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This paper deals with the problems of exponential admissibility and H,, control for a class of
continuous-time switched singular systems with time-varying delay. The H,, controllers to be
designed include both the state feedback (SF) and the static output feedback (SOF). First, by using
the average dwell time scheme, the piecewise Lyapunov function, and the free-weighting matrix
technique, an exponential admissibility criterion, which is not only delay-range-dependent but
also decay-rate-dependent, is derived in terms of linear matrix inequalities (LMlIs). A weighted
H,, performance criterion is also provided. Then, based on these, the solvability conditions for
the desired SF and SOF controllers are established by employing the LMI technique, respectively.
Finally, two numerical examples are given to illustrate the effectiveness of the proposed approach.

1. Introduction

Many real-world engineering systems always exhibit several kinds of dynamic behavior
in different parts of the system (e.g., continuous dynamics, discrete dynamics, jump
phenomena, and logic commands) and are more appropriately modeled by hybrid systems.
As an important class of hybrid systems, switched systems consist of a collection of
continuous-time or discrete-time subsystems and a switching rule orchestrating the switching
between them and are of great current interest; see, for example, Decarlo et al. [1], Liberzon
[2], Lin and Antsaklis [3], and Sun and Ge [4] for some recent survey and monographs.
Switched systems have great flexibility in modeling parameter-varying or structure-varying
systems, event-driven systems, logic-based systems, and so forth. Also, multiple-controller
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switching technique offers an effective mechanism to cope with highly complex systems
and/or systems with large uncertainties, particularly in the adaptive context [5]. Many
effective methods have been developed for switched systems, for example, the multiple
Lyapunov function approach [6, 7], the piecewise Lyapunov function approach [8, 9], the
switched Lyapunov function method [10], convex combination technique [11], and the dwell-
time or average dwell-time scheme [12-15]. Among them, the average dwell-time scheme
provides a simple yet efficient tool for stability analysis of switched systems, especially when
the switching is restricted and has been more and more favored [16].

On the other hand, time delay is a common phenomenon in various engineering
systems and the main sources of instability and poor performance of a system. Hence, control
of switched time-delay systems has been an attractive field in control theory and application
in the past decade. Some of the aforementioned approaches for nondelayed switched systems
have been successfully adopted to hand the switched time-delay systems; see, for example,
Du et al. [17], Kim et al. [18], Mahmoud [19], Phat [20], Sun et al. [21], Sun et al. [22], Wang
et al. [23], Wu and Zheng [24], Xie et al. [25], Zhang and Yu [26], and the references therein.

Recently, a more general class of switched time-delay systems described by the
singular form was considered in Ma et al. [27] and Wang and Gao [28]. It is known that
a singular model describes dynamic systems better than the standard state-space system
model [29]. The singular form provides a convenient and natural representation of economic
systems, electrical networks, power systems, mechanical systems, and many other systems
which have to be modeled by additional algebraic constraints [29]. Meanwhile, it endows
the aforementioned systems with several special features, such as regularity and impulse
behavior, that are not found in standard state-space systems. Therefore, it is both worthwhile
and challenging to investigate the stability and control problems of switched singular time-
delay systems. In the past few years, some fundamental results based on the aforementioned
approaches for standard state-space switched time-delay systems have been successfully
extended to switched singular time-delay systems. For example, by using the switched
Lyapunov function method, the robust stability, stabilization, and H,, control problems
for a class of discrete-time uncertain switched singular systems with constant time delay
under arbitrary switching were investigated in Ma et al. [27]; H,, filters were designed in
Lin et al. [30] for discrete-time switched singular systems with time-varying time delay.
In Wang and Gao [28], based on multiple Lyapunov function approach, a switching signal
was constructed to guarantee the asymptotic stability of a class of continuous-time switched
singular time-delay systems. With the help of average dwell time scheme, some initial results
on the exponential admissibility (regularity, nonimpulsiveness, and exponential stability)
were obtained in Lin and Fei [31] for continuous-time switched singular time-delay systems.
However, to the best of our knowledge, few work has been conducted regarding the H,
control for continuous-time switched singular time-delay systems via the dwell time or
average dwell time scheme, which constitutes the main motivation of the present study.

In this paper, we aim to solve the problem of H, control for a class of continuous-
time switched singular systems with interval time-varying delay via the average dwell time
scheme. Both the state feedback (SF) control and the static output feedback (SOF) control
are considered. Firstly, based on the average dwell time scheme, the piecewise Lyapunov
function, as well as the free-weighting technique, a class of slow switching signals is
identified to guarantee the unforced systems to be exponentially admissible with a weighted
H,, performance y, and several corresponding criteria, which are not only delay-range-
dependent but also decay-rate-dependent, are derived in terms of linear matrix inequalities
(LMlIs). Next, the LMI-based approaches are proposed to design an SF controller and an SOF
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controller, respectively, such that the resultant closed-loop system is exponentially admissible
and satisfies a weighted H,, performance y. Finally, two illustrative examples are given to
show the effectiveness of the proposed approach.

Notation 1. Throughout this paper, the superscript T represents matrix transposition. R”
denotes the real n-dimensional Euclidean space, and R™" denotes the set of all n x n real
matrices. I is an appropriately dimensioned identity matrix. P > 0 (P > 0) means that
matrix P is positive definite (semi positive definite). diag{-, -, -} stands for a block diagonal
matrix. Amin(P) (Amax(P)) denotes the minimum (maximum) eigenvalue of symmetric matrix
P, I,[0, o0) is the space of square-integrable vector functions over [0, o), || - || denotes the
Euclidean norm of a vector and its induced norm of a matrix, and Sym{A} is the shorthand
notation for A + AT. In symmetric block matrices, we use an asterisk () to represent a
term that is induced by symmetry. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Preliminaries and Problem Formulation

