)

)1/2
, (3.1)

where r1(t) is an undetermined radial motion function of the radius of the microvoid. From
(3.1), it is easy to know that the radial motion of the cylinder can be completely described by
r1(t).

From (3.1), it is not difficult to show that

∂2r(R, t)
∂t2

=
∂

∂r

(

r1r̈1 ln r + (ṙ1)2 ln r +
1
2
(ṙ1)2

(
r1
r

)2
)

. (3.2)

Substituting (3.2) into (2.1), integrating it with respect to r from r(A, t) to r(B, t) and
using the traction boundary conditions in (2.4), we obtain

1
2
ρ0r1r̈1 ln

(
B2 −A2 + r21

r21

)

+
1
2
ρ0r

2
1 ln

(
B2 −A2 + r21

r21

)

+
1
2
ρ0ṙ

2
1

(
A2 − B2

B2 −A2 + r21

)

− p0

⎛

⎝ B
(
B2 −A2 + r21

)1/2

⎞

⎠

−
∫ r(B,t)

r(A,t)

[
λr

∂W

∂λr
− λθ

∂W

∂λθ

]
dr

r
= 0,

(3.3)

where r(A, t) = (A2 −A2 + r21(t))
1/2 = r1(t), r(B, t) = (B2 −A2 + r21(t))

1/2.
Obviously, (3.3) is a second order nonlinear ordinary differential equation with respect

to r1(t). Next we study the qualitative properties of solutions of (3.3).
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For convenience, we introduce the following dimensionless notations:

k =
(
R

r

)−1
=

(

1 − r21 −A2

r2

)−1/2
, x(t) =

r1(t)
B

,

ẋ(t) =
ṙ1(t)
B

, δ =

(
B2 −A2)1/2

B
.

(3.4)

Thus, the initial conditions in (2.5) reduce to

x(0) =
(
1 − δ2

)1/2
, ẋ(0) = 0, (3.5)

and (3.3) may be rewritten as

1
2
ρ0B

2xẍ ln

(
δ2 + x2

x2

)

+
1
2
ρ0B

2ẋ2 ln

(
δ2 + x2

x2

)

− 1
2
ρ0B

2ẋ2

(
δ2

δ2 + x2

)

− p0

(
1

δ2 + x2

)1/2

+ F(x, δ) = 0,

(3.6)

where

F
(
x, δ, α1, α2, μ1, μ2

)
=
∫ (δ2+x2)1/2

x/(1−δ2)1/2
μ1k

−α1 + μ2k
−α2 − μ1k

α1 − μ2k
α2

k(k2 − 1)
dk. (3.7)

4. Nonlinear Dynamic Analyses

Multiplying (3.6) by xẋ, we obtain the following first integral:

U(x, δ)ẋ2 + V
(
x, p0, δ

)
= 0, (4.1)

where

U(x, δ) =
1
4
ρ0B

2x2 ln

(
δ2 + x2

x2

)

,

V
(
x, p0, δ

)
=
∫x

(1−δ2)1/2

(

F(s, δ) − p0

(
1

δ2 + s2

)1/2
)

s ds.

(4.2)
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Figure 1: Curves of P ∼ x for 0 < α1, α2 ≤ 1.

Attentively,U(x, δ) > 0 is valid for any x > (1 − δ2)1/2, which means that (4.1) has real
solutions only when V (x, p0, δ) < 0. However, V (x, p0, δ) < 0 is equivalent to V (x, p0, δ)min <
0. The stationary point of V (x, p0, δ) can be obtained from Vx(x, p0, δ) = 0, this leads to

P =
(
δ2 + x2

)1/2 ∫ (δ2+x2)1/2

x/(1−δ2)1/2
k−α1 + μk−α2 − kα1 − μkα2

k(k2 − 1)
dk

= G
(
x, δ, α1, α2, μ

)
,

(4.3)

where P = p0/μ1, μ = μ2/μ1.
Interestingly, the equilibrium points of (3.6) can be determined by the roots of (4.3).

4.1. Influences of Parameters on the Solution of (3.6)

4.1.1. Influences of Material Parameters

The following conclusions can be obtained from (4.3).

(i) For the given values of μ and δ, if 0 < α1, α2 < 1, there exists a maximum point,
written as (xm, Pm). P increases monotonically as 0 < x < xm and decreases
monotonically as x > xm.

