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We estimate the dimension of the global attractor of an evolution equation by the study of the
evolution of the n-dimensional volumes under the flow.We compare these results with the estimate
of the dimension of the inertial manifold.

1. Introduction

One of the most interesting problems in the analysis of partial differential equations is the
study of the asymptotic behavior of solutions. Guided by the finite-dimensional case, in the
last decades, the concept of global attractor was introduced in order to study the long-term
dynamics of dissipative equations (see, e.g., [1, 2] and the references therein). This theory
has been generalized to the case on non-autonomous systems by introducing the definition
of uniform attractor; see, for example, the interesting article [3] in which a reaction diffusion
equation is studied with nonlinear boundary conditions in competitions with the dissipative
terms. However, the existence of uniform attractors fails in many cases and that is the reason
why the new definition of Pullback Attractor is introduced (see [4]). This new concept works
for both the non-autonomous (see [5]) and the random systems, for parabolic (see [6]), and
hyperbolic stochastic equations (see [7]) in bounded and in unbounded domains. A further
generalization of the concept of attractor to the setting of multivalued processes can be seen
in [8], and an application to the case of 3D Navier Stokes systems can be seen in [9].

Once the existence of a global attractor has been established, in order to analyze
its structure, it is a common question to investigate the (fractal) dimension of it. The
classical method to do that consists in the study of the contraction of an n-dimensional
volume element under the action of the flow (see [1, 2]). This is a very sharp method that
works also in the case of non-autonomous systems; see, for instance, [5] in which also is
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pointed out the influence of the geometry of the domain in determining the dimension of
attractors.

This method also works in numerical context; in fact there are also numerical schemes
(see, e.g., [10]) that preserve important properties of the solution and that preserve the
dimension of the attractor (see, for instance, [11]).

The disadvantage of the study of volume contraction method is that it requires higher
regularity of the data and the solutions this can be avoided by using the theory of exponential
attractors (see [12]) or the so-called method of l-trajectories (see, e.g., [13]). Both methods
require less regularity and prove finite dimension of the attractor.

In this paper, we will study the dimension of the global attractor of an autonomous
evolution equation by using different methods. The autonomous evolution equation
considered here is a simple model of a dynamical system which presents different time scales
in which the dynamics presents different features. We consider the following fourth-order
evolution equation:

ut = −ε2uxxxx +
1
2
Φ′′(ux)uxx, (x, t) ∈ I × R+,

u(0, x) = u0(x), in I,

u = uxx = 0, in ∂I × R+,

(1.1)

where the function Φ(p) = (p2 − 1)2 is the so-called double well potential and I ⊂ R is an open
interval such that its length |I| ≤ 1. In particular, (1.1) is the L2-gradient flow associated to the
functional:

Fε(u) =
1
2
ε2

∫
I

u2
xxdx +

1
2

∫
I

Φ(ux)dx. (1.2)

In [14] it is studied the global dynamics of an evolution equation like (1.1) with a more
general nonconvex function Φ. They use numerical experiments to discuss the dynamical
behavior of the solutions for small values of ε. In particular it was pointed out the existence
of three different time scales with peculiar dynamic behavior.

In a first time scale of order t > Tε = O(ε2), there is a drastic reduction of the energy
Fε(u0) of the initial data u0 and a formation of microstructure in the region where Φ(·) is not
convex.

In the second time scale of order t > T = O(1), we have that the equation exhibits a
heat equation-like behavior in the convex regions while slow motion in the nonconvex ones.

In the third time scale of order t > 1/Tε = O(ε−2), the infinite dynamical system is
reduced to a finite one. The solution is approximately the union of consecutive segments.
The dynamic is slow and the number of segments decreases letting decrease the number of
freedom degrees of the problem.

We use the following notation throughout the paper. We develop the analysis in the
following spaces:

H = L2(I), V = H2(I). (1.3)
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In [15] the asymptotic behavior of (1.1) was studied and it was proven the existence
of a global attractor for the semigroup associated to (1.1), that is, the semigroup of operators
defined as

S(t) : u0 ∈ H −→ u(t) ∈ H, (1.4)

The main tool in proving the existence of a global attractor is to show the existence of an
absorbing set inH2(I) (see Theorem 1.1 in [1]).

