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Suitable spline functions of polynomial form are derived and used to solve linear and nonlinear
fractional differential equations. The proposed method is applicable for 0 < α ≤ 1 and α ≥ 1, where
α denotes the order of the fractional derivative in the Caputo sense. The results obtained are in
good agreement with the exact analytical solutions and the numerical results presented elsewhere.
Results also show that the technique introduced here is robust and easy to apply.

1. Introduction

Mathematical modelling of complex processes is a major challenge for contemporary
scientists. In contrast to simple classical systems, where the theory of integer-order
differential equations is sufficient to describe their dynamics, fractional derivatives provide
an excellent instrument for the description of memory and hereditary properties of various
complexmaterials and systems. Therefore, the number of scientific and engineering problems
involving fractional derivatives is already very large and still growing and perhaps the
fractional calculus (i.e., derivatives and integrals of any real or complex order) will be the
calculus of the twenty-first century [1–6].

The analytic results on the existence and uniqueness of solutions to the fractional
differential equations have been investigated by many authors (see, e.g., [7, 8]). During the
last decades, several numerical and analytical methods have been proposed in the literature
to solve fractional differential equations. The most commonly used ones are fractional
differencemethod [9, 10], Adomian decompositionmethod [11], variational iterationmethod
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[12, 13], and Adams-Bashforth-Moulton method [14–16]. Recently, Lagrange multiplier
method and the homotopy perturbation method are used to numerically solve multiorder
fractional differential equations, see [17].

In view of successful application of spline functions of polynomial form in system
analysis [18], delay differential equations [19], and delay differential equations of fractional
order [20], we hold that it should be applicable to solve linear and nonlinear fractional-order
systems.

In the present paper, we intend to extend the application of the spline functions of
polynomial form to solve the fractional differential equations:

yα(x) = f
(
x, y(x)

)
, y(0) = y0, (1.1)

where α denotes the order of the fractional derivative in the Caputo sense.

2. The Spline Function Method of Polynomial Form

Recently, many studies were devoted to the problems of approximate solutions of system
ordinary as well as delay differential equations by spline functions [18–21]. Micula et al. [18]
considered the following system:

y′(x) = f1
(
x, y, z

)
, y(x0) = y0,

z′(x) = f2
(
x, y, z

)
, z(x0) = z0,

(2.1)

where f1, f2 ∈ Cr[0, 1] × R × R, (x, y, z) ∈ [0, 1] × R × R. They assumed that the functions
f
(q)
i , i = 1, 2, and q = 0, 1, . . . , r satisfy the Lipschitz condition of the form

∣∣∣f
(q)
i

(
x, y1, z1

) − f
(q)
i

(
x, y2, z2

)∣∣∣ ≤ Li

{∣∣y1 − y2
∣∣ + |z1 − z2|

}
, (2.2)

with constant Li for all (x, yi, zi) ∈ [0, 1] ×R ×R. In their paper, they presented investigations
to the extension of the spline functions form for approximating the solution of the system of
initial value problems (2.1), with unique solutions y = y(x) and z = z(x).

The spline functions SΔ and S̃Δ to approximate y = y(x) and z = z(x), respectively,
are defined in polynomial form as

SΔ(x) = Sk(x) = Sk−1(xk) +
r∑

i=0

f
(i)
1

(
xk, Sk−1(xk), S̃k−1(xk)

) (x − xk)i+1

(i + 1)!
,

S̃Δ(x) = S̃k(x) = S̃k−1(xk) +
r∑

i=0

f
(i)
2

(
xk, Sk−1(xk), S̃k−1(xk)

) (x − xk)i+1

(i + 1)!
,

(2.3)

for x ∈ [xk, xk+1], k = 0, 1, . . . , n − 1, S−1(x0) = y0, S̃−1(x0) = z0.
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Ramadan introduced in [19] the solution of the first-order delay differential equation
of the form:

y′(x) = f
(
x, y(x), y

(
g(x)

))
, a ≤ x ≤ b,

y(a) = y0, y(x) = Φ(x), x ∈ [a∗, a], a∗ < 0, a∗ = inf
{
g(x) : x ∈ [a, b]

