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A class of interval neural networks with time-varying delays and distributed delays is investiga-
ted. By employing H-matrix and M-matrix theory, homeomorphism techniques, Lyapunov func-
tional method, and linear matrix inequality approach, sufficient conditions for the existence, uni-
queness, and global robust exponential stability of the equilibrium point to the neural networks
are established and some previously published results are improved and generalized. Finally, some
numerical examples are given to illustrate the effectiveness of the theoretical results.

1. Introduction

In recent years, great attention has been paid to the neural networks due to their applications
in many areas such as signal processing, associative memory, pattern recognition, paral-
lel computation, and optimization. It should be pointed out that the successful applications
heavily rely on the dynamic behaviors of neural networks. Stability, as one of the most
important properties for neural networks, is crucially required when designing neural net-
works. For example, in order to solve problems in the fields of optimization, neural control,
and signal processing, neural networks have to be designed such that there is only one equi-
librium point, and it is globally asymptotically stable so as to avoid the risk of having spu-
rious equilibria and local minima.

We should point out that neural networks have recently been implemented on elec-
tronic chips. In electronic implementation of neural networks, time delays are unavoidably
encountered during the processing and transmission of signals, which can cause oscillation
and instability of a neural network. On the other hand, there exist inevitably some uncer-
tainties caused by the existence of modeling errors, external disturbance, and parameter
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fluctuation, which would lead to complex dynamic behaviors. Thus, a good neural network
should have robustness against such uncertainties. If the uncertainties of a system are due
to the deviations and perturbations of parameters and if these deviations and perturbations
are assumed to be bounded, then this system is called an interval system. Recently, global
robust stability of interval neural networks with time delays are widely investigated (see [1–
22] and references therein). In particular, Faydasicok and Arik [3, 4] proposed two criteria
for the global asymptotical robust stability to a class of neural networks with constant delays
by utilizing the Lyapunov stability theorems and homeomorphism theorem. The obtained
conditions are independent of time delays and only rely on the network parameters of the
neural system. Employing Lyapunov-Krasovskii functionals, Balasubramaniam et al. [10, 11]
derived two passivity criteria for interval neural networks with time-varying delays in terms
of linear matrix inequalities (LMI), which are dependent on the size of the time delays. In
practice, to achieve fast response, it is often expected that the designed neural networks
can converge fast enough. Thus, it is not only theoretically interesting but also practically
important to establish some sufficient conditions for global robust exponential stability of
neural networks. In [8], Zhao and Zhu established some sufficient conditions for the global
robust exponential stability for interval neural networks with constant delays. In [18], Wang
et al. obtained some criteria for the global robust exponential stability for interval Cohen-
Grossberg neural networks with time-varying delays using LMI, matrix inequality, matrix
norm, and Halanay inequality techniques. In [15–17], employing homeomorphism tech-
niques, Lyapunov method, H-matrix and M-matrix theory, and LMI approach, Shao et al.
established some sufficient conditions for the existence, uniqueness, and global robust expo-
nential stability of the equilibrium point for interval Hopfield neural networks with time-
varying delays. Recently, the stability of neural networks with time-varying delays has been
extensively investigated and various sufficient conditions have been established for the
global asymptotic and exponential stability in [10–27]. Generally, neural networks usually
have a spatial extent due to the presence of a multitude of parallel pathways with a variety of
axon sizes and lengths. It is desired to model them by introducing continuously distributed
delays over a certain duration of time such that the distant past has less influence compared
to the recent behavior of the state (see [28–30]). However, the distributed delays were not
taken into account in [15–17] and most of the above references. To the best of our knowledge,
there are fewer robust stability results about the interval neural networks with both the time-
varying delays and the distributed delays (see [21, 22]).

Motivated by the works of [15–17] and the discussions above, the purpose of this
paper is to present some new sufficient conditions for the global robust exponential stability
of neural networks with time-varying and distributed delays. The obtained results can be
easily checked. Comparisons are made with some previous works by some remarks and
numerical examples, which show that our results effectually improve and generalize some
existing works. The neural network can be described by the following differential equa-
tions:

ẋi(t) = − dixi(t) +
n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijfj
(
xj

(
t − τj(t)

))

+
n∑

j=1

cij

∫ t

t−σ
kj(t − s)fj

(
xj(s)

)
ds + Ji, i = 1, 2, . . . , n,

(1.1)
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or equivalently

ẋ(t) = −Dx(t) +Af(x(t)) + Bf(x(t − τ(t))) + C

∫ t

t−σ
K(t − s)f(x(s))ds + J, (1.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ R

n denotes the state vector associated with the neu-
rons, D = diag(d1, d2, . . . , dn) is a positive diagonal matrix, and A = (aij)n×n, B = (bij)n×n, and
C = (cij)n×n are the interconnection weight matrix and the time-varying delayed interconnec-
tion weight matrix and the distributed delayed interconnection weight matrix, respectively.
f(x) = (f1(x1), f2(x2), . . . , fn(xn))

T ∈ R
n, and fj(xj) denotes the activation function, τj(t)

denotes the time-varying delay associated with the jth neuron, f(x(t − τ(t))) = (f1(x1(t −
τ1(t))), f2(x2(t − τ2(t))), . . . , fn(xn(t − τn(t))))