Theorem 1.1 (see [15]). There exist positive constants ri, τi with i = 0, 1, 2 such that

(i) the semigroup S(t) posses an absorbing set inH:

‖S(t)u0‖ ≤ r0, if t ≥ τ0, (1.5)

where

r0 =
(
1 +

|I|
ε2

)1/2

, τ0 =
1
ε2
‖u0‖; (1.6)

(ii) the semigroup S(t) posses an absorbing set inH1
0(I):

‖S(t)u0‖H1
0 (I)

≤ r1, if t ≥ τ1, (1.7)

where

r1 =
{
r20

(
1 +

1
2ε4

)
+
|I|
ε2

}1/2

e, τ1 = τ0 + ε2; (1.8)

(iii) the semigroup S(t) posses an absorbing set inH2(I):

‖S(t)u0‖H2(I) ≤
(
r20 + r21 + r22

)1/2
, if t ≥ τ2, (1.9)

where

r2 =
e2

ε2

{
180r61 +

r20
2

+ |I|ε2
}1/2

, τ2 = τ1 + ε2. (1.10)

Theorem 1.1 let us conclude that the set

Bε = {u ∈ H : ‖ux‖ ≤ r1, ‖uxx‖ ≤ r2} (1.11)
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is absorbing for all the bounded sets of H. In particular the global attractor is given as the
omega limit set of the absorbing set,Aε = ω(B). The authors also obtained in [15] a bound for
the dimension ofAε by proving the existence of an exponential attractor Iε whose dimension
is of order O(ε−10). Moreover, in Bε we have the following estimates for t > τ2:

‖u‖∞ ≤ ‖u‖1/2‖ux‖1/2 ≤ (r0r1)1/2, (1.12)

‖ux‖∞ ≤ ‖ux‖1/2‖uxx‖1/2 ≤ (r1r2)1/2. (1.13)

In accordance with the numerical experiments, the time in which the bounded solutions enter
the absorbing set is of order O(ε−2) (see [14, 15]).

We are interested in finding estimates for the dimension of Aε. In Section 2 we find
an estimate of the fractal and Hausdorff dimension of Aε by studying the evolution of n-
dimension volume elements, this following a classical theory by Temam (see [1]). In Section 3
we prove the existence of an inertial manifold Mε (see [16]) for the system (1.1), that is, a
smooth manifold that attracts all the orbit at an exponential rate and that contains the global
attractor. By estimating the dimension of Mε, we obtain, in another way, a different estimate
of dim(Aε). In Section 4 we study the regularity of the attractor while in the last section we
prove the existence of an absorbing set in L∞(I). This is fundamental information in order to
study the approximation of the attractor (see [17]).

We define the linear operator A = ∂4/∂x4. The set D(A) = {u ∈ H4(I) : u = uxx =
0 in ∂I} is its domain. Also, then (Au, u) = ‖uxx‖2 where ‖ · ‖ := ‖ · ‖L2(I) and the operator
is self-adjoint in D(A). From classical results on solutions of evolution equations (see [18] or
see Theorems 3.1 and 3.3 on [1]), we have the following:

Theorem 1.2. Problem (1.1) admits a unique solution u such that

if u0 ∈ H =⇒ u ∈ C0([0, T],H) ∩ L2(0, T ;V ), ∀T > 0;

if u0 ∈ V =⇒ u ∈ C([0, T], V ) ∩ L2(0, T ;D(A)), ∀T > 0.
(1.14)

2. Dimension of the Attractor

Following [1, 2] we give an estimate of the dimension of the attractor Aε by estimating how
the n-dimensional volume elements are distorted by the flow. We will show the following
theorem

Theorem 2.1. The global attractor Aε of the semigroup has fractal dimension dF(Aε) < 2n where
n : O(ε−1).