Consider a class of switched singular time-delay system of the form

Ex(t) = AoyX(t) + Adowx(t — d(t)) + Boyu(t) + Buomw(t),
2(t) = Conx(t) + Caoyx(t — d()) + Dopyuu(t) + Duonw(t),
y(t) = Lopyx(t),

x(0) =¢(0), 0¢€[-d,0],

(2.1)

where x(t) € R” is the system state, u(t) € R™ is the control input, z(t) € R is the controlled
output, y(t) € R” is the measured output, and w(t) € R is the disturbance input that belongs
to L»[0,); o(t) : [0,+0) — O = {1,2,...,1} with integer I > 1 is the switching signal; E €
R™" is a singular matrix with rank E = r < n; for each possible value, o(t) = i,i € 9, A;, Aai,
Bi, Bwi, Ci, Cai, Di, Dy, and L; are constant real matrices with appropriate dimensions; ¢(0)
is a compatible continuous vector-valued initial function on [-d,,0]; d(t) denotes interval
time-varying delay satisfying

di <d(t) < d, dity<pu<l, (2.2)

where 0 < d; < d; and p are constants. Note that d; may not be equal to 0.
Since rank E = r < n, there exist nonsingular matrices P, Q € R™" such that

PEQ = [{) 8] 2.3)

In this paper, without loss of generality, let

E= [If 0]. (2.4)
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Corresponding to the switching signal o(t), we denote the switching sequence by S :=
{Go, t0),..., (i, tk) | ik € D, k = 0,1,...} with tp = 0, which means that the ix subsystem
is activated when t € [tx,tx.1). To present the objective of this paper more precisely, the
following definitions are introduced.

Definition 2.1 (see [2]). For any T, > T1 > 0, let N;(T1, T>) denote the number of switching of
o(t) over (T, T). If No(Ty,T2) < No + (To — T1) /T, holds for T, > 0, Ny > 0, then T, is called
average dwell time. As commonly used in the literature [21, 26], we choose Ny = 0.

Definition 2.2 (see [21,29, 32]). For any delay d(t) satisfying (2.2), the unforced part of system
(2.1) with w(t) =0

Ex(t) = Aoy x(t) + Agomyx(t —d(t)),
xt,(0) = x(tg +0) = $(0), 0 € [-dy,0]

(2.5)

is said to be

(1) regular if det(sE — A;) is not identically zero for each o(t) =i,i € D,
(2) impulse if deg(det(sE — A;)) = rank E foreach o(t) =i,i € D,

(3) exponentially stable under the switching signal o(t) if the solution x(t) of system
(2.5) satisfies

Ix (@)l < e[|, VE 2 b, (2.6)

where A > 0 and ¢ > 0 are called the decay rate and decay coefficient, respectively,
and [[xy[le = sup_y,cpcolllx(fo + O)[},

(4) exponentially admissible under the switching signal o(t) if it is regular, impulse
free, and exponentially stable under the switching signal o (t).

Remark 2.3. The regularity and nonimpulsiveness of the switched singular time-delay system
(2.5) ensure that its every subsystem has unique solution for any compatible initial condition.
However, even if a switched singular system is regular and causal, it still has inevitably finite
jumps due to the incompatible initial conditions caused by subsystem switching [33]. For
more details about the impulsiveness effects on the stability of systems, we refer readers
to Chen and Sun [34], Li et al. [35], and the references therein. In this paper, without
loss of generality, we assume that such jumps cannot destroy the stability of system (2.1).
Nevertheless, how to suppress or eliminate the finite jumps in switched singular systems is a
challenging problem which deserves further investigation.

Definition 2.4. For the given & > 0 and y > 0, system (2.1) is said to be exponentially
admissible with a weighted H,, performance y under the switching signal o(t), if it is
exponentially admissible with u(t) = 0 and w(t) = 0, and under zero initial condition, that is,
¢(0) =0, 0 € [-dy, 0], for any nonzero w(t) € L,[0, o0), it holds that

f e z1 (s)z(s)ds < y2 J‘t w’ (s)w(s)ds. (2.7)
0 0
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Remark 2.5. For switched systems with the average dwell time switching, the Lyapunov
function values at switching instants are often allowed to increase f times (f > 1) to reduce
the conservatism in system stability analysis, which will lead to the normal disturbance
attenuation performance hard to compute or check, even in linear setting [15, 36]. Therefore,
the weighted H,, performance criterion (2.7) [15, 21, 24] is adopted here to evaluate
disturbance attenuation while obtaining the expected exponential stability.

This paper considers both SF control law

u(t) = Ko@x(t) (2.8)
and SOF control law
u(t) = Foy(t), (2.9)

where K; and F;, o(t) = i,i € O, are appropriately dimensioned constant matrices to be
determined.

Then, the problem to be addressed in this paper can be formulated as follows. Given
the switched singular time-delay system (2.1) and a prescribed scalar y > 0, identify a class
of switching signal o(t) and design an SF controller of the form (2.8) and an SOF controller
of the form (2.9) such that the resultant closed-loop system is exponentially admissible with
a weighted H,, performance y under the switching signal o(t).

3. Exponential Admissibility and H, Performance Analysis

First, we apply the average dwell time approach and the piecewise Lyapunov function
technique to investigate the exponential admissibility for the switched singular time-delay
system (2.5) and give the following result.

Theorem 3.1. For prescribed scalars a > 0,0 < dy < dp and 0 < p < 1, if for each i € O, there exist
matrices Qi >0,1=1,2,3, Zj, >0, Mjp, Nin, Sin, v = 1,2, and P; of the following form:

P11 O ]
P = ) 3.1
[Pm P (1)

with Py € R”, Piyy > 0, and Py being invertible, such that

(@11 @i ©inz —SnE aiNa oS oM AfU;]
¥ @py Dps -SpE aiNp S coMp ALU;
* * (Di33 0 0 0 0 0
* * * Dy 0 0 0 0
S 0 o | <o (3.2)
* * * * * —c12Zipp 0 0
* * * * * * —Cc1nZpp 0

| * * * * * * * -U; |
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where

3
®;;; = Sym {PiTAi + NilE} + ZQil +aE’P,
1=1

®;1p = PI Agi + (NoE)" + Sy E — MyE, ®i13 = My E - NiE,

®pr = —(1 - p)e ™ Q3 + Sym {SpE — MpE}, (3.3)
D3 = MpE - NpE, D33 = e *1Qy, Dy = —€2Qp,

1 1
c1 = —<€ad1 - 1>, Cip = —<€“dz - e"‘d1>,
a a

d12 = dz - dl, u; = dlzil + dlZZiZ'

Then, system (2.5) with d(t) satisfying (2.2) is exponentially admissible for any switching sequence
S with average dwell time T, > T = (In )/ a, where p > 1 satisfies

Pau1 < PP, Qu<PQj,  Ziw<PZjp, 1=1,2,3, v=12 VijeD. (3.4)

Moreover, an estimate on the exponential decay rate is A = (1/2)(a — (In )/ T,).