T, K(t) = diag(k1(t), k2(t), . . . , kn(t)), kj(t) > 0
represents the delay kernel function, which is a real-valued continuous function defined in
[0, σ] satisfying

∫σ
0 kj(s)ds = 1, j = 1, 2, . . . , n. J = (J1, J2, . . . , Jn)

T is the constant input vector.
The coefficients di, aij , bij , and cij can be intervalised as follows:

DI =
[
D,D

]
=
{
D = diag(di) : 0 < di ≤ di ≤ di, i = 1, 2, . . . , n

}
,

AI =
[
A,A

]
=
{
A =

(
aij

)
n×n : aij ≤ aij ≤ aij , i, j = 1, 2, . . . , n

}
,

BI =
[
B, B
]
=
{
B =

(
bij
)
n×n : bij ≤ bij ≤ bij , i, j = 1, 2, . . . , n

}
,

CI =
[
C,C

]
=
{
C =

(
cij
)
n×n : cij ≤ cij ≤ cij , i, j = 1, 2, . . . , n

}
,

(1.3)

where D = diag(di), D = diag(di), X = (xij)n×n, X = (xij)n×n, and X = A,B,C. Denote B∗ =

(B + B)/2 and B∗ = (B − B)/2. Clearly, B∗ is a nonnegative matrix and the interval matrix
[B, B] = [B∗ − B∗, B∗ + B∗]. Consequently, B = B∗ + ΔB, ΔB ∈ [−B∗, B∗]. C∗ and C∗ are defined
correspondingly.

Throughout this paper, we make the following assumptions.

(H1) fi(x) (i = 1, 2, . . . , n) are Lipschitz continuous and monotonically nondecreasing,
that is, there exist constants li > 0 such that

0 ≤ (fi(x) − fi
(
y
))(

x − y
) ≤ li

(
x − y

)2
, ∀x, y ∈ R. (1.4)

(H2) τi(t) (i = 1, 2, . . . , n) are bounded differential functions of time t and satisfy 0 ≤
τi(t) ≤ τ, 0 ≤ τ̇i(t) ≤ hi < 1.

Denote L = diag(l1, l2, . . . , ln), LM = max1≤i≤n{li}, h = max1≤i≤n{hi}, and δ = max{τ, σ}.
The organization of this paper is as follows. In Section 2, some preliminaries are given.

In Section 3, sufficient conditions for the existence, uniqueness, and global robust exponential
stability of the equilibrium point for system (1.1) are presented. In Section 4, some numerical
examples are provided to illustrate the effectiveness of the obtained results and comparisons
are made between our results and the previously published ones. A concluding remark is
given in Section 5 to end this work.
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2. Preliminaries

We give some preliminaries in this section. For a vector x = (x1, x2, . . . , xn), ‖x‖2 =
(
∑n

i=1 x
2
i )

1/2. For a matrixA = (aij)n×n,A
T denotes the transpose;A−1 denotes the inverse;A >

(≥)0means thatA is a symmetric positive definite (semidefinite)matrix; λmax(A) and λmin(A)
denote the largest and the smallest eigenvalues of A, respectively; ‖A‖2 =

√
λmax(ATA)

denotes the spectral norm of A. I denotes the identity matrix. ∗ denotes the symmetric block
in a symmetric matrix.

Definition 2.1 (see [20]). The neural network (1.1)with the parameter ranges defined by (1.3)
is globally robustly exponentially stable if for each D ∈ DI , A ∈ AI , B ∈ BI , C ∈ CI , and J ,
system (1.1) has a unique equilibrium point x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)

T, and there exist constants
b > 0 and α ≥ 1 such that

‖x(t) − x∗‖ ≤ α
∥∥φ(θ) − x∗∥∥e−bt, ∀t > 0, (2.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T is a solution of system (1.1)with the initial value φ(θ) =

(φ1(θ), φ2(θ), . . . , φn(θ)), θ ∈ [−δ, 0].

Definition 2.2 (see [31]). Let Zn = {A = (aij)n×n ∈ Mn(R) : aij ≤ 0 if i /= j, i, j = 1, 2, . . . , n},
where Mn(R) denotes the set of all n × n matrices with entries from R. Then a matrix A is
called an M-matrix if A ∈ Zn and all successive principal minors of A are positive.

Definition 2.3 (see [31]). An n×nmatrixA = (aij)n×n is said to be anH-matrix if its comparison
matrix M(A) = (mij)n×n is an M-matrix, where

mij =

⎧
⎨

⎩
|aii| if i = j,

−∣∣aij

∣∣ if i /= j.
(2.2)

Lemma 2.4 (see [19]). For any vectors x, y ∈ R
n and positive definite matrix G ∈ R

n×n, the fol-
lowing inequality holds: 2xTy ≤ xTGx + yTG−1y.

Lemma 2.5 (see [31]). LetA,B ∈ Zn. IfA is an M-matrix and the elements of matricesA, B satisfy
the inequalities aij ≤ bij , i, j = 1, 2, . . . , n, then B is an M-matrix.

Lemma 2.6 (see [31]). The following LMI:
(

Q(x) S(x)
ST(x) R(x)

)
> 0, where Q(x) = QT(x), R(x) = RT(x),

is equivalent to R(x) > 0 and Q(x) − S(x)R−1(x)ST(x) > 0 or Q(x) > 0 and R(x) − ST(x)Q−1(x)
S(x) > 0.

