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We apply an exponential time integration scheme combined with a central difference scheme on a
piecewise uniformmeshwith respect to the spatial variable to evaluate a generalized Black-Scholes
equation. We show that the scheme is second-order convergent for both time and spatial variables.
It is proved that the scheme is unconditionally stable. Numerical results support the theoretical
results.

1. Introduction

The pricing and hedging of derivative securities, also known as contingent claims, is a subject
of much practical importance. One basic type of derivative is an option. The owner of a
call option has the right but not the obligation to purchase an underlying asset (such as a
stock) for a specified price (called the exercise price or strike price) on or before a expiry
date. A put option is similar except the owner of such a contract has the right but not
the obligation to sell. Options which can be exercised only on the expiry date are called
European, whereas options which can be exercised any time up to and including the expiry
date are classified as American. It was shown by Black and Scholes [1] that these option
prices satisfy a second-order partial differential equation with respect to the time horizon t
and the underlying asset price x. This equation is now known as the Black-Scholes equation
and can be solved exactly when the coefficients are constant or space-independent. However,
in many practical situations, numerical solutions are normally sought. Therefore, efficient
and accurate numerical algorithms are essential for solving this problem accurately.

The Black-Scholes differential operator at x = 0 is degenerate. A common and widely
used approach by many authors dealing with finite difference/volume/element methods for
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the Black-Scholes equation is to apply an Euler transformation to remove the degeneracy
of the differential operator when the parameters of the Black-Scholes equation are constant
or space independent, see for example [2–7]. As a result of the Euler transformation, the
transformed interval becomes (−∞,∞). However, the truncation on the left-hand side of the
domain to artificially remove the degeneracy may cause computational errors. Furthermore,
the uniform mesh on the transformed interval will lead to the originally grid points
concentrating around x = 0 inappropriately. Moreover, when a problem is space-dependent,
this transformation is impossible, and thus the Black-Scholes equation in the original form
needs to be solved.

It is well known that when using the standard finite difference method to solve those
problems involving the convection-diffusion operator, such as the Black-Scholes differential
operator, numerical difficulty can be caused. The main reason is that when the volatility
or the asset price is small, the Black-Scholes differential operator becomes a convection-
dominated operator. Hence, the implicit Euler scheme with central spatial difference method
may lead to nonphysical oscillations in the computed solution. The implicit Euler scheme
with upwind spatial difference method does not have this disadvantage, but this difference
scheme is only first-order convergent [8]. Recently, a stable fitted finite volume method [9]
is employed for the discretization of the Black-Scholes equation. But it is also first-order
convergent. In [10, 11] numerical methods of option pricing models are studied by applying
a standard finite volume method to obtain a difference scheme. Their numerical schemes use
central difference for a given mesh, but switch to upstream weighting for a small number
of nodes, which are second-order spatial convergent. In this paper we change the grid
spacing to a piecewise uniform mesh which is constructed so that central difference is used
everywhere.

For time discretization, explicit schemes are easy to implement but suffer from stability
problems. Somewell-known second-order implicit schemes, such as Crank-Nicolsonmethod,
are prone to spurious oscillations unless the time step size is no more than twice the
maximum time step size for an explicit method (see Zvan et al. [10, 11]). Although the
fully implicit backward Euler method may be used to accurately solve the Black-Scholes PDE
due to its strong stability properties, it is only first-order accurate in time. Exponential time
integration has gained importance following the work of Cox and Matthews [12] and with
recent developments in efficient methods for computing the matrix exponential [13–16], this
time evolution method is likely to be a popular choice for solving large semidiscrete systems
arising in various numerical computations.

In [17, 18], we have presented robust difference schemes for the Black-Scholes
equation, which is based on the implicit Euler method for time discretization and a central
difference method for spatial discretization. In this paper, we apply an exponential time
integration scheme combined with a central difference scheme on a piecewise uniform mesh
with respect to the spatial variable. We show that our scheme is second-order convergent for
both time and spatial variables, while in [17, 18] the convergence for the time variable is only
first order. It is proved that the scheme is unconditionally stable. Numerical results support
this conclusion.

