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For 1 ≤ p ≤ ∞ and s > 0, let Λp
s be holomorphic mean Lipschitz spaces on the unit ball in Cn. It

is shown that, if s > n/p, the space Λp
s is a multiplicative algebra. If s > n/p, then the space Λp

s is
not a multiplicative algebra. We give some sufficient conditions for a holomorphic function to be a
pointwise multiplier of Λp

n/p
.

1. Introduction

LetX and Y be two function spaces. We call ϕ a pointwise multiplier fromX to Y if ϕf ∈ Y for
every f ∈ X. The collection of all pointwisemultipliers fromX to Y is denoted byM(X → Y ).
When X = Y , we let M(X) = M(X → X).

Multipliers arise in the theory of differential equations. Coefficients of differential
operators can be naturally considered as multipliers. The same is true for symbols of more
general pseudodifferential operators.

To give some motivations for our study, we recall studies on multipliers of Sobolev
spaces. Strichartz [1] was the first who studied on multipliers of Sobolev spaces. Let Ω be
a bounded domain in R

n with Lipschitz boundary. Let 1 < p < ∞. For s > 0, let Ws,p(Ω)
be the Sobolev spaces over Ω. Given f and g in Ws,p(Ω), one cannot in general expect that
their product fg will belong toWs,p(Ω). However, if s > n/p, then there exists a constant K
depending on s, p, n, and Ω, such that [1–3]

∥
∥fg

∥
∥
Ws,p(Ω) ≤ K

∥
∥f

∥
∥
Ws,p(Ω)

∥
∥g

∥
∥
Ws,p(Ω). (1.1)
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This implies that Ws,p(Ω) ⊂ M(Ws,p(Ω)). Since Ws,p(Ω) contains constant functions,
M(Ws,p(Ω)) ⊂Ws,p(Ω). Thus, we have

M(Ws,p(Ω)) =Ws,p(Ω) if s >
n

p
. (1.2)

In the complex case, multipliers on Hardy-Sobolev spaces on the unit ball in C
n were

studied by [4, 5] for n = 1 and [6] for n ≥ 1. Let B
n = {z ∈ C

n : |z| < 1} denote the open unit
ball in C

n. Let 1 ≤ p <∞ andm be a positive integer. LetHp
m(Bn) be the Hardy-Sobolev space

of orderm. In papers [4–6], it was proved that

M
(

H
p
m(Bn)

)

= Hp
m(Bn) if m >

n

p
. (1.3)

Complete characterization of multipliers on other Hardy-Sobolev spaces of nonregular cases
m ≤ n/p remains open, but Beatrous and Burbea [7] gave some sufficient conditions
for functions to be pointwise multipliers in these nonregular cases. Ortega and Fàbrega
[8] introduced a family of nonisotropic tent-Sobolev spaces to characterize multipliers in
some Hardy-Sobolev spaces of nonregular cases. Usually, characterization of multipliers of
nonregular cases is difficult.

Many authors have studied properties of multipliers for several function spaces (see
[9–12] for Dirichlet-type spaces, [13, 14] for Bloch-type spaces, [4] for Bergman-Sobolev
spaces, [15] for mixed norm spaces, [16] for Qs spaces, [17] for F∞,q

s spaces, and [18] for
the BMO space).

For points z = (z1, . . . , zn) and w = (w1, . . . , wn) in C
n, we write

〈z,w〉 = z1w1 + · · · + znwn, |z| =
√

|z1|2 + · · · + |zn|2. (1.4)

Let S
n = {ζ ∈ C

n : |ζ| = 1} denote the unit sphere in C
n. The normalized Lebesgue measure

on S
n will be denoted by dσ. LetH(Bn) denote the space of all holomorphic functions in B

n.
Given 0 < r < 1, 0 < p <∞, and f ∈ H(Bn), we define

Mp

(

r, f
)

=
[∫

Sn

∣
∣f(rζ)

∣
∣
p
dσ(ζ)

]1/p

. (1.5)

When p = ∞, we write

M∞
(

r, f
)

= sup
{∣
∣f(rζ)

