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We introduce an implicit and explicit iterative schemes for a finite family of nonexpansive semi-
groups with the Meir-Keeler-type contraction in a Banach space. Then we prove the strong conver-
gence for the implicit and explicit iterative schemes. Our results extend and improve some recent
ones in literatures.

1. Introduction

Let C be a nonempty subset of a Banach space E and T : C → C be a mapping. We call T
nonexpansive if ‖Tx − Ty‖ ≤ ‖x −y‖ for all x, y ∈ E. The set of all fixed points of T is denoted
by Fix(T), that is, Fix(T) = {x ∈ C : x = Tx}.

One parameter family T = {T(t) : t ≥ 0} is said to a semigroup of nonexpansive map-
pings or nonexpansive semigroup on C if the following conditions are satisfied:

(1) T(0)x = x for all x ∈ C;

(2) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(3) for each t ≥ 0, ‖T(t)x − T(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C;

(4) for each x ∈ C, the mapping T(·)x from R
+, where R

+ denotes the set of all nonne-
gative reals, into C is continuous.
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We denote by Fix(T) the set of all common fixed points of semigroup T, that is,
Fix(T) = {x ∈ C : T(t)x = x, 0 ≤ t <∞} and N by the set of natural numbers.

Now, we recall some recent work on nonexpansive semigroup in literatures. In [1],
Shioji and Takahashi introduced the following implicit iteration for a nonexpansive semi-
group in a Hilbert space:

xn = αnx + (1 − αn)
1
tn

∫ tn
0
T(s)xnds, ∀n ∈ N, (1.1)

where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞). Under the certain conditions on {αn} and {tn}, they
proved that the sequence {xn} defined by (1.1) converges strongly to an element in Fix(T).

In [2], Suzuki introduced the following implicit iteration for a nonexpansive semi-
group in a Hilbert space:

xn = αnu + (1 − αn)T(tn)xn, ∀n ∈ N, (1.2)

where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞). Under the conditions that limn→∞tn = limn→∞αn/tn =
0, he proved that {xn} defined by (1.2) converges strongly to an element of Fix(T). Later on,
Xu [3] extended the iteration (1.2) to a uniformly convex Banach space that admits a weakly
sequentially continuous duality mapping. Song and Xu [4] also extended the iteration (1.2)
to a reflexive and strictly convex Banach space.

In 2007, Chen and He [5] studied the following implicit and explicit viscosity ap-
proximation processes for a nonexpansive semigroup in a reflexive Banach space admitting
a weakly sequentially continuous duality mapping:

xn = αnf(xn) + (1 − αn)T(tn)xn,

yn+1 = βnf
(
yn
)
+
(
1 − βn

)
T(tn)yn, ∀n ∈ N,

(1.3)

where f is a contraction, {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞). They proved the strong convergence
for the above iterations under some certain conditions on the control sequences.

Recently, Chen et al. [6] introduced the following implicit and explicit iterations for
nonexpansive semigroups in a reflexive Banach space admitting a weakly sequentially con-
tinuous duality mapping:

yn = αnxn + (1 − αn)T(tn)xn,
xn = βnf(xn) +

(
1 − βn

)
yn, ∀n ∈ N,

(1.4)

yn = αnxn + (1 − αn)T(tn)xn,
xn+1 = βnf(xn) +

(
1 − βn

)
yn, ∀n ∈ N,

(1.5)

where f is a contraction, {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞). They proved that {xn} defined by
(1.4) and (1.5) converges strongly to an element q of Fix(T), which is the unique solution of
the following variation inequality problem:

〈(
f − I

)
, j
(
x − q

)〉
≤ 0, ∀x ∈ Fix(T). (1.6)
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For more convergence theorems on implicit and explicit iterations for nonexpansive
semigroups, refer to [7–13].

In this paper, we introduce an implicit and explicit iterative process by a generalized
contraction for a finite family of nonexpansive semigroups in a Banach space. Then we prove
the strong convergence for the iterations and our results extend the corresponding ones of
Suzuki [2], Xu [3], Chen and He [5], and Chen et al. [6].