Proof. In general if we consider an evolution equation of the type

ut = F(u),

u(0) = u0,
(2.1)

then the idea is to investigate the evolution of n-dimensional infinitesimal volumes and find
the smallest n such that all the n-infinitesimal volumes contract exponentially. Then one may



Abstract and Applied Analysis 5

guess that the attractor does not contain these elements and so that the dimension of Aε is
less than or equal to n. We study the evolution of a set of infinitesimal displacement δx(i)

about a trajectory v(t). In order to do that, we linearize the equation around the solution
v(t) = S(t)u0:

Ut = F ′(S(t)u0)U := L(t;u0)U,

U(0) = ξ,
(2.2)

where F ′ is the Fráchet derivative of F. Each displacement evolves

d

dt
δx(i) = L(t;u0)δx(i). (2.3)

The volume is given by Vn(t) = |δx(1) ∧ · · · ∧ δx(n)|where

∣∣∣δx(1) ∧ · · · ∧ δx(n)
∣∣∣2 = det

((
δx(i), δx(j)

))
i,j

:= detM(t), (2.4)

then (see, e.g., [2] for details)

d

dt
Vn(t) =

1
2
TR

[
M−1 d

dt
M

]
. (2.5)

Then if Pn(t) is the projector on the space spanned by the displacements δx(i) with base
ϕ1(t), . . . , ϕn(t), we have

Vn(t) = Vn(0) exp

(∫ t

0
TR(L(s;u0)Pn(s))ds

)
, (2.6)

and consequently the asymptotic growth rate is given by

lim
t→∞

1
t

∫ t

0
TR(L(s;u0)Pn(s))ds. (2.7)

As we need the maximal growth rate, we compute the sup over the u0 ∈ Aε and all the
n-dimensional projectors:

sup
u0∈Aε

sup
Pn

lim sup
t→+∞

1
t

∫ t

0
TR(L(s;u0)Pn(s))ds := TRn(Aε). (2.8)

In order to have exponential decay, we look for the smallest n such that the number TRn(Aε)
is negative. Thus, using theorem 13.16 page 341 in [2] let us conclude that

dF(Aε) ≤ 2n. (2.9)
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In order to estimate TRn(Aε), we look for an uniform bound of the following expression:

sup
u0∈A

sup
Pn

TR(L(s;u0)Pn(s))ds ≤ C, ∀s, (2.10)

from which we conclude that TRn(A) ≤ C. In our case the linearized equation is

Ut = −ε2Uxxxx − 2Uxx + 6v2
xUxx + 12vxvxxUx.

U(0) = ξ.
(2.11)

In details let ϕ1(t), . . . , ϕn(t) be an orthonormal base for PnL
2(I) then

TR
(
F ′(v)Pn

)
=

n∑
i=1

(
F ′(v)ϕi, ϕi

)
L2(I), (2.12)

with v = S(t)u0,

F ′(v) = −ε2Dxxxx − 2Dxx + 6v2
xDxx + 12vxvxxDx. (2.13)

We estimate the terms separately. The first term

−ε2
n∑
i=1

(
Dxxxxϕi, ϕi

)
= −ε2

n∑
i=1

∥∥ϕixx

∥∥2
. (2.14)

The second term

−2(Dxxϕi, ϕi

)
= 2

∥∥ϕix

∥∥2
L2(I), (2.15)

from which by interpolation we get

−2
n∑
i=1

(
Dxxϕi, ϕi

)
= 2

n∑
i=1

∥∥ϕix

∥∥2
L2(I) ≤ 2

n∑
i=1

∥∥ϕi

∥∥∥∥ϕixx

∥∥

≤ 2

(
n∑
i=1

∥∥ϕi

∥∥2

)1/2( n∑
i=1

∥∥ϕixx

∥∥2

)1/2

= 2n1/2

(
n∑
i=1

∥∥ϕixx

∥∥2

)1/2

≤ ε2

2

n∑
i=1

∥∥ϕixx

∥∥2 +
2n
ε2

.

(2.16)

The last term

n∑
i=1

{
6
∫
I

v2
xϕixxϕidx + 12

∫
I

vxvxxϕixϕidx

}
= −

n∑
i=1

{
6
∫
I

v2
xϕ

2
ixdx

}
(2.17)
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is negative and consequently it can be neglected in the computation. Then we have the
following estimate:

TR
(
F ′(v)Pn

) ≤ −ε2
n∑
i=1

∥∥ϕixx

∥∥2 +
ε2

2

n∑
i=1

∥∥ϕixx

∥∥2 +
2n
ε2

= −ε
2

2

n∑
i=1

∥∥ϕixx

∥∥2 +
2n
ε2

≤ −ε
2

2
λ1n

5 +
2n
ε2

,

(2.18)

where we have used that

−
n∑
i=1

(
Dxxxxϕi, ϕi

) ≤ −λ1n5 (2.19)

and where λj = ((2π)4/|I|4)j4 = λ1j
4 are the eigenvalues of the operator Dxxxx. Since from

(2.18)we have that TR(F ′(v)Pn) is uniformly bounded in time, then we conclude that

TRn(Aε) ≤ −k1n5 + k2, (2.20)

where we have used a Young inequality and the constants k1, k2 are given by

k1 =
ε2λ1
4

,

k2 =
215/4

ε3λ1/41 55/4
.