Proof. The proof is divided into three parts: (i) to show the regularity and nonimpulsiveness;
(ii) to show the exponential stability of the differential subsystem; (iii) to show the
exponential stability of the algebraic subsystem.

(i) Regularity and nonimpulsiveness. According to (2.4), for each i € 0, denote

(3.5)

A= [Aill Aiu],

Am A

where A;11 € R™. From (3.2), it is easy to see that ®;1; < 0,7 € 9. Noting Q; >0,1=1,2,3, we
get

Sym{PiT A + N,-lE} +aETP < 0. (3.6)

Substituting P; and E given as (3.1) and (2.4) into this inequality yields

* *
<0, 3.7
[* AL, P + P, A (37)

where x denotes a matrix which is not relevant to the discussion. This implies that Aj», i € 2,
is nonsingular. Then, by Dai [29] and Definition 2.1, system (2.5) is regular and impulse free.
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(ii) Exponential stability of differential subsystem. Define the piecewise Lyapunov
functional candidate for system (2.5) as the following:

V(xt) = Vo‘(t) (Xt)

2 t
= x" () E" Py x(t) + >, f xT ()" Qyyox(s)ds
v=1" t-dy
t T (s-t)
+ a(s—t d
J _y F O Qs 68)
0 t
[ ) ez Ex9)ds o
—dqy J t+0

—d1 t
+ f I (Ex(s)) e Z, 2 (Ex(s))ds db.
—dy Jt+0

Then, along the solution of system (2.5) for a fixed o(t) = i,i € O, we have

2
Vi) < 22T (OPTEs(t) + 3, |x (0Qux(t) = x" (t = du)e  Quux(t = do)| + X ()Qux ()
v=1

— (1= p)x"(t - d(t)e ™ Qux(t - d(t)) + (Ex(t))" (d1 Zn + dr2Zin) (EX(t))
t—d

- r (Ex(s))" e Z;y (Ex(s))ds - f (Ex(s))"e" 0 Zip (Ex(s))ds

t—d1 t_dZ

2 t t
“aX [ AT IQuieds [ AT (e Qux(s)ds
v=1 t*dv

t-d(t)

0 t
—a f f (Ex(s))Te*¢™D 7,1 (Ex(s))ds dO
—dy J t+6

—dl t
—a f f (Ex(s))Te*™ 2, (Ex(s))ds db.
—dy J t+60
(3.9)

From the Leibniz-Newton formula, the following equations are true for any matrices Ny, Siv,
and M, v = 1,2, with appropriate dimensions

Z[xT(t)Nﬂ +xT(t - d(t))Niz] [Ex(t) —Ex(t-dy) - ft Ex(s)ds],
t—dh
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t=d(t)
2[xT(t)Sl~1 +xT(t - d(t))Siz] [Ex(t —d(t)) - Ex(t - dy) — f Ea‘c(s)ds],
t—d,
t—dy
2[xT(t)M,-1 +xT(t - d(t))MiZ] [Ex(t —dy) - Ex(t - d(t)) - f Ex(s)ds] .
t—d(t)
(3.10)
On the other hand, the following equation is also true:
t—d;
—j (Ex(s))T "™z, (Ex(s))ds
- t-d(t) t—d; (3.11)
= f (Ex(s))Te*™ Z,, (Ex(s))ds —f (Ex(s))Te*™ Z,, (Ex(s))ds.
t-d, t=d(t)

By (3.8)-(3.11), we have
Vi(xt) + aVi(xt)

< i’lT(t) [CDl + AiT(dlzﬂ + d12Zi2)A~l~ + clﬁzalﬁT + cugiZi‘zlgiT + ClzﬂiZ;zlﬂf]ﬂ(t)

t — — T
- f (1" (DN + (Ex(s)" e Zy |0 Z3 [ ()N + (Ex(5)) e 2| dis
t*dl

t-d(t) B - T
- f |17 (55 + (Ex(5) e Z | ") 25! [0 (6)S: + (Ex(s))T e Z5 | ds
t—d;

t=dy — — T
- f |17 (M + (Es())T e Z | et 23! [ (1) M + (Es(5)) e Zo | s,
t—d(t)

(3.12)
where n(t) = [xT(t) xT(t-d(t)) xT(t-dy) xT(t- )], Ai = [A; A 0 0],and
®ii1 Gz iz —SnE N;i Mi Sin
TR el ol PR S PR Y/ B PR ) IR
* * * D44 0 0 0
By Schur complement, LMI (3.2) implies
@; + Al (d1 Ziy + d1nZip) Ai + it NiZ5 ' NT + €128,75' ST + coM; 2 MT < 0. (3.14)

Notice that the last three parts in (3.12) are all less than 0. So, if (3.14) holds, then

Vi(x;) + aVi(x;) < 0. (3.15)
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For an arbitrary piecewise constant switching signal o(t), and for any t > 0, we let 0 = t; <
t <. <t <--,k=1,2,--, denote the switching points of o(t) over the interval (0, t). As
mentioned earlier, the ixth subsystem is activated when t € [tk, tis1). Integrating (3.15) from
ty to ty1 gives

V(xt) = Vot (x) < e‘“(t‘tk)Vg(tk)(xtk), t € [k, tks1)- (3.16)

Let x(t) = [222 ], where x;(t) € R” and x,(t) € R". From (2.4) and (3.1), it can be deduced

that for each o(t) =i,i € 0

xT(H)E"Pix(t) = x{ (H) P x1 (#). (3.17)
In view of this, and using (3.4) and (3.8), at switching instant ¢;, we have
Vot () < BVoir) (%), =120, (3.18)

where t; denotes the left limitation of ¢;. Therefore, it follows from (3.16), (3.18), and the
relation k = N (to,t) < (t —ty) /T, that

Vo (1) < e Vi) (xf?>
<... < e_a(t_tO)ﬁkVo(to)(to) (3.19)

< e_(a—(ln B)/Ta)(t~to) Vg(to) (xto ) .

