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In this paper, we introduce an iterative method for solving the multiple-set split feasibility
problems for asymptotically strict pseudocontractions in infinite-dimensional Hilbert spaces, and,
by using the proposed iterative method, we improve and extend some recent results given by some
authors.

1. Introduction

The split feasibility problem (SFP) in finite dimensional spaces was first introduced by Censor
and Elfving [1] for modeling inverse problems which arise from phase retrievals and in
medical image reconstruction [2]. Recently, it has been found that the SFP can also be used
in various disciplines such as image restoration, computer tomograph, and radiation therapy
treatment planning [3–5].

The split feasibility problem in an infinite dimensional Hilbert space can be found in
[2, 4, 6–8].

Throughout this paper, we always assume that H1, H2 are real Hilbert spaces, “→ ”,
“⇀” are denoted by strong and weak convergence, respectively.
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The purpose of this paper is to introduce and study the following multiple-set split
feasibility problem for asymptotically strict pseudocontraction (MSSFP) in the framework of
infinite-dimensional Hilbert spaces. Find x∗ ∈ C such that

Ax∗ ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator, {Si} and {Ti}, i = 1, 2, . . . ,M, are the
families of mappings Si : H1 → H1 and Ti : H2 → H2, respectively, C :=

⋂M
i=1 F(Si) and

Q :=
⋂M

i=1 F(Ti), where F(Si) = {xi ∈ H1 : Sixi = xi} and F(Ti) = {yi ∈ H2 : Tiyi = yi} denote
the sets of fixed points of Si and Ti, respectively. In the sequel, we use Γ to denote the set of
solutions of the problem (MSSFP), that is,

Γ = {x ∈ C : Ax ∈ Q}. (1.2)

2. Preliminaries

We first recall some definitions, notations, and conclusions which will be needed in proving
our main results.

Let E be a Banach space. A mapping T : E → E is said to be demiclosed at origin if, for
any sequence {xn} ⊂ Ewith xn ⇀ x∗ and ‖(I −T)xn‖ → 0, we have x∗ = Tx∗. A Banach space
E is said to have Opial’s property if, for any sequence {xn}with xn ⇀ x∗, we have

lim inf
n→∞

‖xn − x∗‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.1)

for all y ∈ E with y /=x∗.

Remark 2.1. It is well known that each Hilbert space possesses Opial’s property.

Definition 2.2. Let H be a real Hilbert space.

(1) A mapping G : H → H is called a (γ, {kn})-asymptotically strict pseudocontraction if
there exists a constant γ ∈ [0, 1) and a sequence {kn} ⊂ [1,∞) with kn → 1 such
that

∥
∥Gnx −Gny

∥
∥2 ≤ kn

∥
∥x − y

∥
∥2 + γ

∥
∥(I −Gn)x − (I −Gn)y

∥
∥2

, ∀x, y ∈ H. (2.2)

Especially, if kn = 1 for each n ≥ 1 in (2.2) and there exists γ ∈ [0, 1) such that

∥
∥Gx −Gy

∥
∥2 ≤ ∥

∥x − y
∥
∥2 + γ

∥
∥(I −G)x − (I −G)y

∥
∥2

, ∀x, y ∈ H, (2.3)

then G : H → H is called a γ-strict pseudocontraction.

(2) A mapping G : H → H is said to be uniformly L-Lipschitzian if there exists a
constant L > 0 such that

∥
∥Gnx −Gny

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ H, n ≥ 1. (2.4)
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(3) A mapping G : H → H is said to be semicompact if, for any bounded sequence
{xn} ⊂ H with limn→∞‖xn −Gxn‖ = 0, there exists a subsequence {xni} ⊂ {xn} such
that xni converges strongly to a point x∗ ∈ H.

Now, we give one example of the (γ, {kn})-asymptotically strict pseudocontraction
mapping.