2. Preliminaries

Let E be a Banach space and E∗ the duality space of E. We denote the normalized mapping
from E to 2E

∗
by J defined by

J(x) =
{
j ∈ E∗ :

〈
x, jx

〉
= ‖x‖2 =

∥∥j∥∥}, ∀x ∈ E, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. For any x, y ∈ E with j(x) ∈ J(x) and
j(x + y) ∈ J(x + y), it is well known that the following inequality holds:

‖x‖2 + 2
〈
y, j(x)

〉
≤
∥∥x + y

∥∥2 ≤ ‖x‖2 + 2
〈
y, j
(
x + y

)〉
. (2.2)

The dual mapping J is called weakly sequentially continuous if J is single valued, and
{xn} ⇀ x ∈ E, where⇀ denotes the weak convergence, then J(xn) weakly star converges to
J(x) [14–16]. A Banach space E is called to satisfy Opial’s condition [17] if for any sequence
{xn} in E, xn ⇀ x,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥xn − y∥∥, ∀y ∈ E with x /=y. (2.3)

It is known that if E admits a weakly sequentially continuous duality mapping J , then E is
smooth and satisfies Opial’s condition [14].

A function ψ : R
+ → R

+ is said to be an L-function if ψ(0) = 0, ψ(t) > 0 for any t > 0,
and for every t > 0 and s > 0, there exists u > s such that ψ(t) ≤ s, for all t ∈ [s, u]. This im-
plies that ψ(t) < t for all t > 0.

Let f : C → C be a mapping. f is said to be a (ψ, L)-contraction if there exists a L-func-
tion ψ : R

+ → R
+ such that ‖f(x) − f(y)‖ < ψ(‖x − y‖) for all x, y ∈ C with x /=y. Obviously,

if ψ(t) = kt for all t > 0, where k ∈ (0, 1), then f is a contraction. f is called a Meir-Keeler-type
mapping if for each ε > 0, there exists δ(ε) > 0 such that for all x, y ∈ C, if ε < ‖x − y‖ < ε + δ,
then ‖f(x) − f(y)‖ < ε.

In this paper, we always assume that ψ(t) is continuous, strictly increasing and
limt→∞η(t) = ∞, where η(t) = t − ψ(t), is strictly increasing and onto.

The following lemmas will be used in next section.

Lemma 2.1 (see [18]). Let (X, d) be a metric space and f : X → X be a mapping. The following
assertions are equivalent:

(i) f is a Meir-Keeler-type mapping,

(ii) there exists an L-function ψ : R
+ → R

+ such that f is a (ψ, L)-contraction.
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Lemma 2.2 (see [19]). Let E be a Banach space and C be a convex subset of E. Let T : C → C be a
nonexpansive mapping and f be a (ψ, L)-contraction. Then the following assertions hold:

(i) T ◦ f is a (ψ, L)-contraction on C and has a unique fixed point in C;

(ii) for each α ∈ (0, 1), the mapping x �→ αf(x) + (1 − α)Tx is of Meir-Keeler-type and it has
a unique fixed point in C.

Lemma 2.3 (see [20]). Let E be a Banach space and C be a convex subset of E. Let f : C → C be a
Meir-Keeler-type contraction. Then for each ε > 0 there exists r ∈ (0, 1) such that, for each x, y ∈ C
with ‖x − y‖ ≥ ε, ‖f(x) − f(y)‖ ≤ r‖x − y‖.

Lemma 2.4 (see [21]). Let C be a closed convex subset of a strictly convex Banach space E. Let
Tm : C → C be a nonexpansive mapping for each 1 ≤ m ≤ r, where r is some integer. Suppose that
∩rm=1 Fix(Tm) is nonempty. Let {λn} be a sequence of positive numbers with

∑r
n=1 λn = 1. Then the

mapping S : C → C defined by

Sx =
r∑

m=1

λmTmx, ∀x ∈ C, (2.4)

is well defined, nonexpansive and Fix(S) = ∩rm=1 Fix(Tm) holds.

Lemma 2.5 (see [22]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, n ∈ N, (2.5)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i) limn→∞γn = 0;

(ii)
∑∞

n=1 γn = ∞;

(iii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞αn = 0.

