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Energy balance method (EBM) is extended for high-order nonlinear oscillators. To illustrate the
effectiveness of the method, a cubic-quintic Duffing oscillator was chosen. The maximum relative
errors of the frequencies of the oscillator read 1.25% and 0.6% for the first- and second-order
approximation, respectively. The third-order approximation has an accuracy as high as 0.008%.
Excellent agreement of the approximated frequencies and periodic solutions with the exact ones is
demonstrated for several values of parameters of the oscillator.

1. Introduction

A great deal of work has been devoted to the nonlinear problems encountered in the
fields of applied mathematics, physics, and engineering sciences. In general, the analytical
approximation to the solution of a given nonlinear problem is difficult, sometimes impossible;
plenty of techniques based on numerical methods have been implemented. Among them
are the variational iteration method [1, 2], the harmonic balance method [3, 4], and energy
balance method [5–8] developed to solve nonlinear differential equations. In this study,
we have investigated the application of high-order energy balance method to cubic-quintic
Duffing oscillator. The nonlinear frequencies are calculated for the first-, second-, and third-
order EBM and compared with the results of different techniques.

2. The Basic Idea of Energy Balance Method

This section briefly introduces energy balance method proposed by He [5]. In this method, a
variational principle for the oscillation is established, then the corresponding Hamiltonian is
considered from which the angular frequency can be easily obtained by Galerkin method.
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Let us consider the motion of a general oscillator with the initial conditions in the form

u′′ + f(u) = 0, u(0) = A, u′(0) = 0, (2.1)

where A is the initial amplitude.
Its variational can be written as

J(u) =
∫T/4

0

[
−1
2
u′2 + F(u)

]
dt. (2.2)

Here T = 2π/ω is the period of the nonlinear oscillation and F(u) =
∫
f(u)du.

The Hamiltonian of (2.1) can be written in the form:

H(u) =
1
2
u′2 + F(u). (2.3)

In (2.2) the kinetic energy (E) and potential energy (P) can be, respectively, expressed as
E = (1/2)u

′2, P = F(u).
Throughout the oscillation since the system is conservative, the total energy remains

unchanged during the motion; the Hamiltonian of the oscillator becomes a constant value,

H = E + T = F(A). (2.4)

For the first-order approximation, the following trial function can be assumed:

u(t) = A cosωt. (2.5)

Substituting (2.5) into (2.3) yields the following residual:

R(t) =
A2

2
ω2sin2ωt + F(A cosωt) − F(A). (2.6)

The residual is forced to zero, in an average sense, by setting weighted integrals of the
residual to zero

∫T/4

0
R(t)wndt = 0, n = 1, 2, . . . , (2.7)

where wn is a set of weighting function (or test).
There are lots of weighting functions, that is, Galerkin, least squares, collocation and

so forth. In this study, we used Galerkin method as a weighting function.



Journal of Applied Mathematics 3

3. High-Order Energy Balance Method

In order to extend He’s energy balance method, let us assume that the solution of (2.1) can be
expressed as

u = A1 cosωt +A2 cos 3ωt + · · · +An cos(2n − 1)ωt. (3.1)

From the initial conditions, the coefficients should satisfy the following constrain:

A = A1 +A2 + · · · +An. (3.2a)

One of these parameters can be chosen as a dependent parameter. Hence,

An = A −A1 −A2 − · · · −An−1. (3.2b)

By inserting (3.1) into (2.7), the following systems can be obtained:

∫T/4

0
R(t) cosωtdt = 0,

∫T/4

0
R(t) cos 3ωtdt = 0,

...

∫T/4

0
R(t) cos(2n − 1)ωtdt = 0.

(3.3)

4. Example

A cubic-quintic Duffing oscillator is considered. In the following sections, the nonlinear
frequencies will be compared with the results of different techniques to illustrate the
efficiency and accuracy of energy balance method.

The governing differential equation of this oscillator is in the form of

u′′ + αu + εu3 + λu5 = 0, where α ≥ 0 (4.1a)

with the initial conditions

u(0) = A, u′(0) = 0. (4.1b)
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The Hamiltonian of (4.1a) is given as follows:

H(u) =
1
2
u′2 +

1
2
u2 +

1
4
εu4 +

1
6
λu6 =

1
2
αA2 +

1
4
εA4 +

1
6
λA6. (4.2)

For the first-order approximation, assume that u(t) is in the following form:

u(t) = A cosωt. (4.3)

Substituting the first approximation into (4.2) yields

R1(t) =
1
2
A2ω2sin2(ωt) +

1
4
εA4cos4(ωt) +

1
6
λA6cos6(ωt) +

1
2
αA2cos2(ωt)

− εA4

4
− αA2

2
− λA6

4
.

(4.4)

First-order approximation can be obtained by setting

∫T/4

0
R1(t) cos(ωt)dt = 0, T =

2π
ω

. (4.5)

The amplitude-frequency relationship for the first approximation is obtained as

ω(A) =

√
70α + 49εA2 + 38λA4

70
. (4.6)

To obtain a more accurate result, let us define u as follows:

u(t) = A1 cosωt + (A −A1) cos 3ωt (4.7)

Substituting (4.7) into (4.2) results in the following residual:

R2(t) =
ω2

2
[A1 sin(ωt) + 3(A −A1) sin(3ωt)]2 +

α

2
[A1 cos(ωt) + (A −A1) cos(3ωt)]2

+
ε

4
[A1 cos(ωt) + (A −A1) cos(3ωt)]4 +

λ

6
[A1 cos(ωt) + (A −A1) cos(3ωt)]6

− αA2

2
− εA4

4
− λA6

6
.

