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Two hybrid algorithms for the variational inequalities over the common fixed points set
of nonexpansive semigroups are presented. Strong convergence results of these two hybrid
algorithms have been obtained in Hilbert spaces. The results improve and extend some
corresponding results in the literature.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Recall that a
mapping T : C → C is called nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥ (1.1)

for every x, y ∈ C. A family S = {T(τ) : 0 < τ < ∞} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ C,

(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0,

(iii) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖ for all x, y ∈ C, s ≥ 0,

(iv) for all x ∈ C, s �→ T(s)x is continuous.

We denote by Fix(S) the set of all common fixed points of S, that is, Fix(S) =
⋂

0≤τ<∞ Fix(T(τ)).
It is known that Fix(S) is closed and convex.
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Approximation of fixed points of nonexpansive mappings has been considered
extensively by many authors, see, for instance, [1–18]. Nonlinear ergodic theorem for
nonexpansive semigroups have been researched by some authors, see, for example, [19–23].
Our main purpose in the present paper is devoted to finding the common fixed points of
nonexpansive semigroups.

Let F : C → C be a nonlinear operator. The variational inequality problem is
formulated as finding a point x∗ ∈ C such that

VI(F,C) : 〈Fx∗, υ − x∗〉 ≥ 0, ∀υ ∈ C. (1.2)

Now it is well known that VI problem is an interesting problem and it covers as diverse
disciplines as partial differential equations, optimal control, optimization, mathematical
programming, mechanics, and finance. Several numerical methods including the projection
and its variant forms have been developed for solving the variational inequalities and related
problems, see [24–41].

It is clear that the VI(F,C) is equivalent to the fixed point equation

x∗ = PC

[

x∗ − μF(x∗)
]

, (1.3)

where PC is the projection of H onto the closed convex set C and μ > 0 is an arbitrarily
fixed constant. So, fixed point methods can be implemented to find a solution of the VI(F,C)
provided F satisfies some conditions and μ > 0 is chosen appropriately. The fixed point
formulation (1.3) involves the projection PC, which may not be easy to compute, due to
the complexity of the convex set C. In order to reduce the complexity probably caused by
the projection PC, Yamada [24] (see also [42]) recently introduced a hybrid steepest-descent
method for solving the VI(F,C).

Assume that F is an η-strongly monotone and κ-Lipschitzian mapping with κ > 0, η >
0 on C. An equally important problem is how to find an approximate solution of the VI(F,C)
if any. A great deal of effort has been done in this problem; see [43, 44].

Take a fixed number μ such that 0 < μ < 2η/κ2. Assume that a sequence {λn} of real
numbers in (0, 1) satisfies the following conditions:

(C1) limn→∞λn = 0,

(C2)
∑∞

n=0 λn = ∞,

(C3) limn→∞(λn − λn+1)/λ2n = 0.

Starting with an arbitrary initial guess x0 ∈ H, one can generate a sequence {xn} by
the following algorithm:

xn+1 = Txn − λn+1μF(Txn), n ≥ 0. (1.4)

Yamada [24] proved that the sequence {xn} generated by (1.4) converges strongly to the
unique solution of the VI(F,C). Xu and Kim [30] proved the strong convergence of {xn}
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to the unique solution of the VI(F,C) if {λn} satisfies conditions (C1), (C2), and (C4):
limn→∞λn/λn+1 = 1, or equivalently, limn→∞(λn − λn+1)/λn+1 = 1. Recently, Yao et al. [25]
presented the following hybrid algorithm:

yn = xn − λnF(xn),

xn+1 = (1 − αn)yn + αnWnyn, n ≥ 0,
(1.5)

where F is a κ-Lipschitzian and η-strongly monotone operator onH andWn is aW-mapping.
It is shown that the sequences {xn} and {yn} defined by (1.5) converge strongly to x∗ ∈
⋂∞

n=1 F(Tn), which solves the following variational inequality:

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈
∞⋂

n=1

F(Tn). (1.6)

Very recently, Wang [26] proved that the sequence {yn} generated by the iterative algorithm
(1.5) converges to a common fixed point of an infinite family of nonexpansive mappings
under some weaker assumptions.