3. Main Results

In this section, by a generalized contraction mapping we mean a Meir-Keeler-type mapping
or (ψ, L)- contraction. In the rest of the paper we suppose that ψ from the definition of the
(ψ, L)-contraction is continuous, strictly increasing and η(t) is strictly increasing and onto,
where η(t) = t − ψ(t), for all t ∈ R

+. As a consequence, we have the η(t) is a bijection on R
+.

Theorem 3.1. Let C be a nonempty closed convex subset of a reflexive Banach space E which admits
a weakly sequentially continuous duality mapping J from E into E∗. For every i = 1, . . . ,N(N ≥ 1),
letTi = {Ti(t) : t ≥ 0} be a semigroup of nonexpansive mappings on C such that F = ∩Ni=1 Fix(Ti)/= ∅
and f : C → C be a generalized contraction on C. Let {αn}, {βn} ⊂ [0, 1) and {tn} ⊂ (0,∞) be
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the sequences satisfying limn→∞tn = limn→∞(αn/tn) = 0 and lim supn→∞βn < 1. Let {xn} be a se-
quence generated by

xn = αnf(xn) +
1 − αn
N

N∑
i=1

yin,

yin = βnxn +
(
1 − βn

)
Ti(tn)xn, i = 1, . . . ,N.

(3.1)

Then {xn} converges strongly to a point x∗ ∈ F, which is the unique solution to the following varia-
tional inequality:

〈(
f − I

)
x∗, j(x − x∗)

〉
≤ 0, ∀x ∈ F. (3.2)

Proof. First, we show that the sequence {xn} generated by (3.1) is well defined. For every
n ∈ N and i = 1, . . . ,N, letUin = βnI + (1 − βn)Ti(tn) and defineWn : C → C by

Wnx = αnf(x) + (1 − αn)Gnx, ∀x ∈ C, (3.3)

whereGnx = (1/N)
∑N

i=1Uinx. SinceUin is nonexpansive,Gn is nonexpansive. By Lemma 2.2
we see thatWn is a Meir-Keeler-type contraction for each n ∈ N. Hence, eachWn has a unique
fixed point, denoted as xn, which uniquely solves the fixed point equation (3.3). Hence {xn}
generated by (3.1) is well defined.

Now we prove that {xn} generated by (3.1) is bounded. For any p ∈ F, we have

∥∥yin − p∥∥ ≤ βn
∥∥xn − p∥∥ +

(
1 − βn

)∥∥Ti(tn)xn − p∥∥ ≤
∥∥xn − p∥∥. (3.4)

Using (3.4), we get

‖xn − p‖2 =
〈
αnf(xn) +

1 − αn
N

N∑
i=1

yin − p, j
(
xn − p

)〉

= αn
〈
f(xn) − f

(
p
)
, j
(
xn − p

)〉
+ αn

〈
f
(
p
)
− p, j

(
xn − p

)〉

+
1 − αn
N

N∑
i=1

〈
yin − p, j

(
xn − p

)〉

≤ αnψ
(∥∥xn − p∥∥)∥∥xn − p∥∥ + αn

∥∥f(p) − p∥∥∥∥xn − p∥∥

+
1 − αn
N

N∑
i=1

∥∥yin − p∥∥∥∥xn − p∥∥

= αnψ
(∥∥xn − p∥∥)∥∥xn − p∥∥ + αn

∥∥f(p) − p∥∥∥∥xn − p∥∥
+ (1 − αn)

∥∥xn − p∥∥2

(3.5)
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and hence

∥∥xn − p∥∥ ≤ ψ
(∥∥xn − p∥∥) + ∥∥f(p) − p∥∥, (3.6)

which implies that

η
(∥∥xn − p∥∥) = ∥∥xn − p∥∥ − ψ

(∥∥xn − p∥∥) ≤ ∥∥f(p) − p∥∥. (3.7)

Hence

∥∥xn − p∥∥ ≤ η−1
(∥∥f(p) − p∥∥). (3.8)

This shows that {xn} is bounded, and so are {Ti(tn)xn}, {f(xn)} and {yin}.
Since E is reflexivity and {xn} is bounded, there exists a subsequence {xnj} ⊂ {xn}

such that xnj ⇀ x∗ for some x∗ ∈ C as j → ∞. Now we prove that x∗ ∈ F. For any fixed t > 0,
we have