Example 2.3. Let B be the unit ball in a Hilbert space l2, and define a mapping T : B → B by

T = (x1, x2, . . .) =
(
0, x2

1, a2x2, a3x3, . . .
)
, (2.5)

where {ai} is a sequence in (0, 1) such that Π∞
i=2ai = 1/2. It is proved in Goebel and Kirk [9]

that

(a) ‖Tx = Ty‖ ≤ 2‖x − y‖ for all x, y ∈ B,

(b) ‖Tnx − Tny‖ ≤ 2Πn
j=2aj for all n ≥ 2 and x, y ∈ B.

Denote by k1/2
1 = 2, k1/2

n = 2Πn
j=2aj(n ≥ 2) and γ ∈ [0, 1). Then, we have

lim
n→∞

kn = lim
n→∞

⎛

⎝2
n∏

j=2

aj

⎞

⎠

2

= 1,

∥
∥Tnx − Tny

∥
∥2 ≤ kn

∥
∥x − y

∥
∥2 + γ

∥
∥x − y − (Tnx − Tny)

∥
∥2

, ∀n ≥ 1, x, y ∈ B,

(2.6)

and so the mapping T is a (γ, {kn})-asymptotically strict pseudocontraction.

Remark 2.4. (1) If we put γ = 0 in (2.2), then the mapping G : H → H is asymptotically
nonexpansive.

(2) If we put γ = 0 in (2.3), then the mapping G : H → H is nonexpansive.
(3) Each (γ, {kn})-asymptotically strict pseudocontraction and each γ-strictly pseudo-

contraction both are demiclosed at origin [10].

Proposition 2.5. Let G : H → H be a (γ, {kn})- asymptotically strict pseudocontraction. If
F(G)/= ∅, then, for any q ∈ F(G) and x ∈ H, the following inequalities hold and they are equivalent:

∥
∥Gnx − q

∥
∥2 ≤ kn

∥
∥x − q

∥
∥2 + γ‖x −Gnx‖2, (2.7)

〈
x −Gnx, x − q

〉 ≥ 1 − γ

2
‖x −Gnx‖2 − kn − 1

2
∥
∥x − q

∥
∥2
, (2.8)

〈x −Gnx, q −Gnx〉 ≤ 1 + γ

2
‖x −Gnx‖2 + kn − 1

2
∥
∥x − q

∥
∥2

. (2.9)

Lemma 2.6 (see [11]). Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers satisfying

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1. (2.10)

If
∑∞

i=1 δn < ∞ and
∑∞

i=1 bn < ∞, then the limit limn→∞an exists.
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3. Multiple-Set Split Feasibility Problem

For solving the multiple-set split feasibility problem (1.1), let us assume that the following
conditions are satisfied:

(C1) H1 andH2 are two real Hilbert spaces, A : H1 → H2 is a bounded linear operator;

(C2) Si : H1 → H1, i = 1, 2, . . . ,M, is a uniformly Li-Lipschitzian and (βi, {ki,n})-
asymptotically strict pseudocontraction, and Ti : H2 → H2, i = 1, 2, . . . ,M, is a
uniformly L̃i-Lipschitzian and (μi, {k̃i,n})-asymptotically strict pseudocontraction
satisfying the following conditions:

(a) C :=
⋂M

i=1 F(Si)/= ∅ and Q :=
⋂M

i=1 F(Ti)/= ∅,
(b) β = max1≤i≤Mβi < 1 and μ = max1≤i≤Mμi < 1,

(c) L := max1≤i≤MLi < ∞ and L̃ := max1≤i≤ML̃i < ∞,

(d) kn = max1≤i≤M{ki,n, k̃i,n} and
∑∞

n=1(kn − 1) < ∞.

We are now in a position to give the following result.