Motivated and inspired by the above works, in this paper, we introduce two hybrid
algorithms for finding a common fixed point of a nonexpansive semigroup {T(τ)}τ≥0 in
Hilbert spaces. We prove that the presented algorithms converge strongly to a common fixed
point x∗ of {T(τ)}τ≥0. Such common fixed point x∗ is the unique solution of some variational
inequality in Hilbert spaces.

2. Preliminaries

In this section, we will collect some basic concepts and several lemmas that will be used in
the next section.

Suppose that H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For the
sequence {xn} in H, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to
x. xn → x means that {xn} converges strongly to x. We denote by ωw(xn) the weak ω-limit
set of {xn}, that is

ωw(xn) =
{

x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}
}

. (2.1)

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping F : C → C
is called κ-Lipschitzian if there exists a positive constant κ such that

∥
∥Fx − Fy

∥
∥ ≤ κ

∥
∥x − y

∥
∥, ∀x, y ∈ C. (2.2)

F is said to be η-strongly monotone if there exists a positive constant η such that

〈

Fx − Fy, x − y
〉 ≥ η

∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (2.3)
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The following equalities are well known:

∥
∥x − y

∥
∥
2 = ‖x‖2 − 2

〈

x, y
〉

+
∥
∥y

∥
∥
2
,

∥
∥λx + (1 − λ)y

∥
∥
2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥
2 − λ(1 − λ)

∥
∥x − y

∥
∥
2

(2.4)

for all x, y ∈ H and λ ∈ [0, 1] (see [45]).
In the sequel, we will make use of the following well-known lemmas.

Lemma 2.1 (see [46]). Let C be a nonempty bounded closed convex subset of H and let S = {T(s) |
0 ≤ s < ∞} be a nonexpansive semigroup on C. Then, for any h ≥ 0,

lim
t→∞

sup
x∈C

∥
∥
∥
∥
∥

1
t

∫ t

0
T(s)x ds − T(h)

(

1
t

∫ t

0
T(s)x ds

)∥
∥
∥
∥
∥
= 0. (2.5)

Lemma 2.2 (see [47]). Assume that T : H → H is a nonexpansive mapping. If T has a fixed point,
then I −T is demiclosed. That is, whenever {xn} is a sequence inH weakly converging to some x ∈ H
and the sequence {(I − T)xn} strongly converges to some y, it follows that (I − T)x = y. Here, I is
the identity operator of H.

Lemma 2.3 (see [27]). Let {γn} be a real sequence satisfying 0 < lim infn→∞γn ≤ lim supn→∞γn <
1. Assume that {xn} and {zn} are bounded sequences in Banach space E, which satisfy the following
condition: xn+1 = (1−γn)xn+γnzn. If lim supn→∞(‖zn+1−zn‖)−‖xn+1−xn‖) ≤ 0, then limn→∞‖xn−
zn‖ = 0.

Lemma 2.4 (see [48]). Let F be a κ-Lipschitzian and η-strongly monotone operator on a Hilbert
space H with 0 < η ≤ κ and 0 < t < η/κ2. Then, S = (I − tF) : H → H is a contraction with

contraction coefficient τt =
√

1 − t(2η − tκ2).

Lemma 2.5 (see [49]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1 − λn)an + λnδn + γn, n ≥ 0, (2.6)

where {λn} and {γn} satisfy the following conditions:
(i) λn ⊂ [0, 1] and

∑∞
n=0 λn = ∞,

(ii) lim supn→∞δn ≤ 0 or
∑∞

n=0 λnδn < ∞,

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn < ∞.

Then, limn→∞an = 0.

3. Main Results

In this section we will show our main results.

Theorem 3.1. Let H be a real Hilbert space. Let S = {T(τ) | 0 ≤ τ < ∞} : H → H be a
nonexpansive semigroup such that Fix(S)/= ∅. Let F be a κ-Lipschitzian and η-strongly monotone
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operator on H with 0 < η ≤ κ. Let {γt}0<t<1 be a continuous net of positive real numbers such that

limt→ 0+γt = +∞. Putting τt =
√

1 − t(2η − tκ2), for each t ∈ (0, η/κ2), let the net {xt} be defined by
the following implicit scheme:

xt =
1
γt

∫ γt

0
T(τ)[(I − tF)xt]dτ. (3.1)

Then, as t → 0+, the net {xt} converges strongly to a fixed point x∗ of S, which is the unique solution
of the following variational inequality:

〈Fx∗, x∗ − u〉 ≤ 0, ∀u ∈ Fix(S). (3.2)

Proof. First, we note that the net {xt} defined by (3.1) is well defined. We define a mapping

Ptx :=
1
γt

∫ γt

0
T(τ)[(I − tF)x]dτ, t ∈

(

0,
η

κ2

)

, x ∈ H. (3.3)

It follows that

∥
∥Ptx − Pty

∥
∥ ≤ 1

γt

∫ γt

0

∥
∥T(τ)[(I − tF)x] − T(τ)

[

(I − tF)y
]∥
∥dτ

≤ ∥
∥(I − tF)x − (I − tF)y

∥
∥.

(3.4)

Obviously, Pt is a contraction. Indeed, from Lemma 2.4, we have

∥
∥Ptx − Pty

∥
∥ ≤ ∥

∥(I − tF)x − (I − tF)y
∥
∥ ≤ ∥

∥x − y
∥
∥, (3.5)

for all x, y ∈ C. So it has a unique fixed point. Therefore, the net {xt} defined by (3.1) is well
defined.

We prove that {xt} is bounded. Taking u ∈ Fix(S) and using Lemma 2.4, we have

‖xt − u‖ =
∥
∥
∥
∥

1
γt

∫ γt

0
T(τ)[(I − tF)xt]dτ − u

∥
∥
∥
∥

=
∥
∥
∥
∥

1
γt

∫ γt

0
T(τ)[(I − tF)xt]dτ − 1

γt

∫ γt

0
T(τ)udτ

∥
∥
∥
∥

≤ 1
γt

∫ γt

0
‖T(τ)[(I − tF)xt]dτ − T(τ)u‖dτ

≤ ‖(I − tF)xt − u‖
≤ ‖(I − tF)xt − (I − tF)u − tFu‖
≤ τt‖xt − u‖ + t‖Fu‖.

(3.6)
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It follows that

‖xt − u‖ ≤ t

1 − τt
‖Fu‖. (3.7)

Observe that

lim
t→ 0+

t

1 − τt
=

1
η
. (3.8)

Thus, (3.7) and (3.8) imply that the net {xt} is bounded for small enough t. Without loss of
generality, we may assume that the net {xt} is bounded for all t ∈ (0, η/κ2). Consequently,
we deduce that {Fxt} is also bounded.

On the other hand, from (3.1), we have

‖xt − T(τ)xt‖ ≤
∥
∥
∥
∥
T(τ)xt − T(τ)

(
1
γt

∫ γt

0
T(τ)xtdτ

)∥
∥
∥
∥

+
∥
∥
∥
∥

1
γt

∫ γt

0
T(τ)xtdτ − xt

∥
∥
∥
∥
+
∥
∥
∥
∥
T(τ)

(
1
γt

∫ γt

0
T(τ)xtdτ

)

− 1
γt

∫ γt

0
T(τ)xtdτ

∥
∥
∥
∥

≤ 2
∥
∥
∥
∥

1
γt

∫ γt

0
T(τ)xtdτ − xt

∥
∥
∥
∥

+
∥
∥
∥
∥
T(τ)

(
1
γt

∫ γt

0
T(τ)xtdτ

)

− 1
γt

∫ γt

0
T(τ)xtdτ

∥
∥
∥
∥

= 2
∥
∥
∥
∥

1
γt

∫ γt

0
T(τ)xtdτ − 1

γt

∫ γt

0
T(τ)[(I − tF)]xtdτ

∥
∥
∥
∥

+
∥
∥
∥
∥
T(τ)

(
1
γt

∫ γt

0
T(τ)xtdτ

)

− 1
γt

∫ γt

0
T(τ)xtdτ

∥
∥
∥
∥

≤ 2
1
γt

∫ γt

0
‖T(τ)xt − T(τ)[(I − tF)xt]‖dτ

+
∥
∥
∥
∥
T(τ)

(
1
γt

∫ γt

0
T(τ)xtdτ

)

− 1
γt

∫ γt

0
T(τ)xtdτ

∥
∥
∥
∥

≤ 2t‖Fxt‖ +
∥
∥
∥
∥
T(τ)

(
1
γt

∫ γt

0
T(τ)xtdτ

)

− 1
γt

∫ γt

0
T(τ)xtdτ

∥
∥
∥
∥
.

