Stability of the \(n \)-Dimensional Mixed-Type Additive and Quadratic Functional Equation in Non-Archimedean Normed Spaces

Yang-Hi Lee, Soon-Mo Jung, and Themistocles M. Rassias

1 Department of Mathematics Education, Gongju National University of Education, Gongju 314-711, Republic of Korea
2 Mathematics Section, College of Science and Technology, Hongik University, 339-701 Jochiwon, Republic of Korea
3 Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

Correspondence should be addressed to Soon-Mo Jung, smjung@hongik.ac.kr

Received 19 November 2011; Accepted 23 January 2012

1. Introduction

A classical question in the theory of functional equations is “when is it true that a function, which approximately satisfies a functional equation, must be somehow close to an exact solution of the equation?” Such a problem, called a stability problem of the functional equation, was formulated by Ulam in 1940 (see [1]). In the following year, Hyers [2] gave a partial solution of Ulam’s problem for the case of approximate additive functions. Subsequently, his result was generalized by Aoki [3] for additive functions and by Rassias [4] for linear functions. Indeed, they considered the stability problem for unbounded Cauchy differences. During the last decades, the stability problems of functional equations have been extensively investigated by a number of mathematicians (see [5–23]).

A non-Archimedean field is a field \(\mathbb{K} \) equipped with a function (valuation) \(|\cdot| : \mathbb{K} \to [0,\infty) \) such that
Abstract and Applied Analysis

\((F_1) \ |r| = 0 \) if and only if \(r = 0 \);

\((F_2) \ |rs| = |r||s| \);

\((F_3) \ |r + s| \leq \max\{|r|, |s|\} \) for all \(r, s \in \mathbb{K} \).

Clearly, it holds that \(|1| = |-1| = 1 \) and \(|n| \leq 1 \) for all \(n \in \mathbb{N} \).

Let \(X \) be a vector space over a scalar field \(\mathbb{K} \) with a non-Archimedean and nontrivial valuation \(|\cdot| \). A function \(\|\cdot\| : X \to \mathbb{R} \) is a non-Archimedean norm (valuation) if it satisfies the following conditions:

\((N_1) \ \|x\| = 0 \) if and only if \(x = 0 \);

\((N_2) \ \|rx\| = |r|\|x\| \) for all \(r \in \mathbb{K} \) and \(x \in X \);

\((N_3) \ \|x + y\| \leq \max\{\|x\|, \|y\|\} \) for all \(x, y \in X \).

Then \((X, \|\cdot\|) \) is called a non-Archimedean space. Due to the fact that

\[
\|x_n - x_m\| \leq \max_{m \leq i < n} \|x_{i+1} - x_i\| \quad (n > m), \tag{1.1}
\]

a sequence \(\{x_n\} \) is Cauchy if and only if \(\{x_{n+1} - x_n\} \) converges to zero in a non-Archimedean space. A complete non-Archimedean space is a non-Archimedean space in which every Cauchy sequence is convergent.

Recently, Moslehian and Rassias [24] proved the Hyers-Ulam stability of the Cauchy functional equation

\[
f(x + y) = f(x) + f(y), \tag{1.2}
\]

and the quadratic functional equation

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y) \tag{1.3}
\]

in non-Archimedean normed spaces.

We now consider the \(n \)-dimensional mixed-type quadratic and additive functional equation

\[
2f \left(\sum_{i=1}^{n} x_i \right) + \sum_{1 \leq i < j \leq n} f(x_i - x_j) = (n + 1) \sum_{i=1}^{n} f(x_i) + (n - 1) \sum_{i=1}^{n} f(-x_i), \tag{1.4}
\]

whose solution is called a quadratic-additive function.

In 2009, Towanlong and Nakmahachalasint [25] obtained a stability result for the functional equation (1.4), in which they constructed a quadratic-additive function \(F \) by composing an additive function \(A \) and a quadratic function \(Q \), where \(A \) and \(Q \) approximate the odd part and the even part of the given function \(f \), respectively.

In this paper, we investigate a general stability problem for the \(n \)-dimensional mixed-type quadratic and additive functional equation (1.4) in non-Archimedean normed spaces.
2. Solutions of (1.4)

In this section, we prove the generalized Hyers-Ulam stability of the n-dimensional mixed-type quadratic and additive functional equation (1.4). Assume that H is an additive group and X is a complete non-Archimedean space.