Lemma 2.7 (see [1]). H(x) : R
n → R

n is a homeomorphism if H(x) satisfies the following condi-
tions:

(1) H(x) is injective, that is,H(x)/=H(y), ∀x /=y;

(2) H(x) is proper, that is, ‖H(x)‖ → +∞ as x → +∞.
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Lemma 2.8. Suppose that the neural network parameters are defined by (1.3), and

Ξ =

⎛

⎝
Φ − S −PB∗ −PC∗
∗ (1 − h)R 0
∗ ∗ Q

⎞

⎠ > 0, (2.3)

where P = diag(p1, p2, . . . , pn), R = diag(r1, r2, . . . , rn), and Q = diag(q1, q2, . . . , qn) are positive
diagonal matrices, Φ = (Φij)n×n = 2PDL−1 − ((2 − h)/(1 − h))‖PB∗‖2I − 2‖PC∗‖2I − R − Q,
S = (sij)n×n with

sij =

⎧
⎨

⎩
2piaii if i = j,

max
{∣∣∣piaij + pjaji

∣∣∣,
∣∣piaij + pjaji

∣∣
}

if i /= j.
(2.4)

Then, for all A ∈ AI , B ∈ BI , and C ∈ CI , we have

Θ =

⎛

⎝
Φ − S′ −PΔB −PΔC

∗ (1 − h)R 0
∗ ∗ Q

⎞

⎠ > 0, (2.5)

where S′ = (s′ij)n×n = PA +ATP .

Proof. Denote

T =
(
tij
)
n×n =

1
1 − h

PB∗R−1BT
∗P + PC∗Q−1CT

∗P,

T ′ =
(
t′ij
)

n×n
=

1
1 − h

PΔBR−1ΔBTP + PΔCQ−1ΔCTP.

(2.6)

By Lemma 2.6, Ξ > 0 is equivalent to

Ω =
(
Ωij

)
n×n = Φ − S − T > 0. (2.7)

Obviously, Ω ∈ Zn, and it follows by Definition 2.2 that Ω is an M-matrix.
By Lemma 2.6,Θ > 0 is equivalent to Λ = (Λij)n×n = Φ−S′ −T ′ > 0. Therefore, we need

only to verify thatΛ > 0. Noting that tij ≥ t′ij ≥ 0 (i, j = 1, 2, . . . , n) and s′ii = 2piaii ≤ 2piaii = sii,
we have

Λii = Φii − s′ii − t′ii ≥ Φii − sii − tii = Ωii > 0, i = 1, 2, . . . , n. (2.8)

Denote the comparison matrix of Λ byM(Λ) = (mij)n×n, where

mij =

⎧
⎨

⎩
|Λii| if i = j,

−∣∣Λij

∣∣ if i /= j.
(2.9)
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Considering sij ≥ |s′ij | (i, j = 1, 2, . . . , n, i /= j), we can obtain that

mij = −
∣∣∣s′ij + t′ij

∣∣∣ ≥ −
∣∣∣s′ij
∣∣∣ −
∣∣∣t′ij
∣∣∣ ≥ −sij − tij = Ωij , i, j = 1, 2, . . . , n, i /= j. (2.10)

It follows from (2.8) and (2.10) that mij ≥ Ωij , i, j = 1, 2, . . . , n. From Lemma 2.5, we deduce
thatM(Λ) is anM-matrix, that is, Λ is anH-matrix with positive diagonal elements. It is well
known that a symmetric H-matrix with positive diagonal entries is positive definite, then
Λ > 0, which implies that Θ > 0 for allA ∈ AI , B ∈ BI , and C ∈ CI . The proof is complete.

3. Global Robust Exponential Stability

In this section, we will give a new sufficient condition for the existence and uniqueness of the
equilibrium point for system (1.1) and analyze the global robust exponential stability of the
equilibrium point.

Theorem 3.1. Under assumptions (H1) and (H2), if there exist positive diagonal matrices P =
diag(p1, p2, . . . , pn), R = diag(r1, r2, . . . , rn), and Q = diag(q1, q2, . . . , qn) such that Ξ > 0, or equi-
valently Ω > 0, where Ξ and Ω are defined by (2.3) and (2.7), respectively, then system (1.1) is glo-
bally robustly exponentially stable.

Proof. We will prove the theorem in two steps.

Step 1. We will prove the existence and uniqueness of the equilibrium point of system (1.1).
Define a map:H(x) = −Dx + (A+B +C)f(x) + J . We will prove thatH(x) is a homeo-

morphism of R
n into itself.