The rest of the paper is organized as follows. In the next section we discuss the
continuous model of the Black-Scholes equations. The discretization method is described
in Section 3. It is shown that the finite difference scheme is second-order convergent with
respect to both spatial and time variables. In Section 4 we prove that the difference scheme is
unconditionally stable. Finally numerical examples are presented in Section 5.



Journal of Applied Mathematics 3

2. The Continuous Problem

We consider the following generalized Black-Scholes equation

∂v

∂t
− 1
2
σ2(x, t)x2 ∂

2v

∂x2
− r(t)x

∂v

∂x
+ r(t)v = 0, (x, t) ∈ R

+ × (0, T), (2.1)

v(x, 0) = max(x −K, 0), x ∈ R
+, (2.2)

v(0, t) = 0, t ∈ [0, T]. (2.3)

Here v(x, t) is the European call option price at asset price x and at time to maturity t, K is
the exercise price, T is the maturity, r(t) is the risk-free interest rate, and σ(x, t) represents the
volatility function of underlying asset. Here we assume that σ2 ≥ α > 0, β∗ ≥ r ≥ β > 0. When
σ and r are constant functions, it becomes the classical Black-Scholes model.

Even though as x goes to zero the generalized Black-Scholes operator (2.1) is
degenerate, the existence and uniqueness of a solution of (2.1)–(2.3) is well known. Due to
the fact that the initial condition is not smooth, the finite difference scheme may not converge
to the exact solution.

We first modify the model as follows. Define πε(y) as

πε

(
y
)
=

⎧
⎪⎪⎨

⎪⎪⎩

y, y ≥ ε,

c0 + c1y + · · · + c9y
9, −ε < y < ε,

0, y ≤ −ε,
(2.4)

where 0 < ε � 1 is a transition parameter and πε(y) is a function which smooths out the
original max(y, 0) around y = 0. This requires that πε(y) satisfies

πε(−ε) = π ′
ε(−ε) = π ′′

ε (−ε) = π ′′′
ε (−ε) = π

(4)
ε (−ε) = 0,

πε(ε) = ε, π ′
ε(ε) = 1, π ′′

ε (ε) = π ′′′
ε (ε) = π

(4)
ε (ε) = 0.

(2.5)

Using these ten conditions we can easily find that

c0 =
35
256

ε, c1 =
1
2
, c2 =

35
64ε

, c4 = − 35
128ε3

,

c6 =
7

64ε5
, c8 = − 5

256ε7
, c3 = c5 = c7 = c9 = 0.

(2.6)

Replacing max(x − K, 0) in the initial condition (2.2) by the fourth-order smooth function
πε(x −K) we obtain

∂w

∂t
− 1
2
σ2(x, t)x2 ∂

2w

∂x2
− r(t)x

∂w

∂x
+ r(t)w = 0, (x, t) ∈ R

+ × (0, T), (2.7)

w(x, 0) = πε(x −K), x ∈ R
+, (2.8)

w(0, t) = 0, t ∈ [0, T]. (2.9)
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The existence and uniqueness of a solution of (2.7)–(2.9) can be found in [19], which also
gives the following result: for (x, t) ∈ [0,+∞) × [0, T],

|w(x, t) − v(x, t)| ≤ C‖πε(x −K) −max(x −K, 0)‖L∞ , (2.10)

where C is a positive constant.
In order to apply the numerical method we need to truncate the infinite domain

[0,+∞) × [0, T] into Ω = [0, Smax] × [0, T], where Smax is suitably chosen positive number.
Based onWilmott et al.’s estimate [20] that the upper bound of the asset price Smax is typically
three or four times the strike price, it is reasonable for us to set Smax = 4K. Thus we consider
the following problem:

∂u

∂t
− 1
2
σ2(x, t)x2 ∂

2u

∂x2
− r(t)x

∂u

∂x
+ r(t)u = 0, (x, t) ∈ Ω, (2.11)

u(x, 0) = πε(x −K), x ∈ [0, Smax], (2.12)

u(0, t) = 0, t ∈ [0, T], (2.13)

u(Smax, t) = Smax −Ke−
∫T
T−t r(s)ds, t ∈ [0, T]. (2.14)

The existence and uniqueness of a solution of (2.11)–(2.14) can be also found in [19], which
also gives the following result:

|u(x, t) −w(x, t)| ≤ K exp

(

− [ln(Smax/x)]
2

2
[
minΩσ

2
]
(T − t)

)

, (x, t) ∈ Ω. (2.15)

It follows from (2.10) and (2.15) that we can make the solution of our modified model (2.11)–
(2.14) close to that of the original model (2.1)–(2.3) by choosing sufficiently small ε and
sufficiently large Smax. In the remaining of this paper we will consider the model (2.11)–
(2.14).