Theorem 3.1. Let H1, H2, A, {Si}, {Ti}, C, Q, β, μ, L, L̃, and {kn} be the same as above. Let {xn}
be the sequence generated by

x1 ∈ H1 chosen arbitrarily,
xn+1 = (1 − αn)un + αnS

n
n(un),

un = xn + γA∗(Tn
n − I)Axn, ∀n ≥ 1,

(3.1)

where Sn
n = Sn

n( mod M), T
n
n = Tn

n( mod M) for all n ≥ 1, {αn} is a sequence in [0, 1], and γ > 0 is a
constant satisfying the following conditions.

(e) αn ∈ (δ, 1 − β) for all n ≥ 1 and γ ∈ (0, (1 − μ)/‖A‖2), where δ ∈ (0, 1 − β) is a positive
constant.

(1) If Γ/= ∅, then the sequence {xn} converges weakly to a point x∗ ∈ Γ.

(2) In addition, if there exists a positive integer j such that Sj is semicompact, then the
sequences {xn} and {un} both converge strongly to a point x∗ ∈ Γ.

Proof. (1) The proof is divided into 5 steps as follows.

Step 1. We first prove that, for any p ∈ Γ, the limit

lim
n→∞

∥
∥xn − p

∥
∥ (3.2)
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exists. In fact, since p ∈ Γ, p ∈ C :=
⋂M

i=1 F(Si), and Ap ∈ Q :=
⋂M

i=1 F(Ti). From (3.1) and (2.8),
it follows that

∥
∥xn+1 − p

∥
∥2 =

∥
∥un − p − αn(un − Sn

nun)
∥
∥2

=
∥
∥un − p

∥
∥2 − 2αn〈un − p, un − Sn

nun〉 + α2
n‖un − Sn

nun‖2

≤ ∥
∥un − p

∥
∥2 − αn

{(
1 − β

)‖un − Sn
nun‖2 − (kn − 1)

∥
∥un − p

∥
∥2
}

+ α2
n‖un − Sn

nun‖2

= (1 + αn(kn − 1))
∥
∥un − p

∥
∥2 − αn

(
1 − β − αn

)‖un − Sn
nun‖2.

(3.3)

On the other hand, since

∥
∥un − p

∥
∥2 =

∥
∥xn − p + γA∗(Tn

n − I)Axn

∥
∥2

=
∥
∥xn − p

∥
∥2 + γ2‖A∗(Tn

n − I)Axn‖2 + 2γ
〈
xn − p,A∗(Tn

n − I)Axn

〉
,

(3.4)

γ2‖A∗(Tn
n − I)Axn‖2 = γ2〈A∗(Tn

n − I)Axn, A
∗(Tn

n − I)Axn〉
= γ2〈AA∗(Tn

n − I)Axn, (Tn
n − I)Axn〉

≤ γ2‖A‖2‖Tn
nAxn −Axn‖2,

(3.5)

2γ〈xn − p,A∗(Tn
n − I)Axn〉 = 2γ〈Axn −Ap, (Tn

n − I)Axn〉
= 2γ〈(Axn −Ap

)
+ (Tn

n − I)Axn − (Tn
n − I)Axn, (Tn

n − I)Axn〉
= 2γ

{〈
Tn
nAxn −Ap, Tn

nAxn −Axn

〉 − ‖(Tn
n − I)Axn‖2

}
.

(3.6)

Further, letting x = Axn, Gn = Tn
n , q = Ap, γ = μ in (2.9) and noting Ap ∈ F(Tn), it follows

that

〈Tn
nAxn −Ap, Tn

nAxn −Axn〉 ≤ 1 + μ

2
‖(Tn

n − I)Axn‖2 + kn − 1
2

∥
∥Axn −Ap

∥
∥2

≤ 1 + μ

2
‖(Tn

n − I)Axn‖2 + (kn − 1)‖A‖2
2

∥
∥xn − p

∥
∥2
.