First, we prove that H(x) is an injective map on R
n. For x, y ∈ Rn, x /=y, we have

H(x) −H
(
y
)
= −D(x − y

)
+ (A + B + C)

(
f(x) − f

(
y
))
. (3.1)

If f(x) = f(y), then H(x)/=H(y) for x /=y. If f(x)/= f(y), multiplying both sides of (3.1) by
2(f(x) − f(y))TP , and utilizing Lemma 2.4, assumptions (H1), (H2) and the compatibility of
vector 2-norm and matrix spectral norm, we deduce that

2
(
f(x) − f

(
y
))T

P
(
H(x) −H

(
y
))

= −2(f(x) − f
(
y
))T

PD
(
x − y

)
+ 2
(
f(x) − f

(
y
))T

P(A + B + C)
(
f(x) − f

(
y
))

≤ −2(f(x) − f
(
y
))T

PDL−1(f(x) − f
(
y
))

+ 2
(
f(x) − f

(
y
))T

PA
(
f(x) − f

(
y
))

+ 2
(
f(x) − f

(
y
))T

P(B∗ + ΔB + C∗ + ΔC)
(
f(x) − f

(
y
))
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≤ −2(f(x) − f
(
y
))T

PDL−1(f(x) − f
(
y
))

+ 2
(
f(x) − f

(
y
))T

PA
(
f(x) − f

(
y
))

+
2 − h

1 − h
‖PB∗‖2

∥∥f(x) − f
(
y
)∥∥2

2 +
1

1 − h

(
f(x) − f

(
y
))T

R
(
f(x) − f

(
y
))

+
(
f(x) − f

(
y
))T

PΔBR−1ΔBTP
(
f(x) − f

(
y
))

+ 2‖PC∗‖2
∥∥f(x) − f

(
y
)∥∥2

2

+
(
f(x) − f

(
y
))T

PΔCQ−1ΔCTP
(
f(x) − f

(
y
))

+
(
f(x) − f

(
y
))T

Q
(
f(x) − f

(
y
))

= −(f(x) − f
(
y
))TΛ

(
f(x) − f

(
y
))
.

(3.2)

By Lemma 2.8, we have shown that Λ > 0 if Ξ > 0, which leads to

(
f(x) − f

(
y
))T

P
(
H(x) −H

(
y
))

< 0, f(x)/= f
(
y
)
. (3.3)

Therefore, H(x)/=H(y) for all x /=y, that is, H(x) is injective.
Next, we prove that ‖H(x)‖2 → +∞ as ‖x‖2 → +∞. Letting y = 0 in (3.2), we get

2
(
f(x) − f(0)

)T
P(H(x) −H(0))

≤ −(f(x) − f(0)
)TΛ
(
f(x) − f(0)

) ≤ −λmin(Λ)
∥∥f(x) − f(0)

∥∥2
2.

(3.4)

It follows that

2‖P‖2‖H(x) −H(0)‖2 ≥ λmin(Λ)
∥∥f(x) − f(0)

∥∥
2, (3.5)

which yields

‖H(x)‖2 + ‖H(0)‖2 ≥
λmin(Λ)
2‖P‖2

(∥∥f(x)
∥∥
2 −
∥∥f(0)

∥∥
2

)
. (3.6)

Since ‖H(0)‖2 and ‖f(0)‖2 are finite, it is obvious that ‖H(x)‖2 → +∞ as ‖f(x)‖2 → +∞. On
the other hand, for unbounded activation functions, by (H1), ‖f(x)‖2 → +∞ implies ‖x‖2 →
+∞. For bounded activation functions, it is not difficult to derive from (3.1) that ‖H(x)‖2 →
+∞ as ‖x‖2 → +∞.

By Lemma 2.7, we know thatH(x) is a homeomorphism on R
n. Thus, system (1.1) has

a unique equilibrium point x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

T.

Step 2. We prove that the unique equilibrium point x∗ is globally robustly exponentially
stable.
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Let y(t) = x(t) − x∗; one can transform system (1.1) into the following system:

ẏi(t) = − diyi(t) +
n∑

j=1

aijgj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj

(
t − τj(t)

))

+
n∑

j=1

cij

∫ t

t−σ
kj(t − s)gj

(
yj(s)

)
ds, i = 1, 2, . . . , n,

(3.7)

or equivalently

ẏ(t) = −Dy(t) +Ag
(
y(t)
)
+ Bg

(
y(t − τ(t))

)
+ C

∫ t

t−σ
K(t − s)g

(
y(s)

)
ds, (3.8)

where y(t) = (y1(t), y2(t), . . . , yn(t))
T, g(y(t)) = (g1(y1(t)), g2(y2(t)), . . . , gn(yn(t)))

T, g(y(t −
τ(t))) = (g1(y1(t − τ1(t))), g2(y2(t − τ2(t))), . . . , gn(yn(t − τn(t))))

T with gj(yj(t)) = fj(yj(t) +
x∗
j ) − fj(x∗

j ).

We define a Lyapunov functional: V (t) =
∑4

i=1 Vi(t), where

V1(t) = sebtyT(t)y(t), V2(t) = 2ebt
n∑

i=1

pi

∫yi(t)

0
gi(ξ)dξ,

V3(t) =
n∑

i=1

∫ t

t−τi(t)
(ri + ‖PB∗‖2)eb(ξ+τ)g2

i

(
yi(ξ)

)
dξ,

V4(t) =
n∑

i=1

(
qi + ‖PC∗‖2

) ∫σ

0
ki(v)ebv

∫ t

t−v
ebξg2

i

(
yi(ξ)

)
dξdv.