3. Discretization Scheme

The exponential time differencing scheme is an approach used for the numerical solution of
a wide range of PDEs that involve spatial variables as well as a time variable. The spatial
discretization results in an approximating system of ODEs. For an inhomogeneous linear
PDE, this method leads to an inhomogeneous linear system of ODEs in time whose solution
satisfies a two-term recurrence relation involving the matrix exponential, where the matrix
is determined by the form of spatial discretization applied such as finite difference, finite
element, or spectral approach. In this paper we use a central difference scheme on a piecewise
uniform mesh for approximating the spatial derivatives.
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The use of central difference scheme on the uniform mesh may produces nonphysical
oscillations in the computed solution. To overcome this oscillation we use a piecewise
uniform mesh ΩN+1 on the space interval [0, Smax]:

xi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h i = 1,

h

[
1 +

α

β∗
(i − 1)

]
i = 2, . . . ,

N

4
− 1,

K i =
N

4
,

K + ε i =
N

4
+ 1,

K + ε +
Smax −K − ε

3N/4 − 1
(I −N/4 − 1) i =

N

4
+ 2, . . . ,N,

(3.1)

where

h =
K − ε

1 +
(
α/β∗

)
(N/4 − 2)

. (3.2)

Here we have used a refined mesh at the region near x = K for treating the nonsmoothness
of the payoff function. It is easy to see that the mesh sizes hi = xi − xi−1 satisfy

hi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h i = 1,
α

β∗
h i = 2, . . . ,

N

4
− 1,

ε i =
N

4
,
N

4
+ 1,

Smax −K − ε

3N/4 − 1
i =

N

4
+ 2, . . . ,N.

(3.3)

We discretize the generalized Black-Scholes operator using a central difference scheme
on the above piecewise uniform mesh:

LNUi(t) =
dUi(t)
dt

− σ2
i (t)x

2
i

hi + hi+1

(
Ui+1(t) −Ui(t)

hi+1
− Ui(t) −Ui−1(t)

hi

)

− r(t)xi
Ui+1(t) −Ui−1(t)

hi + hi+1
+ r(t)Ui(t)

(3.4)

for i = 1, . . . ,N − 1. This discretization leads to an initial value problem of the form

dU
dt

= A(t)U(t) + f(t), U(0) = πε(x −K), (3.5)
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where U(t) = (U1(t), . . . , UN−1(t))
T , the matrix A(t) of order (N − 1) is given by

A(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 c1 · · · 0

a2 b2 c2 · · · ...
... a3 b3 c3 · · ·

...
...

...
...

...
· · · aN−2 bN−2 cN−2

0 · · · aN−1 bN−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.6)

with

ai(t) =
σ2
i (t)x

2
i

(hi + hi+1)hi
− r(t)xi

hi + hi+1
, bi(t) = −σ

2
i (t)x

2
i

hihi+1
− r(t),

ci(t) =
σ2
i (t)x

2
i

(hi + hi+1)hi+1
+

r(t)xi

hi + hi+1
for i = 1, . . . ,N − 1.

(3.7)

The vectors f(t) and πε(x −K) are the corresponding boundary and initial conditions:

f(t) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

a1U0(t)
0
...
0

cN−1UN(t)

⎞

⎟⎟⎟⎟⎟⎟
⎠

, πε(x −K) =

⎛

⎜⎜⎜
⎝

πε(x1 −K)
πε(x2 −K)

...
πε(xN−1 −K)

⎞

⎟⎟⎟
⎠

. (3.8)

Lemma 3.1. For each t the matrix A(t) is strictly diagonally dominant.