N∑
i=1

∥∥∥xnj − Ti(t)x∗
∥∥∥ ≤

N∑
i=1

⎡
⎣[t/tni ]−1∑

k=0

∥∥∥Ti
(
(k + 1)tnj

)
xnj − Ti

(
ktnj

)
xnj

∥∥∥

+

∥∥∥∥∥Ti
([

t

tnj

]
tnj

)
xnj −Ti

([
t

tnj

]
tnj

)
x∗

∥∥∥∥∥+
∥∥∥∥∥Ti
([

t

tnj

]
tnj

)
xnj −Ti(t)x∗

∥∥∥∥∥
]

≤
N∑
i=1

[[
t

tnj

]∥∥∥Ti
(
tnj

)
xnj − xnj

∥∥∥ +
∥∥∥xnj − x∗

∥∥∥ +

∥∥∥∥∥Ti
(
t −
[
t

tnj

]
tnj

)
xnj − x∗

∥∥∥∥∥
]

≤
N∑
i=1

[[
t

tnj

]∥∥∥Ti
(
tnj

)
xnj −xnj

∥∥∥+
∥∥∥xnj −x∗

∥∥∥+max
{
‖Ti(s)x∗−x∗‖ : 0≤s≤ tnj

}]

≤
Nαnj

[
t/tnj

]
(
1 − αnj

)((
1 − βnj

))∥∥∥xnj − f
(
xnj

)∥∥∥ +N
∥∥∥xnj − x∗

∥∥∥

+
N∑
i=1

max
{
‖Ti(s)x∗−x∗‖ : 0 ≤ s ≤ tnj

}

≤ Nt(
1 − αnj

)(
1 − βnj

) αnj
tnj

∥∥∥xnj − f
(
xnj

)∥∥∥ +N
∥∥∥xnj − x∗

∥∥∥

+
N∑
i=1

max
{
‖Ti(s)x∗ − x∗‖ : 0 ≤ s ≤ tnj

}
.

(3.9)
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By hypothesis on {tn}, {αn}, {βn}, we have

lim
j→∞

Nt(
1 − αnj

)(
1 − βnj

) αnj
tnj

= 0. (3.10)

Further, from (3.9) we get

lim sup
j→∞

N∑
i=1

∥∥∥xnj − Ti(t)x∗
∥∥∥ ≤ lim sup

j→∞
N
∥∥∥xnj − x∗

∥∥∥. (3.11)

Since E admits a weakly sequentially duality mapping, we see that E satisfies Opial’s con-
dition. Thus if x∗ /∈ F, we have

lim sup
j→∞

N
∥∥∥xnj − x∗

∥∥∥ < lim sup
j→∞

N∑
i=1

∥∥∥xnj − Tix∗
∥∥∥. (3.12)

This contradicts (3.11). So x∗ ∈ F.
In (3.5), replacing p with x∗ and nwith nj , we see that

∥∥∥xnj − x∗
∥∥∥2 = αnj

〈
f
(
xnj

)
− f(x∗), j

(
xnj − x∗

)〉
+ αnj

〈
f(x∗) − x∗, j

(
xnj − x∗

)〉

+
1 − αnj
N

N∑
i=1

〈
yinj − x∗, j

(
xnj − x∗

)〉

≤ αnjψ
(∥∥∥xnj − x∗

∥∥∥)
∥∥∥xnj − x∗

∥∥∥ + αnj
〈
f(x∗) − x∗, j

(
xnj − x∗

)〉

+
1 − αnj
N

N∑
i=1

∥∥∥yinj − x∗
∥∥∥
∥∥∥xnj − x∗

∥∥∥

≤ αnjψ
(∥∥∥xnj − x∗

∥∥∥)
∥∥∥xnj − x∗

∥∥∥ + αnj
〈
f(x∗) − x∗, j

(
xnj − x∗

)〉

+
(
1 − αnj

)∥∥xn − p∥∥2,

(3.13)

which implies that

∥∥∥xnj − x∗
∥∥∥(ψ(

∥∥∥xnj − x∗
∥∥∥) −

∥∥∥xnj − x∗
∥∥∥) ≤

〈
f(x∗) − x∗, j

(
xnj − x∗

)〉
. (3.14)