(3.9)

Calculating the derivative of V (t) along the trajectories of system (3.7), we obtain that

V̇1(t) = sbebtyT(t)y(t) + 2sebtyT(t)ẏ(t)

= sbebtyT(t)y(t) + 2sebtyT(t)

[
−Dy(t) +Ag

(
y(t)
)
+ Bg

(
y(t − τ(t))

)

+C
∫ t

t−σ
K(t − s)g

(
y(s)

)
ds

]
,

V̇2(t) = 2bebt
n∑

i=1

pi

∫yi(t)

0
gi(ξ)dξ

+ 2ebt
n∑

i=1

pigi
(
yi(t)

)
⎡

⎣−diyi(t) +
n∑

j=1

aijgj
(
yj(t)

)

+
n∑

j=1

bijgj
(
yj

(
t − τj(t)

))
+

n∑

j=1

cij

∫ t

t−σ
kj(t − s)gj

(
yj(s)

)
ds

⎤

⎦
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≤ bebtyT(t)PLy(t) − 2ebtgT(y(t)
)
PDL−1g

(
y(t)
)
+ 2ebtgT(y(t)

)
PAg

(
y(t)
)

+ ebt‖PB∗‖2
(

1
1 − h

∥∥g
(
y(t)
)∥∥2

2 + (1 − h)
∥∥g
(
y(t − τ(t))

)∥∥2
2

)

+ 2ebtgT(y(t)
)
PΔBg

(
y(t − τ(t))

)
+ 2ebtgT(y(t)

)
PΔC

∫σ

0
K(s)g

(
y(t − s)

)
ds

+ ebt‖PC∗‖2
(
∥∥g
(
y(t)
)∥∥2

2 +
∥∥∥∥

∫σ

0
K(s)g

(
y(t − s)

)
ds
∥∥∥∥
2

2

)
,

V̇3(t) =
n∑

i=1

(ri + ‖PB∗‖2)
[
eb(t+τ)g2

i

(
yi(t)

) − (1 − τ̇i(t))eb(t−τi(t)+τ)g2
i

(
yi(t − τi(t))

)]

≤ eb(t+τ)gT(y(t)
)
Rg
(
y(t)
)
+ eb(t+τ)‖PB∗‖2

∥∥g
(
y(t)
)∥∥2

2

− (1 − h)ebtgT(y(t − τ(t))
)
Rg
(
y(t − τ(t))

) − (1 − h)ebt‖PB∗‖2
∥∥g
(
y(t − τ(t))

)∥∥2
2,

V̇4(t) =
n∑

i=1

(
qi + ‖PC∗‖2

) ∫σ

0
ki(v)ebv

[
ebtg2

i

(
yi(t)

) − eb(t−v)g2
i

(
yi(t − v)

)]
dv

≤ eb(t+σ)gT(y(t)
)
(Q + ‖PC∗‖2I)g

(
y(t)
) − ebt

[∫σ

0
K(s)g

(
y(t − s)

)
ds
]T

× (Q + ‖PC∗‖2I)
[∫σ

0
K(s)g

(
y(t − s)

)
ds
] (

Schwarz′s inequality
)
.

(3.10)

Therefore, one can deduce that

V̇ (t) ≤ sbebtyT(t)y(t) + bebtyT(t)PLy(t) − 2sebtyT(t)Dy(t) + 2sebtyT(t)Ag
(
y(t)
)

+ 2sebtyT(t)Bg
(
y(t − τ(t))

)
+ 2sebtyT(t)C

∫ t

t−σ
K(t − s)g

(
y(s)

)
ds

− 2ebtgT(y(t)
)
PDL−1g

(
y(t)
)
+ 2ebtgT(y(t)

)
PAg

(
y(t)
)

+ ebt
1

1 − h
‖PB∗‖2

∥∥g
(
y(t)
)∥∥2

2 + 2ebtgT(y(t)
)
PΔBg

(
y(t − τ(t))

)

+ 2ebtgT(y(t)
)
PΔC

∫σ

0
K(s)g

(
y(t − s)

)
ds + ebt‖PC∗‖2

∥∥g
(
y(t)
)∥∥2

2

+ eb(t+τ)gT(y(t)
)
Rg
(
y(t)
)
+ eb(t+τ)‖PB∗‖2

∥∥g
(
y(t)
)∥∥2

2 + ebt‖PB∗‖2
∥∥g
(
y(t)
)∥∥2

2

− ebt‖PB∗‖2
∥∥g
(
y(t)
)∥∥2

2 + ebtgT(y(t)
)
Rg
(
y(t)
) − ebtgT(y(t)

)
Rg
(
y(t)
)

− (1 − h)ebtgT(y(t − τ(t))
)
Rg
(
y(t − τ(t))

)
+ eb(t+σ)gT(y(t)

)
(Q + ‖PC∗‖2I)g

(
y(t)
)

− ebt
[∫σ

0
K(s)g

(
y(t − s)

)
ds
]T
Q

[∫σ

0
K(s)g

(
y(t − s)

)
ds
]

+ ebtgT(y(t)
)
(Q + ‖PC∗‖2I)g

(
y(t)
) − ebtgT(y(t)

)
(Q + ‖PC∗‖2I)g

(
y(t)
)
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≤ bebtyT(t)(sI + PL)y(t) +
(
ebτ − 1

)
ebtgT(y(t)

)
(R + ‖PB∗‖2I)g

(
y(t)
)

+
(
ebσ − 1

)
ebtgT(y(t)

)
(Q + ‖PC∗‖2I)g

(
y(t)
) − ebtzT(t)Ψz(t),

(3.11)

where

Ψ =

⎛
⎜⎜⎝

2sD −sA −sB −sC
∗ Φ − S′ −PΔB −PΔC
∗ ∗ (1 − h)R 0
∗ ∗ ∗ Q

⎞
⎟⎟⎠,

z(t) =

(
yT(t) gT(y(t)

)
gT(y(t − τ(t))

) [∫σ

0
K(s)g

(
y(t − s)

)
ds
]T)T

.