}
,

(2.4)

using the spline functions of the polynomial form, defined as

SΔ(x) = Sk(x) = Sk−1(xk) +
r∑

i=0

M
(i)
k

(x − xk)i+1

(i + 1)!
, (2.5)

where M(i)
k

= f (i)(xk, Sk−1(xk), Sk−1(g(xk))), with S−1(x0) = y0, S−1(g(x0)) = Φ(g(x0)).
Ramadan in [21] considered the system of the initial value problem

y′′′(x) = f1
(
x, y, y′, z, z′

)
, y(i)(x0) = y

(i)
0 ,

z′′′(x) = f2
(
x, y, y′, z, z′

)
, z(i)(x0) = z

(i)
0 ,

(2.6)

where f1, f2 ∈ Cr([0, 1] × R
(4)), i = 0, 1, 2. The method in their work is based on polynomial

splines, to approximate the solutions of the system.
Ramadan et al. [20] presented an extension and generalization of the polynomial

spline functions used in the case of [19], to approximate the solution of the first delay
differential equation and to investigate the solution of the fractional ordinary differential
equation given by

y(α)(x) = f
(
x, y(x)

)
, a ≤ x ≤ b,

y(a) = y0, α > 1.
(2.7)

The formulation of the method presented in [20] is based on the fractional
generalization of Taylor’s theorem [22], which is presented in the following theorem

Theorem 2.1. Let α > 0, n ∈ Z
+, and f(x) ∈ C[α]+n+1([a, b]). Then

f(x) =
n−1∑

k=−n

Dα+k
a+ f(x0)

Γ(α + k + 1)
(x − x0)α+k + Rn(x), (2.8)

for all a ≤ x0 < x ≤ b, where

Rn(x) = Jα+na+ Dα+n
a+ f(x) (2.9)

is the remainder.

Error estimation and convergence analysis of the proposed method was presented by
Ramadan et al. [20]. In their work, they used α > 1 and applied the method to solve two
linear cases.
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The present paper is a sequel to this work [20], and we extend the application of spline
functions method of polynomial form to a more general case incorporating nonlinearities as
well. And we show that this analysis is also applicable in the case 0 < α ≤ 1, namely,

y(α)(x) = f
(
x, y(x)

)
, a ≤ x ≤ b,

y(a) = y0, α > 0.
(2.10)

Let Δ be a uniform partition to the interval [a, b], defined by the nodes Δ : a = x0 < x1 < · · · <
xk < xk+1 < · · · < xn = b, where xk = x0 + kh, k = 0, 1, . . . , n, and h = (b − a)/n.

Define the form of fractional spline function S(x) of polynomial form approximating
the exact solution y by

SΔ(x) = Sk(x) = S
(α−1)
k−1 (xk)

(x − xk)α−1

Γ(α)
+

r∑

i=−n+1
M

(α+i−1)
k

(x − xk)α+i

Γ(α + i + 1)
, n ∈ Z

+, (2.11)

where M(α)
k = f (α)(xk, Sk−1(xk)), with S−1(x0) = y0, for x ∈ [xk, xk+1].

Definition 2.2. Let α ∈ R+. The operator Jαa , defined on L1[a, b] by

Jαaf(x) :=
1

Γ(α)

∫x

a

f(t)

(x − t)1−α
dt (2.12)

for a ≤ x ≤ b, is called the Riemann-Lioville fractional integral operator of order α.
For α = 0, we set J0a := I, the identity operator.

Definition 2.3. The Caputo fractional derivative of f(x), of order α > 0 with a ≥ 0, is defined
as

(
Dα

af
)
(x) =

(
Jm−α
a f (m)

)
(x) :=

1
Γ(m − α)

∫x

a

f (m)(t)

(x − t)α+1−m
dt (2.13)

for m − 1 ≤ α ≤ m, m ∈ N, x ≥ a, and f(x) ∈ Cm
−1.

The Riemann-Liouville fractional operators may be extended to hold for large values
of α, so we denote α = �α�+ β, where �α� is the integer part of α, and β = α− �α�, thus we give
the following definition.