∣
∣ : ζ ∈ S

n}. (1.6)

For 0 < p ≤ ∞, the Hardy spaceHp consists of all functions f ∈ H(Bn) such that

∥
∥f

∥
∥
Hp = sup

0<r<1
Mp

(

r, f
)

<∞. (1.7)

See [19] for basic information about the Hardy spaces.
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We denote by Rf the radial derivative of f inH(Bn) defined by

Rf =
n∑

j=1

zj
∂

∂zj
f. (1.8)

We consider the space Λp
s of holomorphic functions on B

n such that

[∫

Sn

∣
∣Rmf(rζ)

∣
∣
p
dσ

]1/p

� 1
(1 − r)m−s (1.9)

form > s. We define the norm of Λp
s as follows:

∥
∥f

∥
∥
Λp
s
=
∥
∥f

∥
∥
Hp + sup

0<r<1
(1 − r)m−sMp

(

r,Rmf
)

. (1.10)

It can be shown that the norm is independent of the choice of m; see [20]. When p = ∞, this
is exactly the classical holomorphic Lipschitz space Λs; see [19].

We adapt the first orderHp mean variation defined as follows:

ωp

(

t, f
)

= sup

{(∫

Sn

∣
∣f(Uζ) − f(ζ)∣∣pdσ(ζ)

)1/p

: U ∈ U, ‖U − I‖ ≤ t
}

, (1.11)

where U denotes the group of all unitary operators on C
n, I denotes the identity of U, and

‖U − I‖ := supζ∈S|Uζ − ζ|. Then, we have

∥
∥f

∥
∥
Λp
s
≈ ∥
∥f

∥
∥
Hp + sup

0<t<1

ωp

(

t, f
)

ts
(1.12)

for 0 < s < 1 (see [20]). This justifies our usage of the term holomorphic mean Lipschitz space for
Λp
s with 0 < s < 1. Now, for s ≥ 1, we consider the second-order Hp mean variation defined

as follows:

ω∗
p

(

t, f
)

= sup

{(∫

Sn

∣
∣
∣f(Uζ) − 2f(ζ) + f

(

U−1ζ
)∣
∣
∣

p
dσ(ζ)

)1/p

: U ∈ U, ‖U − I‖ ≤ t
}

.

(1.13)

It was shown in [21] that, if 0 < s < 2, 1 ≤ p <∞, and f ∈ Hp, then

∥
∥f

∥
∥
Λp
s
≈ ∥
∥f

∥
∥
Hp + sup

0<t<1

ω∗
p

(

t, f
)

ts
. (1.14)
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Theorem 1.1. Let 1 ≤ p <∞ and s > 0.

(i) If s > n/p (regular), then Λp
s is a multiplicative algebra.

(ii) If s ≤ n/p (nonregular), then Λp
s is not a multiplicative algebra.

By (ii) of Theorem 1.1, the space Λp

n/p
is not a multiplicative algebra. We give some

sufficient conditions for a holomorphic function to be a pointwise multiplier of Λp

n/p
as

follows. We do not know if our sufficient condition is also necessary.

Theorem 1.2. Let 1 ≤ p < q <∞. Then, Λq

n/p
⊂ M(Λp

n/p
).

Throughout the paper, we write X � Y or Y � X for nonnegative quantities X and
Y whenever there is a constant C > 0 (independent of the parameters in X and Y ) such that
X ≤ CY . Similarly, we write X ≈ Y if X � Y and Y � X.

2. Auxiliary Embedding Results

The ball algebra A(Bn) is the class of all functions f : B
n → C that are continuous on the

closed ball B
n
and that are holomorphic in its interior B

n.

Proposition 2.1. Let 1 ≤ p <∞ and s > 0.

(i) There is a function in the ball algebra A(Bn) that is not in Λp
s .

(ii) If s ≤ n/p, then there is a function in Λp
s that is not inH∞.

(iii) If s > n/p, then Λp
s ⊂ Λs−n/p ⊂ A(Bn).

Remark 2.2. By (ii) and (iii), we can see that Λp
s ⊂ H∞ if and only if s > n/p.