(3.9)

This together with Lemma 2.1 implies that

lim
t→ 0+

‖xt − T(τ)xt‖ = 0. (3.10)

Let {tn} ⊂ (0, 1) be a sequence such that tn → 0 as n → ∞. Put xn := xtn . Since {xn} is
bounded, without loss of generality, we may assume that {xn} converges weakly to a point
x̃ ∈ C. Noticing (3.10), we can use Lemma 2.2 to get x̃ ∈ Fix(S).
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Again, from (3.1), we have

‖xt − u‖2 =
∥
∥
∥
∥

1
γt

∫ γt

0
T(τ)[(I − tF)xt]dτ − u

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

1
γt

∫ γt

0
[T(τ)[(I − tF)xt] − T(τ)u]dτ

∥
∥
∥
∥

2

≤ ‖(I − tF)xt − (I − tF)u − tFu‖2

≤ τ2t ‖xt − u‖2 + t2‖Fu‖2 + 2t〈(I − tF)u − (I − tF)xt, Fu〉
≤ τt‖xt − u‖2 + t2‖Fu‖2 + 2t〈u − xt, Fu〉 + 2t2〈Fxt − Fu, Fu〉
≤ τt‖xt − u‖2 + t2‖Fu‖2 + 2t〈u − xt, Fu〉 + 2κt2‖xt − u‖‖Fu‖.

(3.11)

Therefore,

‖xt − u‖2 ≤ t2

1 − τt
‖Fu‖2 + 2t

1 − τt
〈u − xt, Fu〉 + 2t2κ

1 − τt
‖xt − u‖‖Fu‖. (3.12)

It follows that

‖xn − x̃‖2 ≤ t2n
1 − τtn

‖Fx̃‖2 + 2tn
1 − τtn

〈x̃ − xn, Fx̃〉 +
2t2nκ
1 − τtn

‖xn − x̃‖‖Fx̃‖. (3.13)

Thus, xn ⇀ x̃ implies that xn → x̃.
Again, from (3.12), we obtain

‖xn − u‖2 ≤ t2n
1 − τtn

‖Fu‖2 + 2tn
1 − τtn

〈u − xn, Fu〉 +
2t2nκ
1 − τtn

‖xn − u‖‖Fu‖. (3.14)

It is clear that limn→∞(t2n/(1 − τtn)) = 0, limn→∞(2tn/(1 − τtn)) = 2/η, and limn→∞(2t2nκ/(1 −
τtn)) = 0. We deduce immediately from (3.14) that

〈Fu, x̃ − u〉 ≤ 0, (3.15)

which is equivalent to its dual variational inequality

〈Fx̃, x̃ − u〉 ≤ 0. (3.16)

That is, x̃ ∈ Fix(S) is a solution of the variational inequality (3.2).
Suppose that x∗ ∈ Fix(S) and x̃ ∈ Fix(S) both are solutions to the variational inequality

(3.2); then

〈Fx∗, x∗ − x̃〉 ≤ 0,

〈Fx̃, x̃ − x∗〉 ≤ 0.
(3.17)

Adding up (3.17) and the last inequality yields

〈Fx∗ − Fx̃, x∗ − x̃〉 ≤ 0. (3.18)
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The strong monotonicity of F implies that x∗ = x̃ and the uniqueness is proved. Later,
we use x∗ ∈ Fix(S) to denote the unique solution of (3.2).

Therefore, x̃ = x∗ by uniqueness. In a nutshell, we have shown that each cluster point
of {xt}(t → 0) equals x∗. Hence xt → x∗ as t → 0. This completes the proof.

Next we introduce an explicit algorithm for finding a solution of the variational
inequality (3.2).

Algorithm 3.2. For given x0 ∈ C arbitrarily, define a sequence {xn} iteratively by

yn = xn − λnF(xn),

xn+1 = (1 − αn)yn + αn
1
tn

∫ tn

0
T(τ)yndτ, n ≥ 0,

(3.19)

where {λn} and {tn} are sequences in (0,∞) and {αn} is a sequence in [0, 1].