Definition 2.4. If α > 0 and α /∈ N, then we define

Dα
af =

d�α�

dx�α�D
β
af =

d�α�+1

dx�α�+1 J
1−β
a f, (2.14)

thus

(
Dα

af
)
(x) =

1
Γ(m − α)

dm

dxm

∫x

a

f(t)

(x − t)α+1−m
dt (2.15)
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Table 1: Solution of Example 3.1 using α = 0.5 and α = 0.75.

x
α = 0.5 α = 0.75

Appr. solution Absolute error Appr. solution Absolute error

0.0 0.0 0.0 0.0 0.0
0.1 0.0 4.0000 × 10−4 0.0 4.0000 × 10−4

0.2 −3.5668 × 10−3 1.1668 × 10−3 −2.8054 × 10−3 4.0543 × 10−4

0.3 −5.6930 × 10−3 2.9299 × 10−4 −5.8753 × 10−3 4.7533 × 10−4

0.4 −6.8508 × 10−3 4.5080 × 10−4 −6.7877 × 10−3 3.8767 × 10−4

0.5 2.2930 × 10−3 2.2930 × 10−3 9.7776 × 10−4 9.7776 × 10−4

0.6 2.8146 × 10−2 6.5464 × 10−3 2.6460 × 10−2 4.8601 × 10−3

0.7 8.3911 × 10−2 1.5311 × 10−2 8.1759 × 10−2 1.3159 × 10−2

0.8 1.8149 × 10−1 2.7885 × 10−2 1.8163 × 10−1 2.8034 × 10−2

0.9 3.3755 × 10−1 4.5954 × 10−2 3.4348 × 10−1 5.1882 × 10−2

1.0 5.6863 × 10−1 6.8632 × 10−2 5.8718 × 10−1 8.7178 × 10−2

for any f ∈ Cm([a, b]), where m = �α� + 1. If, on the other hand, α < 0, then the definition
becomes

Dα
af = J−αa f. (2.16)

3. Numerical Examples

To demonstrate the effectiveness of this scheme, we consider two kinds of systems: one
is linear and the other is nonlinear. These examples are considered because closed form
solutions are available for them, or they have also been solved using other numerical
schemes. This allows one to compare the results obtained using this scheme with the
analytical solution or the solutions obtained using other schemes.

Example 3.1. Consider the fractional differential equation

Dαy(x) = −y(x) + x4 − 1
2
x3 − 3

Γ(4 − α)
x3−α +

24
Γ(5 − α)

x4−α, 0 < α ≤ 1, (3.1)

with initial condition y(0) = 0.

The exact solution is

y(x) = x4 − 1
2
x3. (3.2)

The numerical results obtained, for different values of α, and for 0 ≤ x ≤ 1, are shown in
Table 1 and Table 2, together with absolute errors, to illustrate the accuracy of the spline
method of polynomial form. Figure 1(a) for α = 0.5, Figure 1(b) for α = 0.75, Figure 1(c)
for α = 0.9, and Figure 1(d) for α = 1.0 show the approximate solutions compared to the exact
solution, to better illustrate the accuracy of the method.
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Table 2: Solution of Example 3.1 using α = 0.9, and α = 1.

α = 0.9 α = 1.0

x Appr. solution Absolute error Appr. solution Absolute error

0.0 0.0 0.0 0 0.0
0.1 0.0 4.0000 × 10−4 −1.0000 × 10−3 6.0000 × 10−4

0.2 −2.4593 × 10−3 5.9337 × 10−5 −2.9700 × 10−3 5.7000 × 10−4

0.3 −5.4032 × 10−3 3.1688 × 10−6 −5.6338 × 10−3 2.3383 × 10−4

0.4 −6.0963 × 10−3 3.0367 × 10−4 −5.9088 × 10−3 4.9117 × 10−4

0.5 1.3284 × 10−3 1.3284 × 10−3 1.5404 × 10−3 1.5404 × 10−3

0.6 2.5395 × 10−2 3.7951 × 10−3 2.4489 × 10−2 2.8891 × 10−3

0.7 7.7426 × 10−2 8.8255 × 10−3 7.3107 × 10−2 4.5075 × 10−3

0.8 1.7148 × 10−1 1.7883 × 10−2 1.5997 × 10−1 6.3700 × 10−3

0.9 3.2435 × 10−1 3.2755 × 10−2 3.0005 × 10−1 8.4533 × 10−3

1.0 5.5552 × 10−1 5.5518 × 10−2 5.1074 × 10−1 1.0736 × 10−2
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0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1

x

y
(x
)

−0.1

Exact solution
α = 0.9

(c) Solution at α = 0.9
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Figure 1: Approximate solutions for Example 3.1.
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Table 3: Solution of Example 3.2 using α = 1.3, α = 1.1, and α = 1.