(4.8)
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Table 1: Comparison of the first-, second-, and third-order frequencies for α = 1 and λ = 0.

εA2 ωExact ω1-EBM ω2-EBM ω3-EBM [4]∗ [9]∗

0.5 1.17078 1.16190 1.17026 1.17078 1.17078 1.17078
1 1.31778 1.30384 1.31635 1.31776 1.31778 1.31778
5 2.15042 2.12132 2.14260 2.15030 2.15047 2.15050
10 2.86664 2.82843 2.85355 2.86645 2.86676 2.86683
100 8.53359 8.42615 8.48429 8.53290 8.53415 8.53454
1000 26.8107 26.4764 26.6519 26.8085 26.8126 26.8139
5000 59.9157 59.1692 59.5599 59.9108 59.9198 59.9229

∗Third-order approximations.

We set

∫T/4

0
R2(t) cos(ωt)dt = − 6550410λA6 − 14096128λA5A1 +A4

(
−8898327ε + 59159040λA2

1

)

− 128A3
(
131461εA1 + 979520λA3

1

)

+ 32A2
1

(
831402α + 723520A2

1ε + 946176λA4
1 + 3187041ω2

)

− 48AA1

(
461890α + 1033600A2

1ε + 2150400λA4
1 + 4572711ω2

)

+ 2A2
(
−7066917α + 22697856A2

1ε + 77271040λA4
1 + 63602253ω2

)
= 0,

(4.9a)

∫T/4

0
R2(t) cos(3ωt)dt = 5265546λA6 + 83291904λA5A1 +A4

(
6789783ε − 313950720λA2

1

)

+ 2176A3
(
45429εA1 + 301120λA3

1

)

+ 6A2
(
1616615α − 37333632εA2

1 − 128921600λA4
1 − 14549535ω2

)

− 96A2
1

(
1016158α + 1012928εA2

1 + 1396736λA4
1 + 1801371ω2

)

+ 48AA1

(
2678962α + 5002624εA2

1 + 10309632λA4
1 + 4572711ω2

)
= 0.

(4.9b)

By solving (4.9a)-(4.9b) simultaneously, one can obtain the second-order approximate
amplitude-frequency relation. For different εA2 values, the approximate frequencies are
given in Table 1.

Moreover, the accuracy of results will be further improved by defining u in the
following form:

u(t) = A1 cosωt +A2 cos 3ωt + (A −A1 −A2) cos 5ωt. (4.10)
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Table 2: Comparison of the first-, second-, and third-order frequencies for α = 1, ε = 5.

λA6 ωR-K ω1-EBM [4]∗ ω3-EBM

1 2.2798 2.2456 2.3184 2.27948
5 2.7318 2.6859 2.8062 2.73144
10 3.2057 3.1510 3.3166 3.20446
100 7.7762 7.6672 8.2006 7.77554
1000 23.7999 23.3957 25.0948 23.7045

∗First-order approximation, ωRef. [4] =
√
8α + 6εA2 + 5λA4/8.

Substituting (4.10) into (4.2), we get the following residual for the third-order approximation:

R3(t) =
1
2
ω2[A1 sin(ωt) + 3A2 sin(3ωt) + 5(A −A1 −A2) sin(5ωt)]2

+
1
2
α[A1 cos(ωt) +A2 cos(3ωt) + (A −A1 −A2) cos(5ωt)]2

+
1
4
ε[A1 cos(ωt) +A2 cos(3ωt) + (A −A1 −A2) cos(5ωt)]4

+
1
6
λ[A1 cos(ωt) +A2 cos(3ωt) + (A −A1 −A2) cos(5ωt)]6

− αA2

2
− εA4

4
− λA6

6
.

(4.11)

Inserting (4.11) into (3.3) for n = 3 and using the same procedure explained above,
we get three weighted integrals. Solving these three equations simultaneously, the
amplitude-frequency relation for the third-order approximation is obtained. For higher-order
approximations, the similar procedures can be applied, however, the accuracy of the third-
order approximation is appropriate for several values of parameters α, ε, and λ.

In the following, the nonlinear frequencies for the cubic-quintic oscillator are
calculated for two different cases: (i) λ = 0 and (ii) λ/= 0.

The first case considered here corresponds to the cubic Duffing oscillator. For λ = 0,
the results of the nonlinear frequencies are obtained by the first-, second-, and third-order
energy balance method and compared with the results of [4, 9]. In the second case, for λ/= 0,
the nonlinear frequencies are given in Table 2. Additionally, the numerical solution for all
cases is acquired by standard Runge-Kutta method (R-K).

In Table 1, the relative errors for the first-order approximation read 1.25%, while this
error reduces to 0.59% in the second approximation. We observe that the differences between
the third-order and the exact frequencies are sufficiently small.

As seen in Table 2, the results of third order approximation are in very good agreement
between the numerical results. The comparison of approximate and numerical solutions can
also be found in Figure 1. It can be seen that the first-, and the second-order results have slight
differences compared to the numerical solution. However, the third-order approximation is
overlapping with the numerical solution.
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Figure 1: Approximate and numerical solutions for (a) A = α = 1, ε = 100, λ = 0; (b) A = α = 1, ε = λ =
100.

5. Conclusion

In this paper, energy balance method is extended for high-order solutions. The first-order
approximate frequency for Duffing oscillator gives 1.25% relative error, while the second-,
and the third-order approximated frequencies reach 0.59% and 0.008% relative errors,
respectively. Moreover, relative errors in high-order energy balance reduce to smaller values
than global error minimization and harmonic balance methods. Consequently, we can state
that extendedmethod is very effective and convenient for the cubic-quintic Duffing oscillator.
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