Theorem 3.3. Let H be a real Hilbert space. Let F be a κ-Lipschitzian and η-strongly monotone
operator on H with 0 < η ≤ κ. Let S = {T(τ) | 0 ≤ τ < ∞} : H → H be a nonexpansive semigroup
with Fix(S)/= ∅. Assume that

(i) lim supn→∞λn < η/κ2 and
∑∞

n=1 λn = ∞,

(ii) limn→∞tn = ∞ and limn→∞(tn+1/tn) = 1,

(iii) 0 < γ ≤ lim infn→∞αn ≤ lim supn→∞αn < 1, for some γ ∈ (0, 1).

Then, the sequences {xn} and {yn} generated by (3.19) converge strongly to x∗ ∈ Fix(S) if
and only if λnF(xn) → 0, where x∗ solves the variational inequality (3.2).

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that
λnF(xn) → 0. First, we show that xn is bounded. In fact, letting u ∈ Fix(S), we have

‖xn+1 − u‖ =

∥
∥
∥
∥
∥
(1 − αn)yn +

αn

tn

∫ tn

0
T(τ)yndτ − u

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
(1 − αn)

(

yn − u
)

+ αn

(

1
tn

∫ tn

0
T(τ)yndτ − u

)∥
∥
∥
∥
∥

≤ (1 − αn)
∥
∥yn − u

∥
∥ + αn

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(τ)yndτ − u

∥
∥
∥
∥
∥

≤ (1 − αn)
∥
∥yn − u

∥
∥ + αn

1
tn

∫ tn

0

∥
∥T(τ)yn − T(τ)u

∥
∥dτ

≤ (1 − αn)
∥
∥yn − u

∥
∥ + αn

∥
∥yn − u

∥
∥

=
∥
∥yn − u

∥
∥.

(3.20)
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From condition (i), without loss of generality, we can assume that λn ≤ a < η/κ2 for all n. By
(3.19) and Lemma 2.4, we have

∥
∥yn − u

∥
∥ = ‖xn − λnF(xn) − u‖
= ‖(I − λnF)xn − (I − λnF)u − λnFu‖
≤ τλn‖xn − u‖ + λn‖Fu‖,

(3.21)

where τλn =
√

1 − λn(2η − λnκ2) ∈ (0, 1).
Then, from (3.20) and (3.21), we obtain

‖xn+1 − u‖ ≤ τλn‖xn − u‖ + λn‖Fu‖

= [1 − (1 − τλn)]‖xn − u‖ + (1 − τλn)
λn

1 − τλn
‖Fu‖

≤ max
{

‖xn − u‖, λn‖Fu‖
1 − τλn

}

.

(3.22)

Since limn→∞(λn/(1 − τλn)) = 1/η, we have by induction

‖xn+1 − u‖ ≤ max{‖x0 − u‖,M1‖Fu‖}, (3.23)

where M1 = supn{λn/(1 − τλn)} < ∞. Hence, {xn} is bounded. We also obtain that {yn},
{T(τ)yn}, and {Fxn} are all bounded.

Define xn+1 = (1 − αn)xn + αnzn for all n. Observe that

‖zn+1 − zn‖ =
∥
∥
∥
∥

xn+2 − (1 − αn+1)xn+1

αn+1
− xn+1 − (1 − αn)xn

αn

∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(1 − αn+1)yn+1 + αn+1(1/tn+1)
∫ tn+1
0 T(τ)yn+1dτ − (1 − αn+1)xn+1

αn+1

− (1 − αn)yn + αn(1/tn)
∫ tn
0 T(τ)yndτ − (1 − αn)xn

αn

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

αn+1(1/tn+1)
∫ tn+1
0 T(τ)yn+1dτ − (1 − αn+1)λn+1F(xn+1)

αn+1

− αn(1/tn)
∫ tn
0 T(τ)yndτ − (1 − αn)λnF(xn)

αn

∥
∥
∥
∥
∥

≤ 1 − αn+1

αn+1
‖λn+1F(xn+1)‖ + 1 − αn

αn
‖λnF(xn)‖

+

∥
∥
∥
∥
∥

1
tn+1

∫ tn+1

0
T(τ)yn+1dτ − 1

tn

∫ tn

0
T(τ)yndτ

∥
∥
∥
∥
∥
.