According to (3.8) and (3.19), we obtain

Mllcr @I < Vo (1), Vet (i) < 2l |12, (3.20)

where
M = minAmin(Pi11),
Vied
1 1
Yo = maxhes () + (1= € Jmaxtn(Qa) + — (1 - ) max(lmax(Qi) + dmax(Qe))
+ = (ads =1+ € Ymax(2hman(Za) (1A + | Aad))
7 aaq e %}ea%( max \ £il i di

adyy — e“"dl + e‘“dz
az

rVnaX(Z)Lmax(ZiZ)(”AiH + | Aaill))-
i€d
(3.21)
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Considering (3.19) and (3.20) yields

1 A )
(B < 1 Vot (x1) < ﬁe (a=(np)/T)t=10) || x, 112 (3.22)
which implies
b 12 i
ERGIRS V)Tje 1/ (@I f)/Ta) (t=40) |, || (3.23)

(iii) Exponential stability of algebraic subsystem. Since Ay, i € J, is nonsingular, we
choose

1 —A'12A-_1 I, 0
G-:[’ 1281 H:[ ] (3.24)
Tlo Ag 0 I,
Then, it is easy to get
= I, 0 = A 0 5 T Pi 0
E=GEH=|" |, A =GAH=| , P=G'PH=\|2" ~ |,
l [0 O] Y [Am In—r] o Pp1 Pp
(3.25)

i -1 i -1 5 5 T T
where Aji1 = Al — AinAp, A, A = ApyAin, P = P, Por = APt + ApyPr, and

Ppy = AL, Pn). According to (3.25), denote

Agin Aagin

A\ i = G,A iH =
4 4 [Adi21 Agin

]/ Qu:=H'QyH = [(;)illl (;)i112:|l

Qi121 QilZZ

Zion1 Ziv12

Zivo1 Ziv

Mivi1 Miv12

Ziv =G ZiG;" = [ ]
Mio1 Mivx (3.26)

], M, := H' M;, G} = [

_ N N, . Siont 5
N = HTN' G-_l — | Nivll INivl2 , S. .= HTS' G-_l — | Qivll Qivl2 ,
: o [Niv21 Niv2 © o Siw21 Siw22

1=1,2,3, v=1,2

and let

_|a®] 1y
i) = [§2 (t)] = Hlx(t) = x(t), (3.27)
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where ¢;(t) € R" and & () € R"™. Then, for any o(t) = i, i € J, system (2.5) is a restricted
system equivalent (r.s.e.) to

&(t) = Améi(t) + Agm&i (t — d(t)) + Agiaéa(t — d (1)),

~ ~ R (3.28)
—62(t) = A& () + Aaima 1 (t = d(t)) + Adinnéa (t - d(t)).
By (3.2) and Schur complement, we have
[‘1’111 ‘1’112] (3.29)
122

Pre- and postmultiplying this inequality by diag{HT, HT} and diag{H, H}, respectively,
noting the expressions in (3.25) and (3.26), and using Schur complement, we have

P:zz + P + ZQzlzz R22A£122
* ~(1-p)e Qi

<0. (3.30)

Pre- and postmulhplymg this inequality by [-A I and its transpose, respectively, and

d i22
noting Qluz >0, lezz >0, and p > 0, we obtain

<€(1/2)ad2Adi22> Q1322< (1/2)ad2 A, 22) ~ Qi <0. (3.31)

Then, according to Lemma 5 in Kharitonov et al. [37], we can deduce that there exist constants
hi >1and #; € (0,1) such that

- !
(e(l/z)adzAdm) <he™, 1=0,1,.... (3.32)

Define

0=t F=dT-d(v), j=12,.
(3.33)

|Aiz1||, “Ad21“ = max
Vied

|Adi21 ,

HAdeH = max ‘Adizzn, VieD.

” An ” = max
vied

Vied

Now, following similar line as in Part 3 in Theorem 1 of Lin and Fei [31], it can easily
be obtained that

l&2(B)]] < (Xl + X2+ X3+ xat X5)e—(l/Z)(a—(lnﬂ)/Ta)(t—to)”xtOHC, (3.34)
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where

k

i, Ty,

x1 =] Jr,e™,
j=0

)Lz e’l"k
X2 = hi, Agi V Lo 1

-~ )Lz e'lix
X3 = ﬁike(l/Z)adzAdzl A—lmr (3.35)

- lek k - eP1
X4=A21 )L—lpgl ﬁlpl Hﬁe ‘74 1_1 ,

N .)t2 k ﬂxp 1
NN Y S

p=1
Ty, Ti,,, - .., T, are positive finite integers, respectively, satisfying

the € (toy, te],  t — ty,

thtTicn € (heo, tn], T — iy,
(3.36)

thict o € (=dy, o], tht o —s g,

Combining (3.27), (3.23) and (3.34) yields that system (2.5) is exponentially stable for any
switching sequence .S with average dwell time T, > T;; = In 3/ a. This completes the proof. [

Remark 3.2. Theorem 3.1 provides a sufficient condition of the exponential admissibility for
the switched singular time-delay system (2.5). Note that due to the existence of algebraic
constraints in system states, the stability analysis of switched singular time-delay systems
is much more complicated than that for switched state-space time-delay systems [21-
23, 25, 38]. Note also that the condition established in Theorem 3.1 is not only delay-range-
dependent but also decay-rate-dependent. The delay-range-dependence makes the result less
conservative, while the decay-rate-dependence enables one to control the transient process of
differential and algebraic subsystems with a unified performance specification.

Remark 3.3. Different from the integral inequality method used in our previous work [31], the
free-weighting matrix method [39] is adopted when deriving Theorem 3.1, and thus no three-
product terms, for example, AiTZivA,-, Agl.Z,-vAdi, and so forth, are involved, which greatly
facilitates the SF and SOF controllers design, as seen in Section 4.

Remark 3.4. If p = 1in T, > T; = (Inp)/a, which leads to P11 = Pj11, Qu = Qji, Ziv = Zjo,
1=1,2,3,v=1,2,foralli,j € D,and T = 0, then system (2.5) possesses a common Lyapunov
function, and the switching signals can be arbitrary.
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Now, the following theorem presents a sufficient condition on exponential admissibil-
ity with a weighted H,, performance of the switched singular time-delay system (2.1) with
u(t) = 0.