α = 1.3 α = 1.1 α = 1

x Appr. solution Appr. solution Appr. solution Absolute error

0.0 0.00000 0.00000 0.00000 0.0
0.5 0.32538 0.41045 0.45833 3.7838 × 10−3

1.0 0.52950 0.67714 0.76095 6.4768 × 10−4

1.5 0.63709 0.81882 0.90603 8.7977 × 10−4

2.0 0.68987 0.89089 0.96437 3.3837 × 10−4

2.5 0.71508 0.92755 0.98660 1.5476 × 10−5

3.0 0.72699 0.94629 0.99497 8.4583 × 10−5

3.5 0.73259 0.95590 0.99811 6.4645 × 10−5

4.0 0.73522 0.96084 0.99929 3.6906 × 10−5

4.5 0.73646 0.96339 0.99973 1.8574 × 10−5

5.0 0.73703 0.96470 0.99990 8.7168 × 10−6

Example 3.2. Consider the following fractional Riccati equation:

Dαy(x) = −y(x) + 1, 1 ≤ α < 2, (3.3)

subject to the initial condition y(0) = 0.

The exact solution, when α = 1, is

y(x) =
e2x − 1
e2x + 1

. (3.4)

The numerical results obtained, for different values of α, and for 0 ≤ x ≤ 5, are shown in
Table 3; the approximate solution for α = 1 is compared to the exact solution, to illustrate the
accuracy of the spline method of polynomial form.

Example 3.3. Consider the following nonlinear fractional ordinary differential equation:

Dαy(t) = A
(
1 − y

)4
, A ∈ R

+, 0 < α ≤ 1, (3.5)

subject to the initial condition y(0) = β, where β is a real constant.

This equation describes the cooling of a semi-infinite body by radiation, and the
initial value problem has been solved numerically using the fractional difference method and
Adomian decomposition method in [23].

The exact solution, when α = 1, β = 0, and A = 1, is

y(t) =
1 + 3t − (

1 + 6t + 9t2
)1/3

1 + 3t
. (3.6)



8 Abstract and Applied Analysis

Table 4: Solution of Example 3.3 using α = 0.75, α = 0.9, and α = 1.

t
α = 0.75 α = 0.9 α = 1

Appr. solution Appr. solution Appr. solution Absolute error

0.0 0.00000 0.00000 0.00000 0.0
0.1 0.14054 0.10265 0.08383 9.3660 × 10−5

0.2 0.21290 0.17219 0.14513 1.1397 × 10−4

0.3 0.25536 0.22294 0.19272 1.1162 × 10−4

0.4 0.28215 0.26188 0.23122 1.0297 × 10−4

0.5 0.29977 0.29284 0.26329 9.3223 × 10−5

0.6 0.31165 0.31809 0.29059 8.4033 × 10−5

0.7 0.31980 0.33910 0.31425 7.5850 × 10−5

0.8 0.32544 0.35683 0.33504 6.8710 × 10−5

0.9 0.32939 0.37199 0.35352 6.2520 × 10−5

1.0 0.33215 0.38508 0.37010 5.7152 × 10−5

In this paper, we use the spline function method of polynomial form, to solve the
fractional differential equation (3.5), together with y(0) = β = 0 and A = 1. Table 4 shows
the approximate solutions for (3.5) obtained for different values of α using the spline method
of polynomial form. From the numerical results in Table 4, it is clear that the approximate
solutions are in high agreement with the exact solutions, when α = 1, and with those obtained
in [23] using the fractional difference method and Adomian decomposition method.

4. Conclusions

In this paper, we investigated the possibility of extending and generalizing the spline
functions of polynomial fractional form given in Ramadan et al. [20] to be applicable for
α ≥ 1 as well as the case 0 < α ≤ 1. The method is tested by considering three test problems
for three fractional ordinary differential equations. Two examples are of fractional order α,
0 < α ≤ 1 (Example 3.1 and 3), while Example 3.2 is of fractional order αwhere 1 ≤ α < 2. The
obtained numerical results are in good agreement with the exact analytical solutions.
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