(3.24)
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Next, we estimate ‖(1/tn+1)
∫ tn+1
0 T(τ)yn+1dτ − (1/tn)

∫ tn
0 T(τ)yndτ‖. As a matter of fact, we

have

∥
∥
∥
∥
∥

1
tn+1

∫ tn+1

0
T(τ)yn+1dτ − 1

tn

∫ tn

0
T(τ)yndτ

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

1
tn+1

∫ tn+1

0
T(τ)yn+1dτ − 1

tn+1

∫ tn+1

0
T(τ)yndτ

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
tn+1

∫ tn+1

0
T(τ)yndτ − 1

tn

∫ tn

0
T(τ)yndτ

∥
∥
∥
∥
∥

≤ ∥
∥yn+1 − yn

∥
∥ +

∥
∥
∥
∥
∥

1
tn+1

∫ tn+1

0
T(τ)yndτ − 1

tn

∫ tn

0
T(τ)yndτ

∥
∥
∥
∥
∥

≤ ∥
∥yn+1 − yn

∥
∥ +

∣
∣
∣
∣

1
tn+1

− 1
tn

∣
∣
∣
∣

∥
∥
∥
∥
∥

∫ tn

0
T(τ)yndτ

∥
∥
∥
∥
∥
+

1
tn+1

∥
∥
∥
∥
∥

∫ tn+1

tn

T(τ)yndτ

∥
∥
∥
∥
∥

≤ ‖xn+1 − λn+1F(xn+1) − xn + λnF(xn)‖ +
∣
∣
∣
∣

tn
tn+1

− 1
∣
∣
∣
∣
M2

≤ ‖xn+1 − xn‖ + ‖λn+1F(xn+1)‖ + ‖λnF(xn)‖ +M2

∣
∣
∣
∣

tn
tn+1

− 1
∣
∣
∣
∣
,

(3.25)

where M2 = supn{2‖T(τ)yn‖} < ∞. From (3.24) and (3.25), we have

‖zn+1 − zn‖ ≤ 1 − γ

γ
‖λn+1F(xn+1)‖ +

1 − γ

γ
‖λnF(xn)‖ + ‖xn+1 − xn‖ + ‖λn+1F(xn+1)‖

+ ‖λnF(xn)‖ +M2

∣
∣
∣
∣

tn
tn+1

− 1
∣
∣
∣
∣

≤ 1
γ
‖λn+1F(xn+1)‖ + 1

γ
‖λnF(xn)‖ + ‖xn+1 − xn‖ +M2

∣
∣
∣
∣

tn
tn+1

− 1
∣
∣
∣
∣
.

(3.26)

Namely,

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ 1
γ
‖λn+1F(xn+1)‖ + 1

γ
‖λnF(xn)‖ +M2

∣
∣
∣
∣

tn
tn+1

− 1
∣
∣
∣
∣
. (3.27)

Since λnF(xn) → 0 and (tn/tn+1) − 1 → 0, we get

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.28)

Consequently, by Lemma 2.3, we deduce limn→∞‖zn − xn‖ = 0. Therefore,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

αn‖zn − xn‖ = 0. (3.29)
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Next, we claim that limn→∞‖xn − T(τ)xn‖ = 0. Observe that

‖T(τ)xn − xn‖ ≤
∥
∥
∥
∥
∥
T(τ)xn − T(τ)

(

1
tn

∫ tn

0
T(τ)xndτ

)∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(τ)xndτ − xn

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
T(τ)

(

1
tn

∫ tn

0
T(τ)xndτ

)

− 1
tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥

≤ 2

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(τ)xndτ − xn

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
T(τ)

(

1
tn

∫ tn

0
T(τ)xndτ

)

− 1
tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥
.

(3.30)

Note that
∥
∥
∥
∥
∥
xn − 1

tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥
≤ ‖xn − xn+1‖ +

∥
∥
∥
∥
∥
xn+1 − 1

tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥

≤ ‖xn − xn+1‖ + (1 − αn)

∥
∥
∥
∥
∥
yn − 1

tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥

+ αn

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(τ)xndτ − 1

tn

∫ tn

0
T(τ)yndτ

∥
∥
∥
∥
∥

≤ ‖xn − xn+1‖ + (1 − αn)
∥
∥yn − xn

∥
∥

+ (1 − αn)

∥
∥
∥
∥
∥
xn − 1

tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥
+ αn

∥
∥yn − xn

∥
∥

≤ ‖xn − xn+1‖ +
∥
∥yn − xn

∥
∥

+ (1 − αn)

∥
∥
∥
∥
∥
xn − 1

tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥
.