Proof. It is easy to see that

ai(t) >
σ2
i (t)x1xi

(hi + hi+1)hi
− r(t)xi

hi + hi+1
≥

(
αx1 − β∗hi

)
xi

(hi + hi+1)hi

=

(−αh + β∗
(
α/β∗

)
h
)
xi

(hi + hi+1)hi
= 0, 2 ≤ i <

N

4

ai(t) ≥
(
αxi − β∗hi

)
xi

(hi + hi+1)hi
> 0,

N

4
≤ i ≤ N − 1

, (3.9)

for sufficiently large N. Clearly,

bi(t) < 0 for 1 ≤ i ≤ N − 1, ci(t) > 0 for 1 ≤ i ≤ N − 2,

b1(t) + c1(t) < 0,

ai(t) + bi(t) + ci(t) < 0, 2 ≤ i ≤ N − 2,

aN−1(t) + bN−1(t) < 0.

(3.10)

Hence we verify that the matrix A(t) is strictly diagonally dominant.
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Solving the system of (3.5) gives

U(t) = e
∫ t
0 A(s)ds

[

U(0) +
∫ t

0
e−

∫s
0 A(y)dyf(s)ds

]

, (3.11)

which satisfies the following recurrence relation:

U(t + l) = e
∫ t+l
t A(s)ds

[

U(t) +
∫ t+l

t

e−
∫s
t A(y)dyf(s)ds

]

, t = 0, l, 2l, . . . , (3.12)

in which l is a constant time step in the discretization of the time variable t ≥ 0, at the points
tj = jl (j = 0, 1, 2, . . . ,M).

Using a numerical integration rule for evaluating the quadrature in (3.12) gives the
following second-order formula:

U(t + l) ≈ elA(t)

[

U(t) +
∫ t+l

t

e−(s−t)A(t)f(s)ds

]

= elA(t)U(t) +
∫ t+l

t

e(t+l−s)A(t)f(s)ds

≈ elA(t)U(t) +
∫ t+l

t

e(t+l−s)A(t)
[
l−1(t + l − s)f(t) + l−1(s − t)f(t + l)

]
ds

= elA(t)U(t) + (lA(t))−1
[
lelA(t) +A−1(t) −A−1(t)elA(t)

]
f(t)

+ (lA(t))−1
[
A−1(t)elA(t) − lI −A−1(t)

]
f(t + l), t = 0, l, 2l, . . . .

(3.13)

Now the problem is how to approximate elA(t) to get numerical solution. A good
approximation to ez is the (b, d) Padé approximation which has the form [21, 22]

ez ≈ Rb,d(z) =
Pd(z)
Qb(z)

, (3.14)

where Pd(z) and Qb(z) are the polynomials of degrees d and b, respectively, with real
coefficients, in each of which the constant term is unity.

The numerical method to be employed here is based on the use of the following
second-order rational approximation:

ez ≈ 1 + (1 − c)z
1 − cz + (c − 1/2)z2

. (3.15)
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So we have

R(lA(t)) =
[
I − clA(t) +

(
c − 1

2

)
l2A2(t)

]−1
[I + (1 − c)lA(t)], (3.16)

for the matrix exponentials in our recurrence relation (3.13).
Using (3.13) and (3.16) we get

U(t + l) = R(lA(t))U(t) +
l

2
[V (lA(t))f(t) +W(lA(t))f(t + l)] (3.17)

for t = 0, l, 2l, . . . ,M, where

V (lA(t)) =
[
I − clA(t) +

(
c − 1

2

)
l2A2(t)

]−1
,

W(lA(t)) =
[
I − clA(t) +

(
c − 1

2

)
l2A2(t)

]−1[
I − 2

(
c − 1

2

)
lA(t)

]
.

(3.18)

It can be seen that the truncation error of the difference scheme (3.17) with 1/2 < c <
2 − √

2 is O(h2 + l2) (see [21], e.g.).

4. Stability Analysis

Lemma 4.1. For each t the real part of each nonzero eigenvalue of A(t) is negative.

Proof. From Lemma 3.1 we can obtain that for each t the matrix −A(t) is an M-matrix, thus
the real part of each nonzero eigenvalue of −A(t) is positive (see [23, Theorem 3.1]). Hence
the real part of each nonzero eigenvalue of A(t) is negative.