Theorem 3.5. For prescribed scalars a >0,y >0,0< dy < dp, and 0 < pu < 1, if for each i € D, there

exist matrices Qi > 0,1=1,2,3, Zip, > 0, My, Niv, Sin, v = 1,2, and P; with the form of (3.1) such
that

D1 Dz Pz ~SnE ®ps CT ciNi cinSi ciaMa ]
x @y Dy ~SpE Dps Cl. ¢Nip cSp c12Mp
« % @z 0 0 0 0 0 0
* * *x Dy 0 0 0 0 0

Q=] % * x x+ @ DI 0 0 0 <0, (3.37)

* * * * I | 0 0 0
* * * * * x  —C1Zi 0 0
* * * * * * * —c12Zip 0

| * * * * * * * * —c12Zip ]

where

D11 = Dy + ATU; A, Dy = Dy + ATU; A4, D5 = PIBy;i + ATU;By,
(3.38)
Dy = Opy + AL U Ay, o5 = ALU,Byi, ®;55 = —y°I + BL U;By,,

and (Dillz (Di12/ (Dilg, (Di22/ (Dl'23, q)igg, ‘1’144, and LIi are deﬁ'ned n (32) Then, system (21) with
u(t) = 0 is exponentially admissible with a weighted H, performance y for any switching sequence S
with average dwell time T, > Ty = (InB)/a, where p > 1 satisfying (3.4).

Proof. Choose the piecewise Lyapunov function defined by (3.8). Since (3.37) implies (3.2),
system (2.1) with u(t) = 0 and w(t) = 0 is exponentially admissible by Theorem 3.1. On the
other hand, similar to the proof of Theorem 3.1, from (3.37), we have that for t € [tx, fis1),

Vi (x1) + aVi, (x) + T(t) <0, (3.39)

where I'(t) = 2T (t)z(t) - y?w! ()w(t). This implies that

t
Vi, (xp) < eV (xy,) - f e "I (s)ds. (3.40)

ty
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By induction, we have
t

Vi (xp) < pe ™RV (xy,) _J e =) (s)ds

b

k—p - (3.41)
< ke ™V, (xo) - L “(t=9T(s)ds — Zﬂk P L e 9T (s)ds
k

p=1 P

t
— e—at+N,,,(0,t) 1nﬁ‘/io (xO) _ I e—a(t—s)+N,,,(s,t) lnﬁl“(s)ds.
0
Under zero initial condition, (3.41) gives
t
0< —f e (=) Nals)Infr(5) s, (3.42)
0
Multiplying both sides of (3.42) by e~ N«(0)1nf yields
t t
I e—u(t—s)—Na 0,s) lnﬂZT (s)z(s)ds < YZ I e—u(t—s)—N,X (0,) In ﬂwT (s)w(s)ds. (343)
0 0

Noting that N4(0,s) < s/T, and T, > T; = (Inp)/a, we get N,(0,s)Inf < as. Then, it
follows from (3.43) that fé e *t=9)-a57T (5)z(s)ds < y? fé e =9 (s)w(s)ds. Integrating both
sides of this inequality from ¢ = 0 to oo leads to inequality (2.7). This completes the proof of
Theorem 3.5. O

Remark 3.6. Note that when f = 1, which is a trivial case, system (2.1) with u(t) = 0 achieves
the normal H, performance y under arbitrary switching.

4. Controller Design

In this section, based on the results of the previous section, we are to deal with the design
problems of both SF and SOF controllers for the switched singular time-delay system (2.1).
4.1. SF Controller Design

Applying the SF controller (2.8) to system (2.1) gives the following closed-loop system:
Ex(t) = AgnX(t) + Ado@nx(t - d(t)) + Buoyw(t),

Z(t) O-(t)x(t) + Cda(t)x(t - d(i‘)) + Dwa(t)w(t) (4.1)
x(0) =$(0), 0¢€[-dr,0],
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where
Aoty = Aoty + Bow Ko, Cott) = Cotty + Doy Kon)- (4.2)

The following theorem presents a sufficient condition for solvability of the SF controller
design problem for system (2.1).

Theorem 4.1. For prescribed scalars a« >0,y >0,0< dy < dp, and 0 < u <1, if foreach i € J, and
given scalars eis, f =1,2,...,6, €;7 > 0, and e;s > 0, there exist matrices Ry >0,1=1,2,3, Z;, > 0,
T;, and X; of the following form:

Xm O ]
X = | , 4.3
! [Xi21 Xin (43)

with Xi11 € R, Xin1 > 0, and Xipy being invertible, such that

l

W1 ¥ir Wiz ¥ie Bwi ¥ie Wiy cnesl cpesl Wi Yan S
¥ Wip Wiz Wiy 0 Wie Wiy cieis] cioeul ¥ipio ¥ 0
* * Wias 0 0 0 0 0 0 0 0 0
* * * Wy O 0 0 0 0 0 0 0
x x x x —y I DI. 0 0 0 dBL, diBL, 0
* * * * * -1 0 0 0 0 0 0
* * * * * * -2 0 0 0 0 0 <0, (44)
* * * * * * * —c12Zp 0 0 0 0
* * * * * * * * —cpZip 0 0 0
* * * * * * * * * Wit010 0 0
* * * * * * * * * * Yiir O

| * * * * * * * * * * * _ri_

where

i1 = Sym {A;X; + BiTi + en EX;} + aX] ET,
Wi = AgiRis + € X ET + €5ERi3 — e3ER,
Wis = e3ERn —enERn, Wi4 = —€5ERp,
¥, =T DI + XIC], Wiz = crenld,
Yo = diT/ Bl + diX[ Af,  Wan = diT] B] +dpX] A,

Wi = —(1-p)e ™R3 + Sym {eisERi3 — €uER;),
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Wi = €4ERn — €2ERq, Wips = —€isERp,
W6 = RsCl, Wiy = crenl, Wi = iR AL,
W1 = dipRi AL, iz = —e "Ry, Wiy = —e =Ry,
Yoo = —2d1eirI + dr€4 Za, Wi = —2dnes] +dinekZn,

Z =[x XT X[], I'; = diag{Ri1, Rio, Riz}.
(45)

Then, there exists an SF controller (2.8) such that the closed-loop system (4.1) with d(t) satisfying
(2.2) is exponentially admissible with a weighted H, performance y for any switching sequence S
with average dwell time T, > T = In /a, where p > 1 satisfies