For a given function $f : H \to X$, we use the abbreviations

$$f_o(x) := \frac{f(x) - f(-x)}{2},$$

$$Af(x, y) := f(x + y) - f(x) - f(y),$$

$$Qf(x, y) := f(x + y) + f(x - y) - 2f(x) - 2f(y),$$

$$D_n f(x_1, x_2, \ldots, x_n) := 2f \left(\sum_{i=1}^{n} x_i \right) + \sum_{1 \leq i < j \leq n} f(x_i - x_j)$$

$$- (n + 1) \sum_{i=1}^{n} f(x_i) - (n - 1) \sum_{i=1}^{n} f(-x_i)$$

for all $x, y, x_1, x_2, \ldots, x_n \in H$ and for an arbitrarily fixed $n \in \mathbb{N}$.

Theorem 2.1. Assume that $n \geq 2$ is an integer. Let H and X be an additive group and a complete non-Archimedean space, respectively. A function $f : H \to X$ is a solution of (1.4) if and only if f_o is quadratic, f_o is additive, and $f_o(0) = 0$.

Proof. If a function $f : H \to X$ is a solution of (1.4), then we have $f_o(0) = 0$.

$$Qf_o(x, y) = f_o(x + y) + f_o(x - y) - 2f_o(x) - 2f_o(y)$$

$$= \frac{1}{2}D_n f_o(x, y, 0, \ldots, 0) + \frac{1}{2} (n - 2)(n + 3) f_o(0)$$

$$= 0,$$

$$Af_o(x, y) = f_o(x + y) - f_o(x) - f_o(y) = \frac{1}{2}D_n f_o(x, y, 0, \ldots, 0) = 0$$

for all $x, y \in H$, that is, f_o is quadratic and f_o is additive.

Conversely, assume that f_o is quadratic, f_o is additive, and $f_o(0) = 0$. We apply an induction on j to prove $D_n f_o(x_1, x_2, \ldots, x_n) = 0$ for all $x_1, x_2, \ldots, x_n \in H$. For $j = 2$, we have

$$D_n f_o(x_1, x_2, 0, \ldots, 0)$$

$$= 2f_o(x_1 + x_2) + 2f_o(x_1 - x_2) - 4f_o(x_1) - 4f_o(x_2) - (n - 2)(n + 3) f_o(0)$$

$$= 0.$$
If \(n > 2 \) and \(D_n f_e(x_1, x_2, \ldots, x_j, 0, \ldots, 0) = 0 \) for some integer \(j (2 \leq j < n) \) and for all \(x_1, x_2, \ldots, x_j \in H \), then a routine calculation yields

\[
D_n f_e (x_1, x_2, \ldots, x_j, 0, \ldots, 0) = Q f_e (x_1 + \cdots + x_j, x_{j+1} - x_j) + \frac{1}{2} D_n f_e (x_1, \ldots, x_{j-1}, 2x_j, 0, \ldots, 0) + \frac{1}{2} D_n f_e (x_1, \ldots, x_{j-1}, 2x_{j+1}, 0, \ldots, 0) - \sum_{k=1}^{j-1} (Q f_e (x_k, x_j) + Q f_e (x_k, x_{j+1}))
\]

(2.4)

\[
- \frac{j}{2} Q f_e (x_{j+1}, x_{j+1}) - \frac{j}{2} Q f_e (x_j, x_j)
\]

= 0

for all \(x_1, x_2, \ldots, x_{j+1} \in H \). Hence, we conclude that

\[
D_n f_e (x_1, x_2, \ldots, x_n) = 0
\]

(2.5)

for all \(x_1, x_2, \ldots, x_n \in H \).

Since \(f_o \) is additive, a long calculation yields

\[
D_n f_o (x_1, x_2, \ldots, x_n)
\]

\[
= \sum_{1 \leq i, j \leq n, i \neq j} A f_o (x_i - x_j) + 2 \sum_{i=1}^{n-1} A f_o \left(\sum_{j=1}^{i} x_j, x_{i+1} \right)
\]

(2.6)

\]

= 0.