(3.12)

Denote Υ = (A B C), from Lemma 2.6, Ψ > 0 is equivalent to Θ − (s/2)ΥTD−1Υ > 0, where
Θ is defined by (2.5). By Lemma 2.8, we have Θ > 0. Letting 0 < s < 2min1≤i≤n{di}λmin(Θ)/
λmax(ΥTΥ), we can derive that

Θ − s

2
ΥTD−1Υ ≥ Θ − s

2min1≤i≤n{di}Υ
TΥ > 0, (3.13)

which yields Ψ > 0. Choosing 0 < b < min1≤i≤3{bi}with

b1 =
λmin(Ψ)

s +max1≤i≤n
{
pili
} , b2 =

1
τ
ln
(

λmin(Ψ)
2max1≤i≤n{ri + ‖PB∗‖2}

+ 1
)
,

b3 =
1
σ
ln

(
λmin(Ψ)

2max1≤i≤n
{
qi + ‖PC∗‖2

} + 1

)
,

(3.14)

we can get

V̇ (t) ≤ b1ebtyT(t)(sI + PL)y(t) +
(
eb2τ − 1

)
ebtgT(y(t)

)
(R + ‖PB∗‖2I)g

(
y(t)
)

+
(
eb3σ − 1

)
ebtgT(y(t)

)
(Q + ‖PC∗‖2I)g

(
y(t)
) − ebtzT(t)Ψz(t)

< ebtλmin(Ψ)
[
yT(t)y(t) + gT(y(t)

)
g
(
y(t)
)] − ebtzT(t)Ψz(t) ≤ 0.

(3.15)

Consequently, V (t) ≤ V (0) for all t ≥ 0.
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On the other hand,

V (0) = syT(0)y(0) + 2
n∑

i=1

pi

∫yi(0)

0
gi(ξ)dξ +

n∑

i=1

∫0

−τi(0)
(ri + ‖PB∗‖2)eb(ξ+τ)g2

i

(
yi(ξ)

)
dξ

+
n∑

i=1

(
qi + ‖PC∗‖2

) ∫σ

0
ki(v)ebv

∫0

−v
ebξg2

i

(
yi(ξ)

)
dξdv

≤ s
∥∥y(0)

∥∥2
2 +max

1≤i≤n
{
pili
}∥∥y(0)

∥∥2
2 +

1
b

(
max
1≤i≤n

{ri} + ‖PB∗‖2
)
L2
M

(
ebτ − 1

)
sup

−τ≤θ≤0

∥∥y(θ)
∥∥2
2

+
1
b

(
max
1≤i≤n

{
qi
}
+ ‖PC∗‖2

)
L2
M

(
ebσ − 1

)
sup

−σ≤θ≤0

∥∥y(θ)
∥∥2
2

≤ α sup
−δ≤θ≤0

∥∥y(θ)
∥∥2
2,

(3.16)

where α = s+max1≤i≤n{pili}+(1/b)(max1≤i≤n{ri}+max1≤i≤n{qi}+‖PB∗‖2+‖PC∗‖2)L2
M(ebδ−1).

Hence, sebt‖y(t)‖22 ≤ V (t) ≤ V (0) ≤ α sup−δ≤θ≤0‖y(θ)‖22, that is,

‖x(t) − x∗‖ ≤
√

α

s

∥∥φ(θ) − x∗∥∥e−bt/2, t > 0. (3.17)

Thus, system (1.1) is globally robustly exponentially stable. The proof is complete.

Remark 3.2. For the case of infinite distributed delays, that is, letting σ = ∞ in (1.1), assume
that the delay kernels kj(·) (j = 1, 2, . . . , n) satisfy

(H3)
∫∞
0 kj(s)ds = 1 and

∫∞
0 kj(s)eμsds < ∞

for some positive constant μ. A typical example of such delay kernels is given by kj(s) =
sr/r!γr+1j e−γjs for s ∈ [0,∞), where γj ∈ [0,∞), r ∈ {0, 1, . . . , n}, which are called the Gamma
Memory Filter in [32]. From assumption (H3), we can choose a constant b′3 : 0 < b′3 < μ
satisfying the following requirement:

∫∞

0
kj(s)eb

′
3sds ≤ λmin(Ψ)

2max1≤i≤n
{
qi + ‖PC∗‖2

} + 1, 1 ≤ j ≤ n. (3.18)

In a similar argument as the proof of Theorem 3.1, Under the conditions of Theorem 3.1 and
assumption (H3), we can derive that

‖x(t) − x∗‖ ≤
√

α′

s

∥∥φ(θ) − x∗∥∥e−bt/2, t > 0, (3.19)

where 0 < b < min{b1, b2, b′3}, α′ = s + max1≤i≤n{pili} + (1/b)(max1≤i≤n{ri} + max1≤i≤n{qi} +
‖PB∗‖2 + ‖PC∗‖2)L2

M max{ebτ − 1, λmin(Ψ)/2max1≤i≤n{qi + ‖PC∗‖2}}. Hence, for the case of
σ = ∞, system (1.1) is also globally robustly exponentially stable.
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Remark 3.3. Letting P = pI be a positive scalar matrix in Theorem 3.1, we can get a robust
exponential stability criterion based on LMI.