Xin 2 ﬁ_llel/ Ri>P 'Ry, Ziw<PZp, 1=1,2,3, v=12 Vijeo. (4.6)
Moreover, the feedback gain of the controller is
K;=TX;!, ie0. (4.7)

Proof. According to Theorem 3.5, the closed-loop system (4.1) is exponentially admissible
with a weighted H,, performance y if for each i € 9, there exist matrices Q; > 0,1=1,2,3,
Zip >0, Miy, Niv, Siv, v = 1,2, and P; with the form of (3.1) such that inequality (3.37) holds
with A; and C; instead of A; and C;, respectively. By Schur complement, (3.37) is equivalent
to

@, Do Py —SnE P By aT ciNii  c12Sin  c1oMi dlziT d12ZiT ]
*  @py Dz -SpE 0 CL aNp cpSp coMp diAl, dip Al
* * Mz 0 0 0 0 0 0 0 0
* * * (Di44 0 0 0 0 0 O 0
*« x x = -yl DL 0 0 0  diBl, dnBl,
* * * * * -1 0 0 0 0 0 <0, (4.8)
* * * * * *  —c1Zi 0 0 0 0
ook * * * *  —enZp 0 0 0
* * * * * * * * —c12Zp 0 0
* * * * * * * * * _dlz;ll 0

| * * * * * * * * * * —duZi’zl_

where (I)i12/ (Dilg, (Dizz, (Di23, (1)1'33, and CDi44 are defined in (32), and

3
)y = Sym{Pl.TAi + NilE} + Zle +aE'D,. (4.9)
=1
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Since P;11 > 0 and Pjy, is invertible, then P; is invertible. Let
X; =P, Ri =Q, Rp =Qy, Ri = Q. (4.10)

By (3.1), X; has the form of (4.3). Pre- and postmultiplying (4.8) by diag{XiT,ng,
Ri1,Rip,1,1,1,1,1,1,1} and its transpose, respectively, and noting (4.10), we obtain

(@ Pppp Ppiy Py B Dpyg Py Dy Dy Dy Dy ]
* (Di"22 (D;',23 cp;,’24 0 (D;l% (D;',27 (D;'I28 (Di"29 Wizno Wi
* * Wiss 0 0 0 0 0 0 0 0
* * * Wy O 0 0 0 0 0 0
* * * * —YZI DZ;”. 0 0 0 dlBZ;i d12BZ)i
* * * * * -1 0 0 0 0 0 <0, (411
* * * * * x  —c1Zi 0 0 0 0
* * * * * * * —c12Zi 0 0 0
* * * * * * * * —c12Zip 0 0
* * * * * * * * * -d Zi_ll 0

| * * * * * * * * * * —duZl‘;

where

3
O, = Sym{AX; + X NaEX; } + X] Y QuX; +aXE",
I=1

@}, = AaiRis + X[ (NE)' Ris + X[ S ERis = X[ M ERg3,
@}5 = X{ (MiE - NaE)Rq, @}, = -XIShERp,
Opo=X/Ci,  Ohy=cX[Na,  Dpy=coX[Su, (412)
o= coX[ M, Ohg=diX[ A, Oy = duX[A;,
@), = —(1-p)e““Ryz + Sym{R;3SpERi3 - RsMpERs3},
@y, = Rs(MpE —~ NpE)Riy, @, = —Ri3SnERp,

" T " " 1
@ = RisCyy, @, = c1Ri3Njp, Dhg = c12R3Sp, @)y = c1aRiz M.
Now, introducing change of variables

Ni =eanX;7, Np = enRj, M =esX; T, Mp = euRy,
(4.13)
Sin =esX; T, Si = esRy, T; = KiX;,

where €;r, f = 1,2,...,6 are scalars, noting the fact that

~Z ' < 2epl +€5Zn,  -Zy < -2esl +exZp, (4.14)
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where €;7 and ¢;3 are positive scalars, and using Schur complement on (4.11), we can easy
obtain (4.4). In addition, by (3.4) and (4.10), it is easily to verify that the condition (4.6) is
equivalent to (3.4). This completes the proof. O

Remark 4.2. Scalars €;,, h = 1,2,...,8,i € 9, in Theorem 4.1 are tuning parameters which
need to be specified first; such tuning parameters are frequently encountered when dealing
with the SF control problem of singular time-delay systems; see, for example, Ma et al. [27],
Shu and Lam [40], and Wu et al. [38]. A simple way to choose these tuning parameters is
using the trial-and-error method. In fact, (4.4) for fixed €;p, is bilinear matrix inequality (BMI)
regarding these tuning parameters. Therefore, if one can accept more computation burden,
better results can be obtained by directly applying some existing optimization algorithms,
such as the program fminsearch in the optimization toolbox of MATLAB, the branch-and-
band algorithm [41], and the branch-and-cut algorithm [42].

4.2. SOF Controller Design

Connecting the SOF controller (2.9) to system (2.1) yields the closed-loop system

—

Ex(t) = Aa(t)x(t) + Ada(t)x(t —d(t)) + Bwo(t)w(t), @13
2(t) = CopyX() + Cao(x(t = d(£)) + Duoyw(t),

where

!

— —
Ao(t) = AU(t) + Bo(t)Fa(t)Lo(t)/ Co(t) = Co'(t) + Dg(t)Fo(t)Lo(t). (4.16)

The following theorem presents a sufficient condition for solvability of the SOF controller
design problem for system (2.1).

Theorem 4.3. For prescribed scalars a >0,y >0,0< dy < dp, and 0 < u <1, if foreachi € J, and
a given matrix J;, there exist matrices Qy > 0,1=1,2,3, Zi, > 0, and P; of the form (3.2) such that

T .
A1 A Aiis A —SaE J/Bwi C;  aNia  c12Sn c12Ma
* Ao Apz 0 0 J'Buwi 0 0 0 0

* Az As =SpE 0 CL caiNp  cSp  caMp
* Ai44 0 O O O

*

* * 0 0

* * * * Ai55 0 0 0 0 0 < O, (417)
* * * * * —Y2[ DZ;} ; 0 0 0

* * * * * * -I 0 0 0

* * * * * * x  —1Zi 0 0

* * * * * * * * —c12Zp 0

* * * * * * * * * —c12Zp ]
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where c1, c12, and U; are defined in (3.2), and
p— 3
Aay = Sym {JiA; + NaE} + >'Qu +aE"P,
I=1

T T T n7T
Np=-Ji+A; J; +P;, Aps = JiAgi + E' N + Sy E — M E,
(4.18)
Aiia = MpnE - Ny E, A =-J] - Ti+ U, A3 = JiAai,
Ay = (1= p)e™™2Qy3 + Sym {SpE — MpE},

—ad —ad
Apzg = MpE - NpE, Nigg = —e7""Qy1, Ajss = —e""2Qp.