Hence, it follows from (2.5) and (2.6) that

\[
D_n f(x_1, x_2, \ldots, x_n) = D_n f_e (x_1, x_2, \ldots, x_n) + D_n f_o (x_1, x_2, \ldots, x_n) = 0
\]

(2.7)

for all \(x_1, x_2, \ldots, x_n \in H \); that is, \(f \) is a solution of (1.4).

\[
3. \textbf{Generalized Hyers-Ulam Stability of (1.4)}
\]

In the following theorem, we will investigate the stability problem of the functional equation (1.4).

\textbf{Theorem 3.1.} Assume that \(n \geq 2 \) is an integer. Let \(H \) and \(X \) be an additive group and a complete non-Archimedean space, respectively. Assume that \(\varphi : H^n \to [0, \infty) \) is a function such that

\[
\lim_{m \to \infty} \varphi(n^m x_1, n^m x_2, \ldots, n^m x_n) = 0
\]

(3.1)
for all \(x_1, x_2, \ldots, x_n \in H \). Moreover, assume that the limit

\[
\tilde{\varphi}(x) := \lim_{m \to \infty} \max_{0 \leq i < m} \left\{ \frac{\varphi(n^i x, \ldots, n^i x)}{|4||n|^{2i+2}}, \frac{\varphi(-n^i x, \ldots, -n^i x)}{|4||n|^{2i+2}} \right\}
\]

exists for each \(x \in H \). If a function \(f : H \to X \) satisfies the inequality

\[
\|D_n f(x_1, x_2, \ldots, x_n)\| \leq \varphi(x_1, x_2, \ldots, x_n)
\]

for any \(x_1, x_2, \ldots, x_n \in H \), then there exists a unique quadratic-additive function \(T : H \to X \) such that

\[
\|f(x) - T(x)\| \leq \tilde{\varphi}(x)
\]

for each \(x \in H \). In particular, \(T \) is given by

\[
T(x) = \lim_{m \to \infty} \left(\frac{f(n^m x) + f(-n^m x)}{2n^{2m}} + \frac{f(n^m x) - f(-n^m x)}{2n^m} \right)
\]

for all \(x \in H \).

Proof. If we replace \(x_i \) in (3.1) with 0 for each \(i \in \{1, 2, \ldots, n\} \), then we have

\[
\lim_{m \to \infty} \frac{\varphi(0, 0, \ldots, 0)}{|n|^{2m}} = 0.
\]

Since \(|n| \leq 1 \), it holds that \(\varphi(0, 0, \ldots, 0) = 0 \) and

\[
\| (n - 1)(n + 2)f(0) \| = \| D_n f(0, 0, \ldots, 0) \| \leq \varphi(0, 0, \ldots, 0) = 0.
\]

Hence, we conclude that \(f(0) = 0 \).

Let \(J_m f : H \to Y \) be a function defined by

\[
J_m f(x) = \frac{f(n^m x) + f(-n^m x)}{2n^{2m}} + \frac{f(n^m x) - f(-n^m x)}{2n^m}
\]
for all \(x \in H \) and \(m \in \{0, 1, 2, \ldots\} \). A tedious calculation, together with \((F_2), (N_3), \) and \((3.3)\), yields

\[
\| J_i f(x) - J_{i+1} f(x) \| = \left\| \frac{D_n f(n^ix, \ldots, n^ix)}{4n^{2i+2}} - \frac{D_n f(-n^ix, \ldots, -n^ix)}{4n^{2i+2}} \right\|
\]

\[
- \frac{D_n f(n^ix, \ldots, n^ix)}{4n^{i+1}} + \frac{D_n f(-n^ix, \ldots, -n^ix)}{4n^{i+1}} \right\|
\]

\[
\leq \max \left\{ \frac{\| D_n f(n^ix, \ldots, n^ix) \| \| D_n f(-n^ix, \ldots, -n^ix) \|}{|4||n|^{2i+2}}, \frac{\| D_n f(n^ix, \ldots, n^ix) \| \| D_n f(-n^ix, \ldots, -n^ix) \|}{|4||n|^{i+1}} \right\}
\]

\[
\leq \max \left\{ \frac{\varphi(n^ix, \ldots, n^ix)}{4||n|^{2i+2}}, \frac{\varphi(-n^ix, \ldots, -n^ix)}{4||n|^{i+1}} \right\}
\]

for all \(x \in H \) and \(i \in \{0, 1, 2, \ldots\} \). It follows from \((3.1)\) and \((3.9)\) that the sequence \(\{ J_m f(x) \} \) is Cauchy. Since \(X \) is complete, we conclude that \(\{ J_m f(x) \} \) is convergent.