(3.7)

Substituting (3.7) into (3.6) and simplifying it, we have

2γ
〈
xn − p,A∗(Tn

n − I)Axn

〉 ≤ γ
(
μ − 1

)‖(Tn
n − I)Axn‖2 + (kn − 1)γ‖A‖2∥∥xn − p

∥
∥2
. (3.8)

Substituting (3.5) and (3.8) into (3.4) and simplifying it, we have

∥
∥un − p

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 + γ2‖A‖2‖Tn

nAxn −Axn‖2

+ γ
(
μ − 1

)‖(Tn
n − I)Axn‖2 + (kn − 1)γ‖A‖2∥∥xn − p

∥
∥2
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=
∥
∥xn − p

∥
∥2 − γ

(
1 − μ − γ‖A‖2

)
‖Tn

nAxn −Axn‖2

+ (kn − 1)γ‖A‖2∥∥xn − p
∥
∥2
.

(3.9)

Again, substituting (3.9) into (3.3) and simplifying it, we have

∥
∥xn+1 − p

∥
∥2 ≤ (1 + αn(kn − 1))

×
{∥
∥xn − p

∥
∥2 − γ

(
1 − μ − γ‖A‖2

)
‖Tn

nAxn −Axn‖2 + (kn − 1)γ‖A‖2∥∥xn − p
∥
∥2
}

− αn

(
1 − β − αn

)‖un − Sn
nun‖2

≤ (1 + αn(kn − 1))
∥
∥xn − p

∥
∥2 − γ

(
1 − μ − γ‖A‖2

)
‖Tn

nAxn −Axn‖2

+ (1 + αn(kn − 1))(kn − 1)γ‖A‖2∥∥xn − p
∥
∥2 − αn

(
1 − β − αn

)‖un − Sn
nun‖2.

(3.10)

By the condition (e), we have

∥
∥xn+1 − p

∥
∥2 ≤ (1 + αn(kn − 1))

∥
∥xn − p

∥
∥2 + (1 + αn(kn − 1))(kn − 1)γ‖A‖2∥∥xn − p

∥
∥2

≤ (1 +K(kn − 1))
∥
∥xn − p

∥
∥2
,

(3.11)

where

K = sup
n≥1

(
αn + (1 + αn(kn − 1))γ‖A‖2

)
< ∞. (3.12)

By the condition (d),
∑

n=1(kn − 1) < ∞; hence, from Lemma 2.6, we know that the following
limit exists:

lim
n→∞

∥
∥xn − p

∥
∥. (3.13)

Step 2. We will now prove that, for each p ∈ Γ, the limit

lim
n→∞

∥
∥un − p

∥
∥ (3.14)

exists. In fact, from (3.10) and (3.13), it follows that

γ
(
1 − μ − γ‖A‖2

)
‖(Tn

n − I)Axn‖2 + αn

(
1 − β − αn

)‖un − Sn
nun‖2

≤ ∥
∥xn − p

∥
∥2 − ∥

∥xn+1 − p
∥
∥2 +K(kn − 1)

∥
∥xn − p

∥
∥2 −→ 0 (n −→ ∞).

(3.15)
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This together with the condition (e) implies that

lim
n→∞

‖un − Sn
nun‖ = 0, (3.16)

lim
n→∞

‖(Tn
n − I)Axn‖ = 0. (3.17)

Therefore, it follows from (3.4), (3.13), and (3.17) that the limit limn→∞‖un − p‖ exists.

Step 3. Now, we prove that

lim
n→∞

‖xn+1 − xn‖ = 0, lim
n→∞

‖un+1 − un‖ = 0. (3.18)

In fact, it follows from (3.1) that

‖xn+1 − xn‖ = ‖(1 − αn)un + αnS
n
n(un) − xn‖

=
∥
∥(1 − αn)

(
xn + γA∗(Tn

n − I)Axn

)
+ αnS

n
n(un) − xn

∥
∥

=
∥
∥(1 − αn)γA∗(Tn

n − I)Axn + αn(Sn
n(un) − xn)

∥
∥

=
∥
∥(1 − αn)γA∗(Tn

n − I)Axn + αn(Sn
n(un) − un) + αn(un − xn)

∥
∥

=
∥
∥(1 − αn)γA∗(Tn

n − I)Axn + αn(Sn
n(un) − un) + αnγA∗(Tn

n − I)Axn

∥
∥

=
∥
∥γA∗(Tn

n − I)Axn + αn(Sn
n(un) − un)

∥
∥.