(2.21)

This (see [1]) also gives an estimate for the Lyapunov exponents μi:

μ1 + · · · + μn ≤ TRn(Aε) ≤ −k1n5 + k2, ∀n ∈ N. (2.22)

Moreover (see [1], Theorem 2.2 page. 396), we obtain an estimate on the dimension ofAε.

Theorem 2.2. Let n ∈ N such that

n − 1 <

(
2k2
k1

)1/5

≤ n, (2.23)

then the n-dimensional volume element in the phase space is exponentially decaying as t → ∞.
Moreover, the global attractorAε has finite dimension: dH(Aε) ≤ n, dF(Aε) ≤ 2n.

Then we have that

n ∼
[
27/20|I|
π51/4

]
ε−1. (2.24)
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From the above expression we have that n = O(ε−1). This provides a much better estimate than the one
obtained in [15] by the fractal dimension of the exponential attractor n∗ = O(ε−10).

3. Estimate via the Existence of the Inertial Manifold

In this section we will show the existence of the inertial manifold Mε for system (1.1). Then
the dimension of Mε will provide a further estimate of the dimension of the global attractor
since Aε ⊂ Mε. In order to carry on our analysis, we follow the strategy explained in [2].

Theorem 3.1. The system (1.1) possesses an inertial manifoldMε having dimension of orderO(ε−19).

One first restricts (1.1) to the absorbing set Bε. Then in order to prove the existence of
Mε one has to check the fulfillment of two conditions. The first condition consists of proving
that the nonlinear term R(u) := (−1/2)Φ′′(ux)uxx of (1.1) is Lipschitz from H2(I) to L2(I):

‖R(u1) − R(u2)‖ ≤ CL‖u1 − u2‖H2(I), (3.1)

∀u, v ∈ Bε ∩H2(I). In particular the constant CL = CL(Bε) depends on the radius of Bε.
The second condition is the so-called strong squeezing property.

Definition 3.2. Let u1, u2 two solutions of (1.1), the strong squeezing property holds if for some N
and K

‖QN(u1(0) − u2(0))‖H2(I) ≤ K‖PN(u1(0) − u2(0))‖H2(I) (3.2)

implies that

‖QN(u1(t) − u2(t))‖H2(I) ≤ K‖PN(u1(t) − u2(t))‖H2(I), ∀t ≥ 0, (3.3)

and furthermore that if

‖QN(u1(t0) − u2(t0))‖H2(I) ≥ K‖PN(u1(t0) − u2(t)0)‖H2(I), (3.4)

then

‖QN(u1(t) − u2(t))‖H2(I) ≤ ‖QN(u1(0) − u2(0))‖H2(I)e
−k̃t, (3.5)

for 0 ≤ t ≤ t0 and some k̃ > 0 and where QN = I − PN .

Again following [2] we have that a sufficient condition to prove that the strong
squeezing property holds is the so-called spectral gap condition:

λ̃N+1 − λ̃N > 2CL

(
λ̃1/2N+1 + λ̃1/2N

)
, (3.6)
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for N sufficiently large and where λ̃k are the eigenvalues of the operator Ã = ε2Dxxxx. The
spectral gap condition will be the second property we will show holds. We divide the proof
into two steps.

3.1. Lipschitz Property for R

Theorem 3.3. Given solutions u1 and u2, then there exists a constant CL > 0 such that

‖R(u1) − R(u2)‖L2(I) ≤ CL‖u1 − u1‖H2(I), (3.7)

where R denotes the nonlinear part of (1.1), that is,

R(u) := −1
2
φ′′(ux)uxx. (3.8)

Proof. First, we suppose that u is a solution of (1.1), then, for any unitary vector v in L2(I),
we have that