Nowwe prove that {xn} is relatively sequentially compact. Since j is weakly sequentially con-
tinuous, we have

lim
j→∞

∥∥∥xnj − x∗
∥∥∥(ψ(

∥∥∥xnj − x∗
∥∥∥) −

∥∥∥xnj − x∗
∥∥∥) ≤ 0, (3.15)
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which implies that

lim
j→∞

∥∥∥xnj − x∗
∥∥∥ = 0, or lim

j→∞

(
ψ
(∥∥∥xnj − x∗

∥∥∥) −
∥∥∥xnj − x∗

∥∥∥) = 0. (3.16)

If limj→∞‖xnj − x∗‖ = 0, then {xn} is relatively sequentially compact. If limj→∞(ψ(‖xnj −
x∗‖)−‖xnj −x∗‖) = 0, we have limj→∞‖xnj −x∗‖ = limj→∞ψ(‖xnj −x∗‖). Since ψ is continuous,
limj→∞‖xnj−x∗‖ = ψ(limj→∞‖xnj−x∗‖). By the definition of ψ, we conclude that limj→∞‖xnj−
x∗‖ = 0, which implies that {xn} is relatively sequentially compact.

Next, we prove that x∗ is the solution to (3.2). Indeed, for any x ∈ F, we have

‖xn − x‖2 =
〈
αn
(
f(xn) − xn + xn − x

)
, j(xn − x)

〉
+
1 − αn
N

N∑
i=1

〈
yin − x, j(xn − x)

〉

= αn
〈
f(xn) − xn, j(xn − x)

〉
+ αn

〈
xn − x, j(xn − x)

〉

+
1 − αn
N

N∑
i=1

[
βn
〈
xn − x, j(xn − x)

〉
+
(
1 − βn

)〈
Ti(tn)xn − x, j(xn − x∗)

〉]

≤ αn
〈
f(xn) − xn, j(xn − x)

〉
+ αn‖xn − x‖2

+
1 − αn
N

N∑
i=1

[
βn‖xn − x‖2 +

(
1 − βn

)
‖Ti(tn)xn − x‖‖xn − x‖

]

≤ αn
〈
f(xn) − xn, j(xn − x)

〉
+ αn‖xn − x‖2

+
1 − αn
N

N∑
i=1

[
βn‖xn − x‖2 +

(
1 − βn

)
‖xn − x‖2

]

= αn
〈
f(xn) − xn, j(xn − x)

〉
+ ‖xn − x‖2.

(3.17)

Therefore,

〈
f(xn) − xn, j(x − xn)

〉
≤ 0. (3.18)

Since xnj ⇀ x∗ and j is weakly sequentially continuous, we have

〈
f(x∗) − x∗, j(x − x∗)

〉
= lim

j→∞

〈
f
(
xnj

)
− xnj , j

(
x − xnj

)〉
≤ 0. (3.19)

This shows that x∗ is the solution of the variational inequality (3.2).
Finally, we prove that x∗ is the unique solution of the variational inequality (3.2).

Assume that x̂ ∈ F with x̂ /=x∗ is another solution of (3.2). Then there exists ε > 0 such that
‖x̂ − x∗‖ > ε. By Lemma 2.3 there exists r ∈ (0, 1) such that ‖f(x̂) − f(x∗)‖ ≤ r‖x̂ − x∗‖. Since
both x̂ and x∗ are the solution of (3.2), we have

〈
f(x∗) − x∗, j(x̂ − x∗)

〉
≤ 0,

〈
f(x̂) − x̂, j(x∗ − x̂)

〉
≤ 0. (3.20)
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Adding the above inequalities, we get

0 < (1 − r)ε2 < (1 − r)‖x̂ − x∗‖2 ≤
〈(
I − f

)
x∗ −

(
I − f

)
x̂
〉
, j(x∗ − x̂) ≤ 0, (3.21)

which is a contradiction. Therefore, we must have x̂ = x∗, which implies that x∗ is the unique
solution of (3.2).