(3.19)

In view of (3.16) and (3.17), we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.20)

Similarly, it follows from (3.1), (3.17), and (3.20) that

‖un+1 − un‖ =
∥
∥
∥xn+1 + γA∗

(
Tn+1
n+1 − I

)
Axn+1 −

(
xn + γA∗(Tn

n − I)Axn

)∥∥
∥

≤ ‖xn+1 − xn‖ + γ
∥
∥
∥A∗

(
Tn+1
n+1 − I

)
Axn+1

∥
∥
∥

+ γ‖A∗(Tn
n − I)Axn‖ −→ 0 (n −→ ∞).

(3.21)

The conclusion (3.18) is proved.

Step 4. Next, we prove that, for each j = 1, 2, . . . ,M,

∥
∥uiM+j − SjuiM+j

∥
∥ −→ 0,

∥
∥AxiM+j − TjAxiM+j

∥
∥ −→ 0 (i −→ ∞). (3.22)

In fact, from (3.16), it follows that

ζiM+j :=
∥
∥
∥uiM+j − S

iM+j
j uiM+j

∥
∥
∥ −→ 0 (i −→ ∞). (3.23)
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Since Sj is uniformly Lj-Lipschitzian continuous, it follows from (3.18) and (3.23) that

∥
∥uiM+j − SjuiM+j

∥
∥

≤
∥
∥
∥uiM+j − S

iM+j
j uiM+j

∥
∥
∥ +

∥
∥
∥S

iM+j
j uiM+j − SjuiM+j

∥
∥
∥

≤ ζiM+j + Lj

∥
∥
∥S

iM+j−1
j uiM+j − uiM+j

∥
∥
∥

≤ ζiM+j + Lj

{∥
∥
∥S

iM+j−1
j uiM+j − S

iM+j−1
j uiM+j−1

∥
∥
∥ +

∥
∥
∥S

iM+j−1
j uiM+j−1 − uiM+j

∥
∥
∥
}

≤ ζiM+j + L2
j

∥
∥uiM+j − uiM+j−1

∥
∥

+ Lj

∥
∥
∥S

iM+j−1
j uiM+j−1 − uiM+j−1 + uiM+j−1 − uiM+j

∥
∥
∥

≤ ζiM+j + Lj

(
1 + Lj

)∥
∥uiM+j − uiM+j−1

∥
∥ + LjζiM+j−1 −→ 0 (i −→ ∞).

(3.24)

Similarly, for each j = 1, 2, . . . ,M, it follows from (3.17) that

ξiM+j :=
∥
∥
∥AxiM+j − T

iM+j
j AxiM+j

∥
∥
∥ −→ 0 (i −→ ∞). (3.25)

Since Tj is uniformly L̃j-Lipschitzian continuous, by the same way as above, from (3.18) and
(3.25), we can also prove that

∥
∥AxiM+j − TjAxiM+j

∥
∥ −→ 0 (i −→ ∞). (3.26)

Step 5. Finally, we prove that xn ⇀ x∗ and un ⇀ x∗, which is a solution of the problem
(MSSFP). In fact, since {un} is bounded, there exists a subsequence {uni} ⊂ {un} such that
uni ⇀ x∗ ∈ H1. Hence, for any positive integer j = 1, 2, . . . ,M, there exists a subsequence
{ni(j)} ⊂ {ni}with ni(j)(modM) = j such that uni(j) ⇀ x∗. Again, from (3.22), it follows that

∥
∥uni(j) − Sjuni(j)

∥
∥ −→ 0

(
ni

(
j
) −→ ∞)

. (3.27)

Since Sj is demiclosed at zero (see Remark 2.4), it follows that x∗ ∈ F(Sj). By the arbitrariness
of j = 1, 2, . . . ,M, we have x∗ ∈ C :=

⋂M
j=1 F(Sj).