〈R(u), v〉 =
∫
I

−1
2
φ′′(ux(s))uxx(s)v(s)ds

= 2
∫
I

(
1 − 3u2

x(s)
)
uxx(s)v(s)ds

= 2
∫
I

uxx(s)v(s)ds − 6
∫
I

u2
x(s)uxx(s)v(s)ds

≤ 2‖uxx‖L2(I)‖v‖L2(I) + 6‖ux‖2∞‖uxx‖L2(I)‖v‖L2(I)

=
(
2 + 6‖ux‖2∞

)
‖v‖L2(I)‖uxx‖L2(I)

≤
(
2 + 6‖ux‖2∞

)
‖v‖L2(I)‖u‖H2(I),

(3.9)

and consequently the nonlinear operator restricted on Bε is bounded from H2(I) → L2(I):

‖R(u)‖L2(I) ≤ (2 + 6r1r2)‖u‖H2(I). (3.10)
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Now, if u1 and u2 are solutions of (1.1), let u := u1 − u2, then we proceed in a similar
manner as before to get that if v ∈ L2(I), then

〈R(u1) − R(u2), v〉 =
∫
I

[
−1
2
φ′′(u1x(s))u1xx(s) +

1
2
φ′′(u2x(s))u2xx(s)

]
v(s)ds

= 2
∫
I

[
1 − 3u2

1x(s)
]
u1xx(s)v(s)ds − 2

∫
I

[
1 − 3u2

2x(s)
]
u2xx(s)v(s)ds

= 2
∫
I

(uxx(s))v(s)ds + 6
∫
I
u2
1x(s)uxx(s)v(s)ds

+ 6
∫
I

ux(s)u2xx(s)v(s)[u1x(s) + u2x(s)]ds

≤ 2‖uxx‖L2(I)‖v‖L2(I) + 6‖uxx‖L2(I)‖v‖L2(I)‖u1x‖2L∞(I)

+ 6‖u2xx‖L2(I)

(∫
I

u2
xv

2(u1x + u2x)2ds
)1/2

≤
[
2 + 6(r1r2)1/2

]
‖u‖H2(I)‖v‖L2(I) + 12r2(r1r2)1/2‖ux‖L∞(I)‖v‖L2(I)

≤
[
2 + (6 + 12r2)(r1r2)1/2

]
‖u‖H2(I)‖v‖L2(I),

(3.11)

where the last inequality follows from (see [19])

‖ux‖L∞(I) ≤ ‖ux‖H1(I) ≤ C‖u‖H2(I). (3.12)

Thus, if we take

CL := 2 + (6 + 12r2)(r1r2)1/2, (3.13)

then we have that

〈R(u1) − R(u2), v〉 ≤ CL‖u1 − u2‖H2(I)‖v‖H2(I), (3.14)

and it follows that the nonlinear functional R is Lipschitz continuous. From the expression of
the radii r1, r2, it results that the Lipschitz constant is of order O(ε−18).

3.2. Spectral Gap Condition

Theorem 3.4. There exists a natural numberN sufficiently large so that

λ̃N+1 − λ̃N > 2CL

(
λ̃1/2N+1 + λ̃1/2N

)
. (3.15)
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Proof. The eigenvalues of the operator A are given by

λ1 =
(2π)4

|I|4
, . . . , λN = λ1N

4, (3.16)

while the eigenvalues of Ã = ε2A are λ̃i = ε2λi. Then the spectral gap condition is

ε2(λN+1 − λN) > 2CLε
(
λ1/2N+1 + λ1/2N

)
. (3.17)

In details we have

ελ1
[
(N + 1)4 −N4

]
> 2CLλ

1/2
1

[
(N + 1)2 +N2

]
, (3.18)

that is,

2N + 1 >
2CL

ελ1/21

=
CL|I|2
2επ2

. (3.19)

Then if N satisfies the previous inequality, we have that

λ̃N+1 − λ̃N > 2CL

(
λ̃1/2N+1 + λ̃1/2N

)
. (3.20)

Thus, the spectral gap condition is satisfied and the existence of the inertial manifold is
assured. This proves Theorem 3.1.

We remark that the dimension of Mε is

N ∼ CL|I|2ε−1 = O
(
ε−19

)
. (3.21)

Then comparing the estimates obtained, we have that we get O(ε−1) by the method of n-
dimensional volume evolution and, respectively, O(ε−10) and O(ε−19) by the existence of the
inertial set Iε and the inertial manifold Mε. It is not a surprise that the dimension of the
inertial manifold is much bigger than that of the inertial set and global attractor since we are
requiring the existence of a smooth structure.