In a similar way it can be shown that each cluster point of sequence {xn} is equal to x∗.
Therefore, the entire sequence {xn} converges strongly to x∗. This completes the proof.

If letting βn = 0 for all n ∈ N in Theorem 3.1, then we get the following.

Corollary 3.2. Let C be a nonempty closed convex subset of a reflexive Banach space E which admits
a weakly sequentially continuous duality mapping J from E into E∗. For every i = 1, . . . ,N (N ≥ 1),
letTi = {Ti(t) : t ≥ 0} be a semigroup of nonexpansive mappings on C such that F = ∩Ni=1 Fix(Ti)/= ∅
and f : C → C be a generalized contraction on C. Let {αn} ⊂ [0, 1) and {tn} ⊂ (0,∞) be sequences
satisfying limn→∞tn = limn→∞(αn/tn) = 0. Let {xn} be a sequence generated by

xn = αnf(xn) +
1 − αn
N

N∑
i=1

Ti(tn)xn. (3.22)

Then {xn} converges strongly to a point x∗ ∈ F, which is the unique solution to the following varia-
tional inequality:

〈(
f − I

)
x∗, j(x − x∗)

〉
≤ 0, ∀x ∈ F. (3.23)

Theorem 3.3. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach
space E which admits a weakly sequentially continuous duality mapping J from E into E∗. For every
i = 1, · · · ,N(N ≥ 1), let Ti = {Ti(t) : t ≥ 0} be a semigroup of nonexpansive mappings on C such
that F = ∩Ni=1 Fix(Ti)/= ∅ and f : C → C be a generalized contraction on C. Let {αn}, {βn} ⊂ [0, 1)
and {tn} ⊂ (0,∞) be the sequences satisfying lim

n→∞
tn = lim

n→∞
(βn/tn) = 0. Let {xn} be a sequence

generated

yin = αnxn + (1 − αn)Ti(tn)xn, i = 1, . . . ,N,

xn+1 = βnf(xn) +
1 − βn
N

N∑
i=1

yin, ∀n ∈ N.
(3.24)

Then {xn} converges strongly to a point x∗ ∈ F, which is the unique solution of variational inequality
(3.2).

Proof. Let p ∈ F andM = max{‖x1 − p‖, η−1(‖f(p) − p‖}. Now we show by induction that

∥∥xn − p∥∥ ≤M, ∀n ∈ N. (3.25)
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It is obvious that (3.25) holds for n = 1. Suppose that (3.25) holds for some n = k, where k > 1.
Observe that

∥∥yik − p∥∥ =
∥∥αk(xk − p) + (1 − αk)

(
Ti(tk)xk − p

)∥∥
≤ αk

∥∥xk − p∥∥ + (1 − αk)
∥∥Ti(tk)xk − p∥∥ ≤

∥∥xk − p∥∥.
(3.26)

Now, by using (3.24) and (3.26), we have

‖xk+1 − p‖ =

∥∥∥∥∥βk
(
f(xk) − p

)
+
1 − βk
N

N∑
i=1

(
yik − p

)∥∥∥∥∥

≤ βk
∥∥f(xk) − f(p)∥∥ + βk

∥∥f(p) − p∥∥ +
1 − βk
N

N∑
i=1

∥∥yik − p∥∥

≤ βkψ
(∥∥xk − p∥∥) + βk∥∥f(p) − p∥∥ +

1 − βk
N

N∑
i=1

∥∥xk − p∥∥

= βkψ
(∥∥xk − p∥∥) + βk∥∥f(p) − p∥∥ +

(
1 − βk

)∥∥xk − p∥∥
= βkψ

(∥∥xk − p∥∥) + βkη
(
η−1
∥∥f(p) − p∥∥) + (1 − βk)∥∥xk − p∥∥

≤ βkψ(M) + βkη(M) +
(
1 − βk

)
M

= βkψ(M) + βk
(
M − ψ(M)

)
+
(
1 − βk

)
M =M.

(3.27)

By induction we conclude that (3.25) holds for all n ∈ N. Therefore, {xn} is bounded and so
are {f(xn)}, {yin}, {Ti(tn)xn}.