Theorem 4.2. The difference scheme (3.17) is unconditionally stable.

Proof. Let λi (i = 1, 2, . . . ,N − 1) be eigenvalues of matrix A(t) for a fixed t, then

1 + (1 − c)lλi
1 − clλi + (c − 1/2)l2λ2i

(4.1)

are eigenvalues of matrix

[
I − clA(t) +

(
c − 1

2

)
l2A2(t)

]−1
[I + (1 − c)lA(t)]. (4.2)

Let λi is the conjugate complex of λi. It is easy to check

[1 + (1 − c)lλi] ·
[
1 + (1 − c)lλi

]
−
[
1 − clλi +

(
c − 1

2

)
l2λ2i

]
·
[
1 − clλi +

(
c − 1

2

)
l2λ

2
i

]
< 0,

(4.3)
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Figure 1: Computed option value U for Test 1.

where we have used Lemma 4.1. Hence we have

∣∣∣∣∣
1 + (1 − c)lλi

1 − clλi + (c − 1/2)l2λ2i

∣∣∣∣∣
< 1. (4.4)

From this we complete the proof.

5. Numerical Experiments

In this section we verify experimentally the theoretical results obtained in the preceding
section. Errors and convergence rates for the numerical scheme are presented for two test
problems.

Test 1. European call option with parameters: σ = 0.2 + 0.2(1 − t)((x/25 − 1.2)2/((x/25)2 +
1.44))) , r = 0.06, T = 1, K = 25 and Smax = 100.

Test 2. European call option with parameters: σ = 0.2[1+0.1(1− t)(x/(1+x))], r = 0.06, T = 1,
K = 25 and Smax = 100.

For Tests 1 and 2 we choose ε = 0.0001, c = (5/2−√2)/2 of the rational approximation
(3.17). The computed option value U with N = M = 64 are depicted in Figures 1 and 2,
respectively.

The exact solutions of our test problems are not available. We use the approximated
solution obtained by the implicit Euler method in [17] with N = 2048, M = 2048 as the exact
solution since we know this method converges. Because we only know ”the exact solution”
on mesh points, we use the linear interpolation to get solutions at other points. In this paper
U(x, t) denotes “the exact solution” which is a linear interpolation of the approximated
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Figure 2: Computed option value U for Test 2.

Table 1: Numerical results for Test 1.

M N
Exponential method Implicit Euler method

Error eN,M Rate rN,M Error eN,M Rate rN,M

16 64 1.2535e − 1 — 1.7817e − 1 —
32 128 2.9268e − 2 2.099 8.9567e − 2 0.992
64 256 1.5725e − 2 0.896 4.6822e − 2 0.936

solution U2048,2048 obtained by the implicit Euler method. We measure the accuracy in the
discrete maximum norm

eN,M = max
i,j

∣∣∣UN,M
ij −U

(
xi, tj

)∣∣∣, (5.1)

and the convergence rate

rN,M = log2

(
eN,M

e2N,2M

)

(5.2)

for the exponential time integration method and the implicit Euler method in [17]. The
error estimates and convergence rates in our computed solutions of Tests 1 and 2 from both
methods are listed in Tables 1 and 2, respectively.

From the figures it is seen that the numerical solutions by our method are
nonoscillatory. We compare the accuracy of the exponential time integration method with
the implicit Euler method in [17]. From Tables 1 and 2 we can see the exponential time
integration method converges more rapidly than the implicit Euler method in [17], but for
the same M and N the exponential time integration method require more computer time
than the implicit Euler method. We also can see that rN,M of the exponential time integration
method is close to 2, even though this rate is not reached for largeM andN, the reason is that
the “exact solution” is not really the exact solution. Therefore the numerical results support
the convergence estimate of Theorem 4.2.
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Table 2: Numerical results for Test 2.

M N
Exponential method Implicit Euler method

Error eN,M Rate rN,M Error eN,M Rate rN,M

16 64 1.0716e − 1 — 1.7428e − 1 —
32 128 2.4716e − 2 2.116 8.9504e − 2 0.961
64 256 1.5810e − 2 0.645 4.7780e − 2 0.906
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