4. Regularity of Attractor and Dimension

In this section we show a result that gives further regularity of the attractor. By a classic
theorem (see [17, 20]), we have the following theorem.

Theorem 4.1. If I is a boundedC∞ domain and if u0 andΦ areC∞ functions, then the global attractor
Aε is a bounded subset ofHk(I) for every k ≥ 0. In particular, if u ∈ Aε, then u ∈ C∞(I).
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This regularity result let us conclude by theorem 15.1 in [17] that for k ≥ 16df(Aε) + 1,
for almost every set x = (x1, . . . , xk) of k points in I, the mapping

u → (u(x1), . . . , u(xk)) (4.1)

is an embedding of Aε into R
k. This gives a parametrization of the attractor Aε and gives

an estimate of the degree of freedom of the system: k = O(ε−1). Consequently if we want to
parameterize the attractor by k equally spaced points in I, it results that each subinterval of
I is of order |I|/k = O(ε) (see [17] for a more detailed discussion). This is in full accordance
with the numerical experiments proposed in [14] in which it was pointed out that the wave
length of microstructure is of order O(ε).

This result has a connection with the definition of determining nodes (see [21]): a set of
points {x1, . . . , xk} in I is said to be asymptotically determining if for two solutions u1(x, t)
and u2(x, t)

max
i=1,...,k

|u1(xi, t) − u2(xi, t)| −→ 0 as t −→ ∞ (4.2)

implies that

sup
x∈I

|u1(x, t) − u2(x, t)| −→ 0 as t −→ ∞. (4.3)

From a theorem in [17], ifAε attracts all the solutions in the norm of L∞(I) then almost every
set of k nodes {x1, . . . , xk} in I is asymptotically determining. In the last section we will show
that this is true for (1.1); that is, there exists an absorbing set in L∞(I).

We conclude this section by proving and giving explicit bounds for Aε in H4(I). In
order to do that, we follow a strategy suggested by Robinson in [2].

Theorem 4.2. The global attractorAε of (1.1) is bounded inH4(I).

Proof. Multiply the equation by ut and integrate over I:

‖ut‖2 + ε2

2
d

dt
‖uxx‖2 + 1

2

∫
I

Φ′(ux)utxdx = 0. (4.4)

By integrating the previous equation, with respect to time, over (0, t) we get

∫ t

0
‖ut‖2ds + ε2

2
‖uxx(t)‖2 − ε2

2
‖uxx(0)‖2 + 1

2

∫ t

0

(∫
I

Φ′(ux)utxdx

)
ds = 0. (4.5)

The integrand of the last term of the previous equality can be written as (d/dt)Φ(ux), and
this yields to

∫ t

0
‖ut‖2ds =

ε2

2
‖uxx(0)‖2 − ε2

2
‖uxx(t)‖2 + 1

2

∫
I

[Φ(ux(0)) −Φ(ux(t))]dx. (4.6)
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Since the attractor is bounded in L∞ and H2(I), we have

∫ t

0
‖ut‖2ds ≤ ε2r22 + 2|I|‖ux‖2L∞(I)

(
‖ux‖2L∞(I) + 1

)

≤ ε2r22 + 2|I|r1r2(r1r2 + 1) := R.

(4.7)

We will prove that ut is uniformly bounded in L2(I). We derive (1.1) with respect to time,
multiply it by t2ut, and integrate over I:

1
2
d

dt
‖tut‖2 − t‖ut‖2 + t2ε2‖uxxt‖2 = t2

2

∫
I

[
Φ′(ux)

]
xtutdx

= − t
2

2

∫
I

Φ′′(ux)u2
txdx = −6t2

∫
I

u2
xu

2
txdx + 2t2

∫
I

u2
txdx.