Remark 3.4. In [8, 13, 15–18], the authors have dealt with the robust exponential stability of
neural networks with time-varying delays. However, the distributed delays were not taken
into account in models. Therefore, our results in this paper are more general than those
reported in [8, 13, 15–18]. It should be noted that the main results in [15] are a special case
of Theorem 3.1 when C = 0. Also, our results generalize some previous ones in [2, 6, 7] as
mentioned in [15].

Remark 3.5. In previous works such as [2, 6, 7, 17], ‖B∗‖2 is often used as a part to estimate the
bounds for ‖B‖2. Considering that B∗ is a nonnegative matrix, we develop a new approach
based on H-matrix theory. The obtained robust stability criterion is in terms of the matrices
B∗ and BT

∗ , which can reduce the conservativeness of the robust results to some extent.

4. Numerical Simulations and Comparisons

In what follows, we give some examples to illustrate the results above andmake comparisons
between our results and the previously published ones.

Example 4.1. Consider system (1.1)with the following parameters:

A =

(
−0.3 −0.2
−0.5 −0.6

)
, A =

(
0.3 0.2

0.2 0.1

)
, B =

(
−0.8 −0.9
−0.4 −1

)
,

B =

(
0.5 0.6

0.7 1

)
, C =

(
−0.5 −0.5
−0.3 −0.8

)
, C =

(
0.5 0.6

0.3 1

)
,

d1 = 3.6, d2 = 5.8, J1 = J2 = 0, f1(x) = f2(x) =
1
2
(|x + 1| + |x − 1|),

τ1(t) = τ2(t) = 1 − e−t

2
, σ = +∞, kj(t) = te−t.

(4.1)

It is clear that l1 = l2 = 1, τ = 1, h = 0.5, μ = 1. Using the optimization toolbox of Matlab and
solving the optimization problem (2.3), we can obtain a feasible solution:

P = diag(1.3970, 1.0335), R = diag(1.9323, 2.0000), Q = diag(1.7742, 1.9982).
(4.2)

In this case,

Ω =

(
1.7869 −2.8928
−2.8928 4.6886

)
> 0. (4.3)
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Figure 1: Time responses of the state variables x(t) with different initial values in Example 4.1.

By Theorem 3.1, system (1.1)with above parameters is globally robustly exponentially stable.
To illustrate the theoretical result, we present a simulation with the following parameters:

A =
(

0.2 0.1
−0.1 −0.4

)
, B =

(
0.1 0.5
0.6 0.5

)
, C =

(
0.2 0.36
0.2 0.8

)
, D =

(
3.6 0
0 5.8

)
. (4.4)

We can find that the neuron vector x = (x1(t), x2(t))
T converges to the unique equilibrium

point x∗ = (0.4024, 0.2723)T (see Figure 1). Further, from (3.14) and (3.18), we can deduce that
b1 = 0.086, b2 = 0.0445, and b′3 = 0.014. Thus the exponential convergence rate is b = 0.014.

Next, we will compare our results with the previously robust stability results derived
in the literature. If cij = 0, τj(t) ≡ τj , τj is a constant, i, j = 1, 2, . . . , n, system (1.1) reduces to
the following interval neural networks:

ẋi(t) = −dixi(t) +
n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijfj
(
xj

(
t − τj

))
+ Ji, i = 1, 2, . . . , n, (4.5)

which was studied in [3, 4, 8] and the main results are restated as follows.

Theorem 4.2 (see [3]). Let f ∈ L. Then neural network model (4.5) is globally asymptotically
robustly stable, if the following condition holds:

δ = dm − LM

√
‖A∗‖22 + ‖A∗‖22 + 2

∥∥AT∗ |A∗|∥∥2 − LM

√∥∥∥B̂
∥∥∥
1

∥∥∥B̂
∥∥∥
∞
> 0, (4.6)
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where LM = max(li), dm = min(di), A
∗ = (1/2)(A + A), A∗ = (1/2)(A − A), and B̂ = (b̂ij)n×n

with b̂ij = max{|bij |, |bij |}.

Theorem 4.3 (see [4]). For the neural network defined by (4.5), assume that f ∈ L. Then, neural
network model (4.5) is globally asymptotically stable if the following condition holds:

ε = dm − LM‖Q‖2 − LM

√
n

((
1 − p

)√‖R‖∞ + p
√
‖R‖1

)
> 0, (4.7)

where dm = min(di), LM = max(li), 0 ≤ p ≤ 1,

‖Q‖2 = min
{
‖A∗‖2 + ‖A∗‖2,

√
‖A∗‖22 + ‖A∗‖22 + 2

∥∥AT∗ |A∗|∥∥2,
∥∥∥Â
∥∥∥
2

}
(4.8)

withA∗ = (1/2)(A+A),A∗ = (1/2)(A−A), Â = (âij)n×n with âij = max{|aij |, |aij |}, R = (rij)n×n
with rij = b̂2ij and b̂ij = max{|bij |, |bij |}.