For each i = 1, . . . ,N and n ∈ N, define the mapping U(tn) = (1/N)
∑N

i=1 Si(tn), where
Si(tn) = αnI + (1 − αn)Ti(tn). Then we rewrite the sequence (3.24) to

xn+1 = βnf(xn) +
(
1 − βn

)
U(tn)xn. (3.28)

Obviously, each U(tn) is nonexpansive. Since {xn} is bounded and E is reflexive, we may
assume that some subsequence {xnj} of {xn} converges weakly to p. Next we show that p ∈ F.
Put xj = xnj , βj = βnj , and tj = tnj for each j ∈ N. Fix t > 0. By (3.28) we have

∥∥xj −U(t)p
∥∥ =

[t/tj ]−1∑
k=0

∥∥U((k + 1)tj
)
xj −U

(
ktj
)
xj
∥∥

+

∥∥∥∥∥U
([

t

tj

]
tj

)
xj −U

([
t

tj

]
tj

)
p

∥∥∥∥∥ +

∥∥∥∥∥U
([

t

tj

]
tj

)
p −U(t)p

∥∥∥∥∥
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≤
[
t

tj

]∥∥U(tj)xj − xj+1∥∥ +
∥∥xj+1 − p∥∥ +

∥∥∥∥∥U
(
t −
[
t

tj

]
tj

)
p − p

∥∥∥∥∥

=

[
t

tj

]
βj
∥∥U(tj)xj − f(xj)∥∥ +

∥∥xj+1 − p∥∥ +

∥∥∥∥∥U
(
t −
[
t

tj

]
tj

)
p − p

∥∥∥∥∥

≤
tβj

tj

∥∥U(tj)xj − f(xj)∥∥ +
∥∥xj+1 − p∥∥ +max

{∥∥U(s)p − p
∥∥ : 0 ≤ s ≤ tj

}
.

(3.29)

So, for all j ∈ N, we have

lim sup
j→∞

∥∥xj −U(t)p
∥∥ ≤ lim sup

j→∞

∥∥xj+1 − p∥∥ = lim sup
j→∞

∥∥xj − p∥∥. (3.30)

Since E has a weakly sequentially continuous duality mapping satisfying Opials’ con-
dition, this implies p = U(t)p. By Lemma 2.4, we have Fix(U(t)) = ∩Ni=1 Fix(Ti(t)) for each
t > 0. Therefore, p ∈ F. In view of the variational inequality (3.2) and the assumption that
duality mapping J is weakly sequentially continuous, we conclude that

lim sup
n→∞

〈(
f − I

)
q, j
(
xn+1 − q

)〉
= lim

j→∞

〈(
f − I

)
q, j
(
xnj+1 − q

)〉
=
〈(
I − f

)
q, j
(
p − q

)〉
≤ 0.

(3.31)

Finally, we prove that xn → q as n → ∞. Suppose that ‖xn − q‖ � 0. Then there exists
ε > 0 and subsequence {xnj} of {xn} such that ‖xnj − q‖ ≥ ε for all j ∈ N. Put xj = xnj , βj = βnj
and tj = tnj . By Lemma 2.3 one has ‖f(xj) − f(q)‖ ≤ r‖xj − q‖ for all j ∈ N. Now, from (2.2)
and (3.28)we have

‖xj+1 − q‖2 =
∥∥(1 − βn)(U(tj)xj − q) + βn(f(xj) − q)

∥∥2

≤
(
1 − βj

)2∥∥U(tj)xj − q∥∥2 + 2βj
〈
f
(
xj
)
− q, j

(
xj+1 − q

)〉

≤
(
1 − βj

)2∥∥xj − q∥∥2 + 2βn
〈
f
(
xj
)
− f
(
q
)
, j
(
xj+1 − q

)〉
+ 2βj

〈
f
(
q
)
− q, j

(
xj+1 − q

)〉

≤
(
1 − βj

)2∥∥xj − q∥∥2 + 2βjr
∥∥xj − q∥∥∥∥xj+1 − q∥∥ + 2βn

〈
f
(
q
)
− q, j

(
xj+1 − q

)〉

≤
(
1 − βj

)2∥∥xj − q∥∥2 + βjr
(∥∥xj − q∥∥2 + ∥∥xj+1 − q∥∥2

)
+ 2βj

〈
f
(
q
)
− q, j

(
xj+1 − q

)〉

=
((

1 − βj
)2 + βjr

)∥∥xj − q∥∥2 + βjr∥∥xj+1 − q∥∥2 + 2βj
〈
f
(
q
)
− q, j

(
xj+1 − q

)〉
.