(3.31)

It follows that
∥
∥
∥
∥
∥
xn − 1

tn

∫ tn

0
T(τ)xndτ

∥
∥
∥
∥
∥
≤ 1

αn

(‖xn − xn+1‖ +
∥
∥yn − xn

∥
∥
)

=
1
αn

(‖xn − xn+1‖ + ‖λnF(xn)‖)

−→ 0.

(3.32)

By Lemma 2.1, (3.30), and (3.32), we derive

lim
n→∞

‖T(τ)xn − xn‖ = 0. (3.33)
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Next, we show that lim supn→∞〈Fx∗, x∗ − xn〉 ≤ 0, where x∗ = limn→∞xtn and xtn

is defined by xtn = (1/tn)
∫ tn
0 T(τ)[(I − tnF)xtn]dτ . Since {xn} is bounded, there exists a

subsequence {xnk} of {xn} that converges weakly to ω. It is clear that T(τ)xnk ⇀ ω. From
Lemma 2.2, we have ω ∈ Fix(S). Hence, by Theorem 3.1, we have

lim sup
n→∞

〈Fx∗, x∗ − xn〉 = lim
k→∞

〈Fx∗, x∗ − xnk〉 = 〈Fx∗, x∗ −ω〉 ≤ 0. (3.34)

Finally, we prove that {xn} converges strongly to x∗ ∈ Fix(S). From (3.19), we have

‖xn+1 − x∗‖2 ≤ (1 − αn)
∥
∥yn − x∗∥∥2 + αn

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(τ)yndτ − x∗

∥
∥
∥
∥
∥

2

≤ (1 − αn)
∥
∥yn − x∗∥∥2 + αn

1
tn

∫ tn

0

∥
∥T(τ)yn − T(τ)x∗∥∥2

dτ

≤ ∥
∥yn − x∗∥∥2

= ‖xn − λnF(xn) − x∗‖2

= ‖(I − λnF)xn − (I − λnF)x∗ − λnFx
∗‖2

≤ τ2λn‖xn − x∗‖2 + λ2n‖F(x∗)‖2

+ 2λn〈(I − λnF)x∗ − (I − λnF)xn, F(x∗)〉

≤ τλn‖xn − x∗‖2 + λ2n‖F(x∗)‖2 + 2λn〈x∗ − xn, Fx
∗〉

+ 2λn〈λnFxn, Fx
∗〉 − 2λ2n‖Fx∗‖2

≤ [1 − (1 − τλn)]‖xn − x∗‖2 + 2λn〈x∗ − xn, Fx
∗〉

+ 2λn‖λnF(xn)‖‖Fx∗‖ − λ2n‖Fx∗‖2

≤ [1 − (1 − τλn)]‖xn − x∗‖2

+ (1 − τλn)
[

2λn
1 − τλn

〈x∗ − xn, Fx
∗〉 + 2λn‖Fx∗‖

1 − τλn
‖λnFxn‖

]

= (1 − δn)‖xn − x∗‖2 + δnσn,

(3.35)

where δn = 1 − τλn and σn = (2λn/1 − τλn)〈x∗ − xn, Fx
∗〉 + (2λn‖Fx∗‖/(1 − τλn))‖λnFxn‖.

Obviously, we can see that
∑∞

n=1 δn = ∞ and lim supn→∞σn ≤ 0. Hence, all conditions of
Lemma 2.5 are satisfied. Therefore, we immediately deduce that the sequence {xn} converges
strongly to x∗ ∈ Fix(S).

Observe that

∥
∥yn − x∗∥∥ ≤ ∥

∥yn − xn

∥
∥ + ‖xn − x∗‖ ≤ ‖λnF(xn)‖ + ‖xn − x∗‖ −→ 0 (n −→ ∞). (3.36)
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Consequently, it is clear that {yn} converges strongly to x∗ ∈ Fix(S). From x∗ =
limt→ 0xt and Theorem 3.1, we get that x∗ is the unique solution of the variational inequality

〈Fx∗, x∗ − u〉 ≤ 0, ∀u ∈ Fix(S). (3.37)

This completes the proof.
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