Theorem 4.4 (see [8]). Under assumption (H1), if there exists a positive definite diagonal matrix
P = diag(p1, p2, . . . , pn), such that

Π = 2PDL−1 − S − 2‖P‖2(‖B∗‖2 + ‖B∗‖2)I > 0, (4.9)

where S is defined in Lemma 2.5, then system (4.5) is globally robustly exponentially stable.

Example 4.5. In system (4.5), we choose

A =

⎛
⎜⎜⎝

−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

−1 −1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, A = −A, B = −B,

D = diag(8, 3, 7, 7.5), Ji = 0, fi(x) =
1
2
(|x + 1| + |x − 1|), τi = 1 (i = 1, 2, 3, 4).

(4.10)

It is clear that li = 1 (i = 1, 2, 3, 4). Solving the optimization problem (2.3), we obtain

P = diag(0.4556, 0.9154, 0.5650, 0.5271), R = diag(0.8122, 0.5392, 1.1254, 1.1470),

Q = diag(0.4983, 0.1274, 0.8477, 0.8710),

Ω =

⎛
⎜⎜⎜⎜⎝

3.0558 −1.3709 −1.0206 −0.9826
−1.3709 2.9948 −1.4804 −1.4424
−1.0206 −1.4804 4.8070 −1.0921
−0.9826 −1.4424 −1.0921 4.8338

⎞
⎟⎟⎟⎟⎠

> 0.

(4.11)
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Figure 2: Time responses of the state variables x(t)with initial value φ(s) = (0.6, 1.6, 1,−0.5)T for s ∈ [−1, 0]
in Example 4.5.

By Theorem 3.1, system (4.5) is globally robustly exponentially stable. To illustrate the
theoretical result, we present a simulation with A = A, B = B, and D = D. We
can find that the neuron vector x(t) converges to the unique equilibrium point x∗ =
(1.2000, 1.6000, 0.6857, 0.6400)T (see Figure 2).

Now, applying the result of Theorem 4.2 to this example yields

δ = dm − LM

√
‖A∗‖22 + ‖A∗‖22 + 2

∥∥AT∗ |A∗|∥∥2 − LM

√∥∥∥B̂
∥∥∥
1

∥∥∥B̂
∥∥∥
∞
= dm − 6. (4.12)

The choice dm > 6 ensures the global robust stability of system (4.5).
If we apply the result of Theorem 4.3 to this example and choose p = 1, which can

guarantee dm reaches the minimum value when ε > 0, then we have

ε = dm − LM‖Q‖2 − LM

√
n

((
1 − p

)√‖R‖∞ + p
√
‖R‖1

)
= dm − 6, (4.13)

from which we can obtain that system (4.5) is globally robustly exponentially stable for dm >
6.

In this example, noting that system (4.5) is globally robustly exponentially stable for
d2 = 3 in our result, hence, for the network parameters of this example, our result derived in
Theorem 3.1 imposes a less restrictive condition on dm than those imposed by Theorems 4.2
and 4.3.
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Example 4.6. In system (4.5), we choose

A =
(
0.8 0.6
0.8 1

)
, A =

(
1 1
1 1

)
, B =

(−0.9 −0.8
−0.2 −0.6

)
, B =

(
0.6 0.5
1 0.8

)
,

D = diag(3.8, 3.8), Ji = 0, fi(x) =
1
2
(|x + 1| + |x − 1|), τi = 1 (i = 1, 2).

(4.14)

Using Theorem 4.4, one can obtain

Π =
(
7.6p1 0
0 7.6p2

)
−
(

2p1 p1 + p2
p1 + p2 2p2

)
− 3.6077 ×max

{
p1, p2

} × I

≤
(

1.9923p1 −(p1 + p2
)

−(p1 + p2
)

1.9923p2

)
.

(4.15)

Clearly, there do not exist suitable positive constants p1 and p2 such that Π > 0. As a result,
Theorem 4.4 cannot be applied to this example.

Solving the optimization problem (2.3), we obtain that

P = diag(1.7909, 1.5070), R = diag(2.0000, 1.9893), Q = diag(0.0001, 0.0001),

Ω =
(

5.0299 −4.5224
−4.5224 4.0661

)
> 0.

(4.16)

By Theorem 3.1, system (4.5) is globally robustly exponentially stable.

5. Conclusion

In this paper, we discussed a class of interval neural networks with time-varying delays and
finite as well as infinite distributed delays. By employing H-matrix and M-matrix theory,
homeomorphism techniques, Lyapunov functional method, and LMI approach, sufficient
conditions for the existence, uniqueness, and global robust exponential stability of the equi-
librium point for the neural networks were established. It was shown that the obtained results
improve and generalize the previously published results. Therefore, our results extend the
application domain of neural networks to a larger class of engineering problems. Numerical
simulations demonstrated the main results. At last, in order to guide the readers to future
works of robust stability of neural networks, we would like to point out that the key factor
should be the determination of new upper bound norms for the intervalized connection mat-
rices. Such new upper bound estimations for intervalized connection matrices might help us
to derive new sufficient conditions for robust stability of delayed neural networks.
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