(3.32)
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It follows that

∥∥xj+1∥∥ ≤
1 − (2 − r)βj + β2j

1 − βjr
∥∥xj − q∥∥2 + 2βj

1 − βjr
〈
f
(
q
)
− q, j

(
xj+1 − q

)〉

≤
1 − βjr − 2(1 − r)βj

1 − βjr
∥∥xj − q∥∥2 + 2βj

1 − βjr
〈
f
(
q
)
− q, j

(
xj+1 − q

)〉
+ β2jM

=

(
1 −

2(1 − r)βj
1 − βjr

)∥∥xj − q∥∥2 + 2βj
1 − βjr

〈
f
(
q
)
− q, j

(
xj+1 − q

)〉
+ β2jM

≤
(
1 − 2(1 − r)βj

)∥∥xj − q∥∥2 + βj
(

2
1 − r

〈
f
(
q
)
− q, j

(
xj+1 − q

)〉
+ βjM

)
,

(3.33)

whereM is a constant.
Let γj = 2(1 − r)βj and δj = βj((2/(1 − r))〈f(q) − q, j(xj+1 − q)〉 + βjM). It follows from

(3.33) that

∥∥xj+1 − q∥∥ ≤
(
1 − γj

)∥∥xj − q∥∥ + δj . (3.34)

It is easy to see that γj → 0,
∑∞

j=1 γj = ∞ and (noting (3.28))

lim sup
j→∞

δj

γj
= lim sup

1

(1 − r)2
〈
f
(
q
)
− q, j

(
xj+1 − q

)〉
+

M

2(1 − r)βj ,

lim sup
n→∞

1

(1 − r)2
〈
f
(
q
)
− q, j

(
xj+1 − q

)〉
≤ 0.

(3.35)

Using Lemma 2.5, we conclude that ‖xj − q‖ → 0 as j → ∞. It is a contradiction. Therefore,
xn → q as n → ∞. This completes the proof.

If letting αn = 0 for all n ∈ N in Theorem 3.3, then we get the following.

Corollary 3.4. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach
space E which admits a weakly sequentially continuous duality mapping J from E into E∗. For every
i = 1, . . . ,N(N ≥ 1), let Ti = {Ti(t) : t ≥ 0} be a semigroup of nonexpansive mappings on C such
that F = ∩Ni=1 Fix(Ti)/= ∅ and f : C → C be a generalized contraction on C. Let {βn} ⊂ [0, 1) and
{tn} ⊂ (0,∞) be sequences satisfying limn→∞tn = limn→∞(βn/tn) = 0. Let {xn} be a sequence
generated

xn+1 = βnf(xn) +
1 − βn
N

N∑
i=1

Ti(tn)xn, ∀n ∈ N. (3.36)

Then {xn} converges strongly to a point x∗ ∈ F, which is the unique solution of variational inequality
(3.2).
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Remark 3.5. Theorem 3.1 and Corollary 3.2 extend the corresponding ones of Suzuki [2], Xu
[3], and Chen and He [5] from one nonexpansive semigroup to a finite family of nonex-
pansive semigroups. But Theorem 3.3 and Corollary 3.4 are not the extension of Theorem 3.2
of Chen and He [5] since Banach space in Theorem 3.3 and Corollary 3.4 is required to be
strictly convex. But if letting N = 1 in Theorem 3.3 and Corollary 3.4, we can remove the
restriction on strict convexity and hence they extend Theorem 3.2 of Chen and He [5] from a
contraction to a generalized contraction.

Remark 3.6. Our Theorem 3.1 extends and improves Theorems 3.2 and 4.2 of Song and Xu [4]
from a nonexpansive semigroup to a finite family of nonexpansive semigroups and a con-
traction to a generalized contraction. Our conditions on the control sequences are different
with ones of Song and Xu [4].
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