Proof. (i) Let (pk) be a sequence of Ryll and Wojtaszczyk [22] homogeneous polynomials in
the unit sphere ofH∞(Bn) such that pk has degree k and

∥
∥pk

∥
∥
H2 ≥

√
π

2n
. (2.1)

Let

f =
∑ 1

k2
p2k . (2.2)

This function was constructed in [7]. In fact, it was shown in [7] that this function is not
contained in any Hardy-Sobolev space. Thus, the result of (i) of Proposition 2.1 follows, since
every mean Lipschitz space is contained in a Hardy-Sobolev space.
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Since the series converges uniformly on B
n
, its sum f is therefore in the ball algebra. It

is enough to prove that f /∈ Λ1
s for 0 < s < 1. If f ∈ Λ1

s, then

∣
∣
∣
∣

∫

Sn

Rf(rζ)p2k(ζ)dσ(ζ)
∣
∣
∣
∣
≤

∫

Sn

∣
∣Rf(rζ)∣∣dσ(ζ)

� 1

(1 − r)1−s
, 0 < r < 1.

(2.3)

However, since the polynomials pk are orthogonal, for any 0 < r < 1,

∣
∣
∣
∣

∫

Sn

Rf(rζ)p2k(ζ)dσ(ζ)
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

Sn

2k

k2
p2k(rζ)p2k(ζ)dσ(ζ)

∣
∣
∣
∣
∣

=
∫

Sn

2k

k2
r2

k ∣
∣p2k(ζ)

∣
∣
2
dσ(ζ)

=
2k

k2
r2

k∥
∥p2k

∥
∥
2
H2

≥ 2k

k2
r2

k π

4n
.

(2.4)

Take

rk = 1 − 1
2k
. (2.5)

Then,

∣
∣
∣
∣

∫

Sn

Rf(rkζ)p2k(ζ)dσ(ζ)
∣
∣
∣
∣
≥ 1

1 − rk
1

(

log2(1/(1 − rk))
)2
r2

k

k

π

4n

=
1

(1 − rk)1−s
ck,

(2.6)

where

ck =
1

(1 − rk)s
1

(

log2(1/(1 − rk))
)2
r2

k

k

π

4n
−→ ∞ as k −→ ∞. (2.7)

By (2.3) and (2.6), it is a contradiction. Thus, f /∈ Λ1
s for 0 < s < 1.

(ii) It is clear, if we consider the function

f(z) = log(1 − 〈z, ζ〉) (2.8)

with ζ ∈ S
n.
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(iii) Let f ∈ Λp
s . Let m be the greatest integer less than s and α = s −m. Let 0 < ρ < 1.

By the Cauchy’s integral formula, we have

Rm+1f
(

ρz
)

=
∫

Sn

Rm+1f
(

ρζ
)

(1 − 〈z, ζ〉)n dσ(ζ), z ∈ B
n. (2.9)

Making a change of variables and replacing ρz by z, we get

Rm+1f(z) = ρ
∫

|ζ|=ρ

Rm+1f(ζ)
(

ρ2 − 〈z, ζ〉)n dσ(ζ), |z| < ρ. (2.10)

By (2.10) and Hölder’s inequality, we have

∣
∣
∣Rm+1f(z)

∣
∣
∣ � Mp

(

ρ,Rm+1f
) 1
(

ρ2 − |z|2
)n/p

. (2.11)

Take ρ = (1 + |z|)/2. Then, we obtain

∣
∣
∣Rm+1f(z)

∣
∣
∣ � Mp

(

ρ,Rm+1f
) 1
(

1 − |z|2
)n/p

� 1
(

1 − ρ)1−α
1

(

1 − |z|2
)n/p

� 1
(

1 − |z|2
)m+1−(s−n/p) .

(2.12)

Therefore, f ∈ Λs−n/p ⊂ A(Bn) if s > n/p.

Proposition 2.3. Let s > 0 and 1 ≤ p, q <∞.

(i) Λp
s ⊂ Hq, 0 ≤ n(1/p − 1/q) < s.