Then, there exists an SOF controller (2.9) such that the closed-loop system (4.15) with d(t) satisfying
(2.2) is exponentially admissible with a weighted H, performance y for any switching sequence S
with average dwell time T, > T} = In p/a, where p > 1 satisfying (3.4).

Proof. From Theorem 3.5, we know that system (4.15) is exponentially admissible with a
weighted H,, performance y for any switching sequence .S with average dwell time T, >
T: = (Inp)/a, where p > 1 satisfying (3.4), if for each i € 9, there exist matrices Q; > 0,
1=1,2,3, Zir, > 0, My, Niv, Siv, v = 1,2, and P; with the form of (3.1) such that the inequality
(4.10) with A; and C; instead of Z:» and a, respectively, holds. By decomposing ®; in (4.10),
we obtain that for each i € 0,

@; = TI(H)AJIT] <0, (4.19)

where A; is exactly the left half of the inequality (4.17), and

IA 00000000
0ALT0000000O0
0 0 0I0O0OO0OO0O0O
0 000Iooooo
@ =10B, 00010000] (4.20)
0 0 0o00OO0OTITOO0O
0 0 0o00OO0OO0OIOO
0 0 ooo0oo0OO0OOTO
0 0 0000000 I
Hence, the condition (4.17) implies ®; < 0. This completes the proof. O

Remark 4.4. Note that there exist product terms between the Lyapunov and system matrices
in inequality (3.37) of Theorem 3.5, which will bring some difficulties in solving the SOF
controller design problem. To resolve this problem, in the proof of Theorem 4.3, we have
made a decoupling between the Lyapunov and system matrices by introducing a slack matrix
variable J; and then obtained a new inequality (4.17). It should be pointed that in Haidar et
al. [32], a sufficient condition for solvability of the SOF controller design problem for the
deterministic singular time-delay system has been proposed. However, the controller gain
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Figure 1: The state trajectories of the open-loop subsystem 1.
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Figure 2: The state trajectories of the open-loop subsystem 2.

was computed by using an iterative LMI algorithm, which was complex. Although the new
inequality (4.17) may be conservative mainly due to the introduction of matrix variable J;,
the introduced decoupling technique enables us to obtain a more easily tractable condition
for the synthesis of SOF controller.

Remark 4.5. Matrices J;, i € 0, in Theorem 4.3 can be specified by the algorithm stated in
Remark 3.6.
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Remark 4.6. In this paper, we have only discussed a special case of the derivative matrix
E having no switching modes. If E also has switching modes, then E is changed to E;,
i € J. In this case, the transformation matrices P and Q should become P; and Q;, and
we have P,E;Q; = diag{l,,0}. Accordingly, the state of the transformed system becomes
x(t) = [x;(t) iiz(t)]T with ’iiji(t) € R", which means that there does not exist one common
state space coordinate basis for all subsystems, and thus it is complicated to discuss the
transformed system. Hence, some assumptions for the matrices E; (e.g., E;, i € J, have the
same right zero subspace [43]) should be given so that the matrices Q; remain the same;
in this case, the method presented here is also valid. However, the general case of E with
switching modes is an interesting problem for future investigation via other methods.

5. Numerical Examples

In this section, we present two illustrative examples to demonstrate the applicability and
effectiveness of the proposed approach.

Example 5.1. Consider the switched system (2.5) with I = 2 (i.e., there are two subsystems)
and the related parameters are given as follows:

b

00
073 0 -1.1 1
Al = [ 0 _1]r Adl = [ 0 05]/ (51)
04 0 -1 0.1
A2 = [—0.1 —1]' Aa = [0 0.1]

andd; =0.1,d> = 0.3, y = 0.4, and a = 0.5. It can be checked that the previous two subsystems
are both stable independently. Consider the quadratic approach (see Remark 3.3, § = 1, and
we know that it requires a common Lyapunov functional for all subsystems); by simulation,
it can be found that there is no feasible solution to this case, that is to say, there is no common
Lyapunov functional for all subsystems. Now, we consider the average dwell time scheme,
and set f = 1.25, and solving the LMIs (3.2) gives the following solutions:

P =10° x [0.0354 0 1.2978 —1.6836]/

0.0256 1.3047]' Qu = [—1.6836 78.9994

On = 0.4821 —-1.6749 Ous = 10° ¢ 0.0002 0.0093
127 11,6749 78.5452|’ 5= 0.0093 1.8512]"
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Zn=[

M11=[

128.9500 2.7682 |

2.7682 308.4441]

-81.4620 —2.8201]
11.2329  0.2679 |

N, - [82:1186 ~1.7810]
7113273 0.1165 |
5. _ [F0-1540 0.0183
17100297 0.2129]”
p, _ [ 436700 0
2~ -66.4319 953.1992
O = 0.4965 —-1.3638
27 1-1.3638 76.0801|"
o _ [1164480 23702
2171 23702 308.2446
Mor < [73:9202 ~2.4255
27| 74257 0.2466
N = [746177 ~15240
27 74918  0.1543

Sy =

—-0.1625 —0.0042
0.0150  0.0002

| |

Journal of Applied Mathematics

7 _ [128.1143  4.4005
¢ 1271 44005 323.5358]"
Mo, = | 592544 20497
’ 127 1.62.6780 -1.9627|"
N, = | 587098 1.2698
’ 127 1-62.8565 —1.1401]"
5. _ [F02125 ~0.0163
127 1-.0.0270 -0.3559]"
Qs = 1.3435 —0.9553
’ 27 -0.9553 76.7387|"
0.0002 0.0078
_ 3
Q2 =107 [0.0078 1.5081]’
5 _ [110.6046 3.6134
’ 27| 36134 323.0948|"
Mo, = [52:5267 17299
’ 2= 27859 -0.1158|"
N, = [519573 10641
’ 27 1227465 -0.0661]"
s, _ [F0-2236 —0.0085
’ 27100150 0.0022 |”

(5.2)

which means that the aforementioned switched system is exponentially admissible.
Moreover, by further analysis, we find that the allowable minimum of f is fmin = 1.046 when
a = 0.5 is fixed; in this case, T; = (Infmin)/a = 0.0899. By the previous analysis, we know
that the average dwell time approach proposed in this paper is less conservative than the

quadratic approach.