Moreover, it follows from (3.1) and (3.17) that

xni = uni − γA∗(Tni
ni
− I

)
Axni ⇀ x∗. (3.28)

Since A is a linear bounded operator, it follows that Axni ⇀ Ax∗. For any positive integer
k = 1, 2, . . . ,M, there exists a subsequence {ni(k)} ⊂ {ni} with ni(k)(modM) = k such that
Axni(k) ⇀ Ax∗. In view of (3.22), we have

∥
∥Axni(k) − TkAxni(k)

∥
∥ −→ 0 (ni(k) −→ ∞). (3.29)

Since Tk is demiclosed at zero, we have Ax∗ ∈ F(Tk). By the arbitrariness of k = 1, 2, . . . ,M, it
follows that Ax∗ ∈ Q :=

⋂M
k=1 F(Tk). This together with x∗ ∈ C shows that x∗ ∈ Γ, that is, x∗ is

a solution to the problem (MSSFP).
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Now, we prove that xn ⇀ x∗ and un ⇀ x∗. In fact, assume that there exists another
subsequence {unj} ⊂ {un} such that unj ⇀ y∗ ∈ Γ with y∗ /=x∗. Consequently, by virtue of
(3.2) and Opial’s property of Hilbert space, we have

lim inf
ni →∞

‖uni − x∗‖ < lim inf
ni →∞

∥
∥uni − y∗∥∥

= lim
n→∞

∥
∥un − y∗∥∥

= lim
nj →∞

∥
∥
∥unj − y∗

∥
∥
∥

< lim inf
nj →∞

∥
∥
∥unj − x∗

∥
∥
∥

= lim
n→∞

‖un − x∗‖
= lim inf

ni →∞
‖uni − x∗‖.

(3.30)

This is a contradiction. Therefore, un ⇀ x∗. By using (3.1) and (3.17), we have

xn = un − γA∗(Tn
n − I)Axn ⇀ x∗. (3.31)

Therefore, the conclusion (I) follows.

(2) Without loss of generality, we can assume that S1 is semicompact. It follows from
(3.27) that

∥
∥uni(1) − S1uni(1)

∥
∥ −→ 0 (ni(1) −→ ∞). (3.32)

Therefore, there exists a subsequence of {uni(1)} (for the sake of convenience, we still denote
it by {uni(1)}) such that uni(1) → u∗ ∈ H. Since uni(1) ⇀ x∗, x∗ = u∗ and so uni(1) → x∗ ∈ Γ. By
virtue of (3.2), we know that

lim
n→∞

‖un − x∗‖ = 0, lim
n→∞

‖xn − x∗‖ = 0, (3.33)

that is, {un} and {xn} both converge strongly to the point x∗ ∈ Γ. This completes the proof.

If we put γ = 0 in Theorem 3.1, we can get the following.

Corollary 3.2. Let H, C, L and {kn} be the same as above and {Si} a family of asymptotically
nonexpansive mappings. Let {xn} be the sequence generated by

x1 ∈ H1 chosen arbitrarily,
xn+1 = (1 − αn)xn + αnS

n
n(xn), ∀n ≥ 1,

(3.34)

where Sn
n = Sn

n( mod M) for all n ≥ 1 and {αn} is a sequence in [0, 1] satisfying the following conditions.

(e) αn ∈ (δ, 1 − β) for all n ≥ 1, where δ ∈ (0, 1 − β) is a positive constant.
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(1) If Γ/= ∅, then the sequence {xn} converges weakly to a point x∗ ∈ Γ.
(2) In addition, if there exists a positive integer j such that Sj is semicompact, then the

sequence {xn} converges strongly to a point x∗ ∈ Γ.