(ii) Λp

n/p
⊂ ⋂

0<q<∞Hq.

Proof. (i) Let 1/2 < r < 1 and α = s − m, where m is the greatest integer less than s. By the
fundamental theorem of calculus and Minkowski’s inequality, we have

Mq

(

r, f
)

� sup
|z|<1/2

∣
∣f(z)

∣
∣ +

∫ r

0
Mq

(

t,Rf)dt. (2.13)
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Applying this repeatedly and using Fubini’s theorem, we obtain

Mq

(

r, f
)

� sup
|z|<1/2

∣
∣f(z)

∣
∣ +

∫ r

0
(r − t)mMq

(

t,Rm+1f
)

dt

� sup
|z|<1/2

∣
∣f(z)

∣
∣ +

∫1

0
(1 − t)mMq

(

t,Rm+1f
)

dt.

(2.14)

Let 0 < ρ < 1. By (2.11), we have

∣
∣
∣Rm+1f(z)

∣
∣
∣ � Mp

(

ρ,Rm+1f
)(

ρ2 − |z|2
)−n/p

, |z| < ρ. (2.15)

For 0 < r < 1, we take ρ = (1 + r)/2. Then,

M∞
(

r,Rm+1f
)

� Mp

(

ρ,Rm+1f
)

(1 − r)−n/p. (2.16)

For q ≥ p, we have

Mq

(

r,Rm+1f
)

=
(∫

S

∣
∣
∣Rm+1f(rζ)

∣
∣
∣

p∣
∣
∣Rm+1f(rζ)

∣
∣
∣

q−p
dσ(ζ)

)1/q

� M∞
(

r,Rm+1f
)1−p/q

Mp

(

r,Rm+1f
)p/q

� Mp

(

ρ,Rm+1f
)1−p/q

(1 − r)−n/p(1−p/q)Mp

(

r,Rm+1f
)p/q

�
∥
∥f

∥
∥
Λp
s
(1 − r)n(1/q−1/p)−1+α.

(2.17)

By (2.14) and (2.17), we have

Mq

(

r, f
)

�
∥
∥f

∥
∥
Λp
s

∫1

0

1

(1 − t)n(1/p−1/q)+1−α−m
dt <∞, (2.18)

since n(1/p − 1/q) + 1 − α −m < s + 1 − α −m = 1. Thus, we get the result.
(ii) If s = n/p in (2.18), then, for any p < q <∞, we have

Mq

(

r, f
)

�
∥
∥f

∥
∥
Λp

n/p

∫ r

0

1

(1 − t)1−n/q
dt

�
∥
∥f

∥
∥
Λp

n/p
.

(2.19)

Remark 2.4. The obvious question: Is Λp

n/p
contained in BMOA? In the case n = 1, this was

proved by Bourdon et al. in [23]. However, their method does not work in higher dimensions.
We have some observations by a Carleson measure. There is a characterization

for BMOA functions by a Carleson measure such that f ∈ BMOA if and only if
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(1 − |z|2)|Rf(z)|2dV (z) is a Carleson measure, where dV is the volume measure on B
n (see

[19]). Even though we cannot prove that (1 − |z|2)|Rf(z)|2dV (z) is a Carleson measure for

f ∈ Λp

n/p
, we have some weak results such that (1 − |z|2)q−1|Rf(z)|qdV (z) is a Carleson

measure for q with max{p, n} < q. For the proof, let f ∈ Λp

n/p
and 1 ≤ p < ∞. By (2.17),

we have Λp

n/p
⊂ Λq

n/q
. This means that

Mq

(

r,Rf) � 1

(1 − r)1−n/q
. (2.20)

Hence, we have

∫

Bn

(

1 − |z|2
)q−1∣

∣Rf(z)∣∣q
(

1 − |a|2
)n

|1 − 〈a, z〉|2n
dV (z)

�
∫1

0
(1 − r)q−1

(

1 − |a|2
)n

(1 − r|a|)2n
M

q
q

(

r,Rf)dr

�
(

1 − |a|2
)n

∫1

0
(1 − r)n−1 1

(1 − r|a|)2n
dr

� 1.