Example 5.2. Consider the switched system (2.1) with I =2 and

10 09 0
E=lpo A=V
0.5 0.1 -3 05
Aar = [1 0.1]' B = [—1]' Bt = [0.03]'
C;=[0103], Ca=[0101], Di=11, Dy =015



Journal of Applied Mathematics 23

0.5 0.1 02 05 —4 0.3
A2 = [5 —2]' Aa = [1.5 0.1]' B = [ 1]’ Buz = [0.03]'

Co=[0103], Cp=[0101, Dy=1, Dg=01,
(5.3)

and d(t) = 0.3 + 0.2sin(1.5t). A straightforward calculation gives d; = 0.1, d, = 0.5, and
u = 0.3. By simulation, it can be checked that the previous two subsystems with u(t) = 0 are
both unstable, and the state responses of the corresponding open-loop systems are shown in
Figures 1 and 2, respectively, with the initial condition given by ¢(t) = [1 2]”,t € [-0.5,0]. In
view of this, our goal is to design an SF control u(t) in the form of (2.8) and an SOF control
u(t) in the form of (2.9), such that the closed-loop system is exponentially admissible with a
weighted H,, performance y = 1.5.

For SF control law, set & = 0.4, f = 1.05 (thus T, > T;; = (InB)/a = 0.122), and choose
€11 = 0.2, €12 = 0.1, €13 = 0.1, €14 = 0.02, €15 = 0.004, €16 = 0.03, €17 = 1.9, €18 = 1, €21 = 0.06,
€xn = 0.1, €3 = 0.14, €24 = 0.17, €25 = 0.1, €36 = 0.1, €27 = 0.4, and ep3 = 0.1. Solving the LMIs
(4.4), we obtain the following solutions:

X, = [0.0930 0 ]/ Ry = [1.0444 0.0008 ]’

., _ [0-4461 0.0009
—0.0297 0.2059 0.0008 191.0844 2= ’

0.0009 200.5541

0.0889 -0.1241 0.8979 0.0010
Rz = [ ], Zy = [ ]

-0.1241 0.8811 0.0010 0.8617

1.7609 0.0194
, Zip = [ ],

0.0194 1.4794

- [00932 0 R, _ [1:0897 0.0008 R, _ 04442 0.0009 (5.4)
2~ 10.0208 0.0847]" 217 10.0008 191.0844|” 227 10.0009 200.5541]”

Ry = [

0.0900 —0.1233 7 _ [09017 0.0011 7 [17882 0.0220
-0.1233 0.8771 |’ 21~ 10.0011 0.8640|” 227 10.0220 1.4824|”

Ty = [-0.2000 0.0046], T, = [-1.6983 —0.0889)].

Therefore, from (4.7), the gain matrices of an SF controller can be obtained as

Ky = [-2.1437 0.0221], K, = [2.4825 0.1243]. (5.5)

For SOF control law, let a,  be the same as in the SF control case, and choose

J1 = diag(1.08,3.07},  J» = diag(3.95,1.58}. (5.6)
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Switching signal

0 2 4 6 8 10
Time (s)

Figure 3: Switching signal with the average dwell time T, > 0.13.

By solving the LMIs (4.17), we obtain the following solutions:

p [ 01155 0 O = 3.3116 0.5239 Qn = 1.5055 0.5231
1= 1-5.8842 17.7617|" 17105239 2.1174| 127 10,5231 2.1194|"

O = 1.1241 1.3009 4 _[59711 02713 7 _[40344 -0.182
137 11,3009 3.5238|” 1= 1_0.2713 10.1082|” 127101822 7.5545 |

A - [F13:1122 05931 A - [13:8147 —0.6248 N = [F15:3140 0.6970
=1 0148 -0.0065]" 127 1-0.0015 0.0001 |” =1 01666 -0.0070]"

N, = [13:1090 ~0.5965 5 _ [0.0092 0.0004 5. _ [-11016 0.0500
127 1-0.0014 0.0001 |” 1= 1_0.0028 0.0006] 2= 10.0002 0.0001|’

p,_ [ 01153 0 O = 3.3132 0.5242 Qn = 1.5061 0.5231
27 1-10.1494 4.3434|’ 27105242 2.1163|” 27 10,5231 2.1182|”

Qs = 1.1243 1.3007 5 _[59744 -02714 7 _ [40385 -0.1824
27 11.3007 3.5222|” 217 (0.2714 10.1049]” 27 1-0.1824 7.5509 |’

Mo, - [13:2335 05985 Mo, - 139337 ~0.6301 N = [F15:4420 0.7025
27100221 -0.0010[" 27 1-0.0086 0.0004 | 27100237 -0.0011|"

N, - [13:2333 ~0.6018 5, _ [0.0038 0.0002 s, = [F11076 0.0501
27 1-0.0102 0.0003 |” 217 1-0.0007 0.0000[” 227 1-0.0001 —0.0000]"

Ki=15.1634, F,=1.6543.
(5.7)
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Figure 4: The state trajectories of the closed-loop system under SF control.
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Figure 5: The state trajectories of the closed-loop system under SOF control.

To show the effectiveness of the designed SF and SOF controllers, giving a random switching
signal with the average dwell time T, > 0.13 as shown in Figure 3, we get the state responses
using the SF and SOF controllers for the system as shown in Figures 4 and 5, respectively,
for the given initial condition ¢(t) = [1 2], t € [-0.5,0]. It is obvious that the designed
controllers are feasible and ensure the stability of the closed-loop systems despite the interval
time-varying delays.
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6. Conclusions

In this paper, the problems of exponential admissibility and H, control for a class of
continuous-time switched singular systems with interval time-varying delay have been
investigated. A class of switching signals specified by the average dwell time has been
identified for the unforced systems to be exponentially admissible with a weighted H,
performance. The state feedback and static output feedback controllers have been designed,
and their corresponding solvability conditions have been established by using the LMI
technique. Simulation results have demonstrated the effectiveness of the proposed design
method.
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