The following theorem can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 a bounded linear operator,
Si : H1 → H1, i = 1, 2, . . . ,M, a uniformly Li-Lipschitzian and βi-strict pseudocontraction, and Ti :
H2 → H2, i = 1, 2 . . . ,M, a uniformly L̃i-Lipschitzian and μi-strict pseudocontraction satisfying
the following conditions:

(a) C :=
⋂M

i=1 F(Si)/= ∅ and Q :=
⋂M

i=1 F(Ti)/= ∅,
(b) β = max1≤i≤Mβi < 1 and μ = sup1≤i≤Mμi < 1.

Let {xn} be the sequence generated by

x1 ∈ H1 chosen arbitrarily,

xn+1 = (1 − αn)un + αnSn(un),

un = xn + γA∗(Tn − I)Axn, ∀n ≥ 1,

(3.35)

where Sn = Sn( mod M), Tn = Tn( mod M), {αn} is a sequence in [0, 1], and 0 < γ < 1 is a constant. If
Γ/= ∅ and the following condition is satisfied:

(c) αn ∈ (δ, 1 − β) for all n ≥ 1 and γ ∈ (0, (1 − μ)/‖A‖2), where δ ∈ (0, 1 − β) is a constant,

then the sequence {xn} converges weakly to a point x∗ ∈ Γ. In addition, if there exists a positive integer
j such that Sj is semicompact, then the sequences {xn} and {un} both converge strongly to the point
x∗.

Proof. By the same way as given in the proof of Theorem 3.1 and using the case of strict
pseudocontraction with the sequence {kn = 1}, we can prove that, for each p ∈ Γ, the limits
limn→∞‖xn − p‖ and limn→∞‖un − p‖ exist,

‖un − Snun‖ → 0, ‖Axn − TnAxn‖ → 0, ‖un − un+1‖ → 0, ‖xn − xn+1‖ → 0,

xn ⇀ x∗, un ⇀ x∗ ∈ Γ.
(3.36)

In addition, if there exists a positive integer j such that Sj is semicompact, we can also
prove that {xn} and {un} both converge strongly to the point x∗. This completes the proof.

If you put Si = Ti or Ti = I (: the identity mapping) for each i = 1, 2 . . . ,M in
Theorem 3.3, then we have the following.

Corollary 3.4. Let H be a real Hilbert space and Si : H → H, i = 1, 2, . . . ,M, a uniformly Li-
Lipschitzian and βi-strict pseudocontraction satisfying the following conditions:

(a) C :=
⋂M

i=1 F(Si)/= ∅,
(b) β = max1≤i≤Mβi < 1.
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Let {xn} be the sequence generated by

x1 ∈ H1 chosen arbitrarily,
xn+1 = (1 − αn)xn + αnSn(xn), ∀n ≥ 1,

(3.37)

where Sn = Sn( mod M) and {αn} is a sequence in [0, 1]. If Γ/= ∅ and the following condition is satisfied:

(c) αn ∈ (δ, 1 − β) for all n ≥ 1, where δ ∈ (0, 1 − β) is a constant,

then the sequence {xn} converges weakly to a point x∗ ∈ Γ. In addition, if there exists a positive integer
j such that Sj is semicompact, then the sequences {xn} converges strongly to the point x∗.

Remark 3.5. Theorems 3.1 and 3.3 improve and extend the corresponding results of Censor
et al. [1, 4, 5], Byrne [2], Yang [7], Moudafi [12], Xu [13], Censor and Segal [14], Masad and
Reich [15], and others in the following aspects:

(1) for the framework of spaces, we extend the space from finite dimension Hilbert
space to infinite dimension Hilbert space;

(2) for the mappings, we extend the mappings from nonexpansive mappings,
quasi-nonexpansive mapping or demicontractive mappings to finite families of
asymptotically strictly pseudocontractions;

(3) for the algorithms, we propose some new hybrid iterative algorithms which are
different from ones given in [1, 2, 4, 5, 7, 14, 15]. And, under suitable conditions,
some weak and strong convergences for the algorithms are proved.
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