(2.21)

Thus, (1 − |z|2)q−1|Rf(z)|qdV (z) is a Carleson measure (see [19]). However, the embedding
problem Λp

n/p
⊂ BMOA is still open.

3. Regular Cases

We need an elementary variant of Hölder’s inequality.

Lemma 3.1. Let 0 < p, q, δ < ∞ with 1/p = 1/q + 1/δ. Then, for f ∈ Lq and g ∈ Lδ, the product
fg is in Lp and

∥
∥fg

∥
∥
Lp ≤

∥
∥f

∥
∥
Lq

∥
∥g

∥
∥
Lδ . (3.1)

Theorem 3.2. If s > n/p, then Λp
s is a multiplicative algebra.

Proof. Letm be the greatest integer less than s and α = s−m. Let f, g ∈ Λp
s . We will prove that

Mp

(

r,Rm+1(fg
))

� 1

(1 − r)1−α
. (3.2)



Abstract and Applied Analysis 9

We note that

Rm+1(fg
)

=
m+1∑

j=0

cjRjfRm+1−jg. (3.3)

Since s > n/p, by (iii) of Proposition 2.1, we have Λp
s ⊂ A(Bn) ⊂ H∞.

Let 0 ≤ k ≤ m + 1. Then,

M(m+1)p/k

(

r,Rkf
)

≤ C∥∥f∥∥1−k/(m+1)
H∞ Mp

(

r,Rm+1f
)k/(m+1)

, (3.4)

applied to the sphere of radius r (see [24], Theorem 1 on page 69, for such inequalities). Thus,
for 0 ≤ j ≤ m + 1, we have

M(m+1)p/j

(

r,Rjf
)

≤ C∥∥f∥∥1−j/(m+1)
H∞ Mp

(

r,Rm+1f
)j/(m+1)

,

M(m+1)p/(m+1−j)
(

r,Rm+1−jg
)

≤ C∥∥g∥∥1−(m+1−j)/(m+1)
H∞ Mp

(

r,Rm+1g
)(m+1−j)/(m+1)

.

(3.5)

Therefore, by a variant of Hölder’s inequality,

Mp

(

r,Rm+1(fg
))

�
m+1∑

j=0

M(m+1)p/j

(

r,Rjf
)

M(m+1)p/(m+1−j)
(

r,Rm+1−jg
)

�
∥
∥f

∥
∥
1−j/(m+1)
H∞

∥
∥g

∥
∥
1−(m+1−j)/(m+1)
H∞ Mp

(

r,Rm+1f
)j/(m+1)

Mp

(

r,Rm+1g
)(m+1−j)/(m+1)

�
∥
∥f

∥
∥
1−j/(m+1)
H∞

∥
∥g

∥
∥
1−(m+1−j)/(m+1)
H∞

∥
∥f

∥
∥
j/(m+1)

Λp
s

∥
∥g

∥
∥
(m+1−j)/(m+1)

Λp
s

1

(1 − r)1−α

�
∥
∥f

∥
∥
Λp
s

∥
∥g

∥
∥
Λp
s

1

(1 − r)1−α
.

(3.6)

That is,

∥
∥fg

∥
∥
Λp
s
�

∥
∥f

∥
∥
Λp
s

∥
∥g

∥
∥
Λp
s
. (3.7)

4. Nonregular Cases

A function ϕ is a multiplier for Λp
s if the multiplication operator Mϕf = ϕf is continuous

from Λp
s to itself. The space of those multipliers will be denoted by M(Λp

s).
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Let ϕ ∈ M(Λp
s). Since 1 ∈ Λp

s , we have ϕ = ϕ · 1 ∈ Λp
s . Thus,

M
(

Λp
s

)

⊂ Λp
s . (4.1)

Hence,

M
(

Λp
s

)

⊂ H(Bn). (4.2)

The following is a special case of Lemma 5.1 in [7].

Lemma 4.1 (see [7]). Let s > 0. Then, ϕ ∈ M(Λp
s) is bounded pointwise by its multiplier norm.