(ii) For the case that α1 = α2 = 1, we have limx→+∞G(x, δ, 1, 1, μ) = (1+μ)(1−(1 − δ2)1/2),
which means (4.3) has a horizontal asymptote, written as Pha = (1 + μ)(1 −
(1 − δ2)1/2). For the given values of μ and δ, curves of P versus x are shown in
Figure 1 for 0 < α1, α2 ≤ 1.
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Figure 2: Curves of P ∼ x for α1, α2 > 1.
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Figure 3: Curves of P ∼ x for α1 > 1, 0 < α2 < 1.

(iii) If α1, α2 > 1, we have limx→+∞G(x, δ, α1, α2, μ) = +∞. P increases strictly with the
increasing x. Particularly, if α1 = α2 = 2, it is easy to prove that there is another
asymptote, written as Pa(x) = −((1+μ)/2) ln(1−δ2)x. For the given values of μ and
δ, Figure 2 shows the relationships of P versus x for α1, α2 > 1.

(iv) For the case that α1 > 1, 0 < α2 < 1 or 0 < α1 < 1, α2 > 1 (here, we only discuss the
case that α1 > 1, 0 < α2 < 1), it can be proved that there exists a critical value of μ,
written as μc, such that P increases monotonically if 0 ≤ μ < μc and has a local max-
imum and a local minimum if μ > μc, written as P1 and P2, respectively. Curves of
P versus x are given in Figure 3 for α1 > 1, 0 < α2 < 1 and for the given values of δ.



Journal of Applied Mathematics 7

0 1 2 3 4 5 6 7

x

P

δ

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

= 0.999

δ = 0.9999

δ = 0.99999

μ = 12, α1 = 1.5, α2 = 0.5

Figure 4: Curves of P ∼ x for different values of δ.

4.1.2. Influence of Structure Parameter

Once the values of α1, α2, and μ are given, the influence of δ on the relationships of P versus
x is shown in Figure 4.

4.2. Number of Equilibrium Points

(1) For the case that 0 < α1, α2 < 1, it can be seen from Figure 1 that there are two
different roots of (4.3) as 0 < P < Pm, written as x1 and x2 (x1 < x2). It means that
(3.6) has two equilibrium points (x1, 0) and (x2, 0); moreover, (x1, 0) is a center and
(x2, 0) is a saddle point.

(2) If α1 = α2 = 1, (3.6) has a unique equilibrium point as 0 ≤ P < Pha, written as (x3, 0);
moreover, (x3, 0) is a center. While P > Pha, (3.6) has no equilibrium point.

(3) For the case that α1, α2 > 1, (3.6) has only one equilibrium point as shown in
Figure 2, written as (x4, 0), and it is also a center.

(4) If α1 > 1, 0 < α2 < 1, from the above analyses we know that P has a local maximum
P1 and a local minimum P2 as μ > μc, where μc is a critical value of μ. Equation
(3.6) has a unique equilibrium point as P > P1 or P < P2, written as (x5, 0), and
it is a center. Equation (3.6) has exactly three equilibrium points as P1 > P > P2,
written as (x6, 0), (x7, 0), and (x8, 0), respectively, where x6 < x7 < x8; moreover,
(x6, 0) and (x8, 0) are centers and (x7, 0) is a saddle point. For the given values of
μ, α1, α2, and δ, the phase diagrams of (4.1) are shown in Figure 5. It is found
that the radial oscillation of the microvoid presents a nonlinear periodic oscillation;
moreover, the amplitude of the oscillation increases gradually as P increases from 0
to Pcr. However, the increase of the amplitude of the nonlinear periodic oscillation
is discontinuous as P passes through Pcr. Another interesting phenomenon occurs
as P = Pcr, namely, the phase diagram is a homoclinic orbit at the moment.
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Figure 5: Phase diagrams for different values of P and for μ = 12, α1 = 1.5, α2 = 0.5, and δ = 0.9999.

5. Conclusions

In this paper, the nonlinear periodic oscillation of a cylindrical microvoid centered at the
isotropic incompressible Ogden cylinder is examined. Some interesting nonlinear dynamic
properties of the mathematical model are obtained. The main conclusions are as follows.

(1) If α1 > 1, 0 < α2 < 1, it is proved that the motion of the microvoid is the
nonlinear periodic oscillation for any given load, but there exist some special
values of material parameters, the phase diagrams of the motion equation have
homoclinic orbits, which means that the amplitude of the nonlinear periodic
oscillation increases discontinuously with the increasing load.

(2) For the case that α1, α2 ≥ 1, the radial oscillation of the microvoid always presents a
nonlinear periodic oscillation.
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