(4.8)

Then, using interpolation we get

1
2
d

dt
‖tut‖2 − t‖ut‖2 + t2ε2‖uxxt‖2 ≤ 2t2‖utx‖2 ≤ t2ε2‖uxxt‖2 + t2

ε2
‖ut‖2, (4.9)

from which

1
2
d

dt
‖tut‖2 ≤ t2

ε2
‖ut‖2 + t‖ut‖2. (4.10)

Integrating the previous inequality, with respect to time, in (0, t), we have

‖tut‖2 ≤ 2
∫ t

0

(
s +

s2

ε2

)
‖ut‖2ds. (4.11)

Since the term (s + s2/ε2) is bounded in [0, 1], we obtain the following inequality by setting
t = 1:

‖ut(1)‖2 ≤ 2
(
1 +

1
ε2

)∫ t

0
‖ut‖2ds ≤ 2R

(
1 +

1
ε2

)
. (4.12)

This gives an uniform L2 bound for ut(1), and since u ∈ Aε, it is sufficient to conclude that
ut ∈ L∞(R, L2(I)). In particular, let u ∈ Aε and s ≥ 0, we set û(t, x) := u(s + t − 1, x) for any
t ≥ 1. Then ût(t, x) = ut(s + t − 1, x) and so ût(1, x) = ut(s, x), from which we have that

‖ut(s)‖2 ≤ 2R
(
1 +

1
ε2

)
, ∀s > 0. (4.13)
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Now we consider the L2 norm of the nonlinear term (1/2)Φ′′(ux)uxx:

1
4

∫
I

(
Φ′′(ux)

)2
u2
xxdx ≤ 4

∫
I

(√
3‖ux‖L∞(I) + 1

)2
u2
xxdx

≤ 4
(
6‖ux‖2L∞(I) + 1

)
‖uxx‖2 ≤ 4(6r1r2 + 1)r22 ,

(4.14)

where we have used (1.8), (1.10), and [15]. Then, from the previous inequality, we get that
1/2Φ′′(ux)uxx is uniformly bounded in L2(I). Then since

ε2uxxxx = −ut +
1
2
Φ′′(ux)uxx, (4.15)

we have that uxxxx is uniformly bounded in L2(I). Then from the following interpolating
inequality

‖uxxx‖ ≤ ‖uxx‖1/2‖uxxxx‖1/2, (4.16)

we get that Aε is bounded inH4(I).

5. Absorbing Set in L∞(I)

In this last section we show the existence of an absorbing set in L∞(I).

Theorem 5.1. The semigroup S(t) defined in (1.4) posses an absorbing set in L∞(I):

‖S(t)u0‖L∞(I) ≤ r∞, if t > τ(R∞) + ε2, (5.1)

where

r∞ =
(
1 +

1
ε2

)1/2 |I|1/2
ε1/2

{
ε2

2

(
1 +

4
ε4

)
+

1
ε2

}1/4

, τ(R∞) =
1
ε2

logR∞, (5.2)

and R∞ is a positive constant such that

‖u0‖L∞(I) ≤ R∞. (5.3)

Proof. Let u be a solution of (1.1) such that u(0) = u0 ∈ L∞(I) and ‖u0‖L∞(I) ≤ R∞.
Multiply (1.1) by u and integrate on I, we obtain

1
2
d

dt
‖u‖2 + ε2‖uxx‖2 + 1

2

∫
I

Φ′(ux)uxdx = 0, (5.4)
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from which

1
2
d

dt
‖u‖2 + ε2‖uxx‖2 + 2‖ux‖4L4(I) = 2‖ux‖2 ≤ 2‖ux‖4L4(I)|I|1/2 ≤ ‖ux‖4L4(I) + |I|, (5.5)

and then

1
2
d

dt
‖u‖2 + ε2‖uxx‖2 ≤ |I|. (5.6)

By the boundary conditions, from the hypothesis that |I| ≤ 1 and from the interpolating
inequality ‖ux‖2 ≤ (1/2){‖u‖2 + ‖uxx‖2}, we have that

‖u‖ ≤ ‖uxx‖. (5.7)

Then we can rewrite (5.6) only in terms of the L2-norm of u:

1
2
d

dt
‖u‖2 + ε2‖u‖2 ≤ |I|. (5.8)

Integrating the previous inequality over (0, t), we get

‖u(t)‖2 ≤ ‖u0‖2e−2ε2t + |I|
ε2

(
1 − e−2ε

2t
)
≤
(
R2

∞e
−2ε2t +

1
ε2

)
|I|, (5.9)

where the last inequality follows from ‖u‖ ≤ |I|1/2‖u‖L∞(I). Then if we set

τ(R∞) =
1
ε2

logR∞, (5.10)

we have that

‖u(t)‖2 ≤
(
1 +

1
ε2

)
|I|, if t ≥ τ(R∞). (5.11)