Corollary 4.2. Let s > 0. Then, we have

M
(

Λp
s

)

� H∞. (4.3)

Proof. Let ϕ ∈ M(Λp
s). Since 1 ∈ Λp

s , we have ϕ = ϕ · 1 ∈ Λp
s . Thus,

M
(

Λp
s

)

⊂ Λp
s . (4.4)

Hence,

M
(

Λp
s

)

⊂ H(Bn). (4.5)

Thus, by Lemma 4.1, we get M(Λp
s) ⊂ H∞. By (i) of Proposition 2.1, there is a function ψ ∈

A(Bn) \ Λp
s ⊂ H∞ \ Λp

s . Since M(Λp
s) ⊂ Λp

s , it follows that ψ /∈ M(Λp
s). Thus, we get the

result.

Theorem 4.3. Let 0 < s ≤ n/p. Then, Λp
s is not a multiplicative algebra.

Proof. If Λp
s is multiplicative, then

Λp
s = M

(

Λp
s

)

� H∞. (4.6)

By (ii) of Proposition 2.1, this is a contradiction.

5. Some Sufficient Conditions for a Nonregular Case

Lemma 5.1. Let f ∈ Λp
s . Letm be the integer part of s and α = s−m. Let 0 < r < 1. Then, for q > p,

we have

Mq

(

r,Rm+1f
)

�
∥
∥f

∥
∥
Λp
s
(1 − r)n(1/q−1/p)−1+α. (5.1)
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Proof. We proved this inequality at (2.17) in the proof of (i) of Proposition 2.3.

Lemma 5.2. Let 0 ≤ l < k and 1/2 < r < 1. Then, we have

Mp

(

r,Rlf
)

� sup
|z|<1/2

∣
∣f(z)

∣
∣ +

∫ r

0
(r − t)k−l−1Mp

(

t,Rkf
)

dt. (5.2)

Proof. We proved this inequality at (2.14) in the proof of (i) of Proposition 2.3.

Theorem 5.3. Let 1 ≤ p < q <∞. Then, Λq

n/p
⊂ M(Λp

n/p
).

Proof. Let ϕ ∈ Λq

n/p
and f ∈ Λp

n/p
. Let m be the integer part of n/p and α = n/p − m. It is

enough to prove that

Mp

(

r,Rm+1(ϕf
))

� 1

(1 − r)1−α
, 0 < r < 1. (5.3)

We note that

Rm+1(ϕf
)

=
m+1∑

j=0

cj
(

Rjϕ
)(

Rm+1−jf
)

. (5.4)

Thus,

Mp

(

r,Rm+1(ϕf
))

�
m+1∑

j=0

Mp

(

r,
(

Rjϕ
)(

Rm+1−jf
))

. (5.5)

Letm = 0. Then,

Mp

(

r,R(ϕf)) ≤Mp

(

r,
(Rϕ)f) +Mp

(

r, ϕ
(Rf)). (5.6)

By Proposition 2.1, we have

ϕ ∈ Λq

n/p ⊂ Λn/p−n/q ⊂ H∞,

f ∈ Λp

n/p
⊂
⋂

δ>0

Hδ.
(5.7)
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Choose δ > 1 with 1/p = 1/q + 1/δ. Then,

Mp

(

r,
(Rϕ)f) ≤Mq

(

r,Rϕ)Mδ

(

r, f
)

� Mq

(

r,Rϕ)∥∥f∥∥Hδ

� Mq

(

r,Rϕ)∥∥f∥∥Λp

n/p

�
∥
∥ϕ

∥
∥
Λq

n/p

∥
∥f

∥
∥
Λp

n/p

1

(1 − r)1−α
.

(5.8)

Also,

Mp

(

r, ϕ
(Rf)) �

∥
∥ϕ

∥
∥
H∞Mp

(

r,Rf)

�
∥
∥ϕ

∥
∥
H∞

∥
∥f

∥
∥
Λp

n/p

1

(1 − r)1−α
.

(5.9)

Thus,

∥
∥ϕf

∥
∥
Λp

n/p
�

∥
∥ϕ

∥
∥
Λq

n/p

∥
∥f

∥
∥
Λp

n/p
. (5.10)

Now, letm ≥ 1.
If j = 0, then, since ϕ ∈ H∞ and f ∈ Λp

n/p,

Mp

(

r, ϕRm+1f
)

�
∥
∥ϕ

∥
∥
H∞Mp

(

r,Rm+1f
)

�
∥
∥ϕ

∥
∥
H∞

∥
∥f

∥
∥
Λp

n/p

1

(1 − r)1−α
.

(5.11)

If j = m + 1, we choose δ > p such that

1
p
=

1
q
+
1
δ
. (5.12)

Then,

Mp

(

r,
(

Rm+1ϕ
)

f
)

≤Mq

(

r,Rm+1ϕ
)

Mδ

(

r, f
)

. (5.13)
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By (ii) of Proposition 2.3, Λp

n/p ⊂
⋂

δ>0H
δ. By a variant of Hölder’s inequality, we have

Mp

(

r,
(

Rm+1ϕ
)

f
)

� Mq

(

r,Rm+1ϕ
)∥
∥f

∥
∥
Hδ

� Mq

(

r,Rm+1ϕ
)∥
∥f

∥
∥
Λp

n/p

�
∥
∥ϕ

∥
∥
Λq

n/p

∥
∥f

∥
∥
Λp

n/p

1

(1 − r)1−α
.

(5.14)

Now, we consider the case 1 ≤ j ≤ m. Since Λq

n/p
is decreasing in the parameter q, it is

enough to consider for q sufficiently near p so that j > n/p − n/q. We choose μj > 0 such that

n

μj
= j −

(
n

p
− n

q

)

. (5.15)

Then,

n

(

1
q
− 1
μj

)

=
n

p
− j > 0. (5.16)

Since p < q < μj , we can choose δj > 0 such that

1
p
=

1
μj

+
1
δj
, j = 1, 2, . . . , m. (5.17)

By a variant of Hölder’s inequality, we have

Mp

(

r,
(

Rjϕ
)(

Rm+1−jf
))

≤Mμj

(

r,Rjϕ
)

Mδj

(

r,Rm+1−jf
)

. (5.18)

By Lemmas 5.2 and 5.1,

Mμj

(

r,Rjϕ
)

� sup
|z|<1/2

∣
∣ϕ(z)

∣
∣ +

∫ r

0
(r − t)m−jMμj

(

t,Rm+1ϕ
)

dt

�
∥
∥ϕ

∥
∥
Λq
s

∫ r

0

(r − t)m−j

(1 − t)n(1/q−1/μj )+1−α
dt.

(5.19)

Here,

∫ r

0

(r − t)m−j

(1 − t)n(1/q−1/μj )+1−α
dt �

∫ r

0

1
1 − tdt � log

(
1

1 − r
)

. (5.20)
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Moreover, by Lemmas 5.2 and 5.1 again, we have

Mδj

(

r,Rm+1−jf
)

� sup
|z|<1/2

∣
∣f(z)

∣
∣ +

∫ r

0
(r − t)j−1Mδj

(

t,Rm+1f
)

dt

�
∥
∥f

∥
∥
Λp

n/p

∫ r

0

(r − t)j−1
(1 − t)n(1/p−1/δj )+1−α

dt

�
∥
∥f

∥
∥
Λp

n/p

1

(1 − r)1−α−(n/p−n/q)
.

(5.21)

Thus, it follows that

Mp

(

r,
(

Rjϕ
)(

Rm+1−jf
))

�
∥
∥ϕ

∥
∥
Λp

n/p

∥
∥f

∥
∥
Λp

n/p

1

(1 − r)1−α
cr , (5.22)

where

cr = log
(

1
1 − r

)

(1 − r)n/p−n/q −→ 0 as r −→ 1. (5.23)

Thus,

Mp

(

r,
(

Rjϕ
)(

Rm+1−jf
))

� 1

(1 − r)1−α
. (5.24)

This completes the proof.
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