Now coming back to (5.5), we use a different estimate method

1
2
d

dt
‖u‖2 + ε2‖uxx‖2 + 2‖ux‖4L4(I) = 2‖ux‖2 ≤ 2‖u‖‖uxx‖ ≤ ε2

2
‖uxx‖2 + 2

ε2
‖u‖2, (5.12)

from which

d

dt
‖u‖2 + ε2‖uxx‖2 ≤ 4

ε2
‖u‖2. (5.13)
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Integrating the previous inequality with respect to time in (t, t + ρ), with ρ ≥ τ(R∞), we get

ε2
∫ t+ρ

t

‖uxx‖2dt ≤
(
4/ε2 + 2

)
‖u‖2 ≤

(
4/ε2 ρ + 2

)(
1 + 1/ε2

)
|I|. (5.14)

Moreover by an interpolating inequality, we have that

∫ t+ρ

t

‖u‖2dt ≤ 1
2

{∫ t+ρ

t

‖u‖2 +
∫ t+ρ

t

‖uxx‖2
}

≤
(
1 +

1
ε2

)
|I|
{
ρ

2

(
1 +

4
ε4

)
+

1
ε2

}
:= a3.

(5.15)

We multiply (1.1) by uxx and integrate over I:

1
2
d

dt
‖ux‖2 + ε2‖uxxx‖2 + 6

∥∥∥u2
xuxx

∥∥∥2
= 2‖uxx‖2, (5.16)

from which by using an interpolating inequality and neglecting the positive term 6‖u2
xuxx‖2

we get

1
2
d

dt
‖ux‖2 + ε2‖uxxx‖2 ≤ 1

ε2
‖ux‖2 + ε2‖uxxx‖2, (5.17)

from which we conclude

d

dt
‖ux‖2 ≤ 2

ε2
‖ux‖2. (5.18)

We apply the uniform Gronwall lemma (see [1])with

a1 =
∫ t+ρ

t

2
ε2
ds =

2ρ
ε2

, a2 = 0, (5.19)

from which we obtain

∥∥ux

(
t + ρ

)∥∥2 ≤ a3

ρ
ea1 , for t ≥ τ(R∞). (5.20)

We fix ρ := ε2, and then

‖ux‖ ≤
(
1 +

1
ε2

)1/2 |I|1/2
ε

{
ε2

2

(
1 +

4
ε4

)
+

1
ε2

}1/2

, for t ≥ τ(R∞) + ε2. (5.21)
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Then, using an interpolating inequality, we have that

‖u‖L∞(I) ≤ ‖u‖1/2‖ux‖1/2 ≤ r∞, for t ≥ τ(R∞) + ε2, (5.22)

where

r∞ =
(
1 +

1
ε2

)1/2 |I|1/2
ε1/2

{
ε2

2

(
1 +

4
ε4

)
+

1
ε2

}1/4

. (5.23)

This completes the proof, the set

B∞ =
{
u ∈ L∞(I) : ‖u‖L∞(I) ≤ r∞

}
(5.24)

is absorbing for all the bounded sets of L∞(I).
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[13] M. Bulı́ček and D. Pražák, “A note on the dimension of the global attractor for an abstract semilinear
hyperbolic problem,” Applied Mathematics Letters, vol. 22, no. 7, pp. 1025–1028, 2009.

[14] G. Bellettini, G. Fusco, and N. Guglielmi, “A concept of solution and numerical experiments for
forward-backward diffusion equations,” Discrete and Continuous Dynamical Systems A, vol. 16, no.
4, pp. 783–842, 2006.

[15] G. R. Chacón and R. Colucci, “Asymptotic behavior of a fourth order evolution equation,” submitted
paper.

[16] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral Manifolds and Inertial Manifolds for
Dissipative Partial Differential Equations, vol. 70 of Applied Mathematical Sciences, Springer, New York,
NY, USA, 1st edition, 1988.

[17] J. C. Robinson,Dimensions, Embeddings, and Attractors, vol. 186 of Cambridge Texts in Applied Mathemat-
ics, Cambridge University Press, Cambridge, UK, 2011.

[18] M. Slemrod, “Dynamics of measure valued solutions to a backward-forward heat equation,” Journal
of Dynamics and Differential Equations, vol. 3, no. 1, pp. 1–28, 1991.

[19] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, NY,
USA, 2010.
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