Let us define

\[
T(x) := \lim_{m \to \infty} J_m f(x) \quad (3.10)
\]

for any \(x \in H \). It follows from \((N_3)\) and \((3.9)\) that

\[
\| f(x) - J_m f(x) \| = \left\| \sum_{i=0}^{m-1} (J_i f(x) - J_{i+1} f(x)) \right\|
\]

\[
\leq \max_{0 \leq i < m} \| J_i f(x) - J_{i+1} f(x) \| \quad (3.11)
\]

\[
\leq \max_{0 \leq i < m} \left\{ \frac{\varphi(n^ix, \ldots, n^ix)}{4||n|^{2i+2}}, \frac{\varphi(-n^ix, \ldots, -n^ix)}{4||n|^{i+1}} \right\}
\]

for all \(m \in \{0, 1, 2, \ldots\} \) and \(x \in H \). In view of \((3.2)\), if we let \(m \to \infty \) in \((3.11)\), then we obtain the inequality \((3.4)\).

Replacing \(x_i \) in \((3.3)\) with \(n^m x_i \) for \(i \in \{1, 2, \ldots, n\} \) and considering \((F_2)\) and \((N_3)\), we get

\[
\| D_n f(x_1, x_2, \ldots, x_n) \| = \left\| \frac{D_n f(n^m x_1, \ldots, n^m x_n) - D_n f(-n^m x_1, \ldots, -n^m x_n)}{2n^m} \right\|
\]

\[
+ \frac{D_n f(n^m x_1, \ldots, n^m x_n) + D_n f(-n^m x_1, \ldots, -n^m x_n)}{2n^{2m}} \right\|
\]
\begin{equation}
\leq \max \left\{ \frac{\varphi(n^m x_1, \ldots, n^m x_n)}{2\|n\|^{2m}}, \frac{\varphi(-n^m x_1, \ldots, -n^m x_n)}{2\|n\|^{2m}}, \frac{\varphi(n^m x_1, \ldots, n^m x_n)}{2\|n\|^{2m}}, \frac{\varphi(-2^m x_1, \ldots, -2^m x_n)}{2\|n\|^{2m}} \right\}
\end{equation}

(3.12)

for all \(m \in \{0, 1, 2, \ldots\} \) and \(x_1, x_2, \ldots, x_n \in H \). If we let \(m \to \infty \) in the last inequality, then it follows from the condition (3.1) that \(D_nT(x_1, x_2, \ldots, x_n) = 0 \) for all \(x_1, x_2, \ldots, x_n \in H \); that is, \(T \) is a quadratic-additive function.

Assume that \(T' : H \to X \) is another quadratic-additive function satisfying (3.4). By the definition of \(D_n \), a routine calculation yields

\[
-D_nT'(n^i x, \ldots, n^i x) - \frac{D_nT'(-n^i x, \ldots, -n^i x)}{4n^{2i+2}} - \frac{D_nT'(n^i x, \ldots, n^i x)}{4n^{i+1}} + \frac{D_nT'(-n^i x, \ldots, -n^i x)}{4n^{i+1}} = -\frac{1}{2n^{2i+1}} \left(T'(n^{i+1} x) + T'(-n^{i+1} x) \right) + \frac{1}{2n^{i+2}} \left(T'(n^i x) + T'(-n^i x) \right)
\]

\[
-\frac{1}{2n^{i+1}} \left(T'(n^{i+1} x) - T'(-n^{i+1} x) \right) + \frac{1}{2n^{i+2}} \left(T'(n^i x) - T'(-n^i x) \right)
\]

(3.13)

for each \(i \in \{0, 1, 2, \ldots\} \) and \(x \in H \). Hence, it follows from (3.8) that

\[
\sum_{i=0}^{k-1} \left(-\frac{D_nT'(n^i x, \ldots, n^i x)}{4n^{2i+2}} - \frac{D_nT'(-n^i x, \ldots, -n^i x)}{4n^{2i+2}} \right. \left. - \frac{D_nT'(n^i x, \ldots, n^i x)}{4n^{i+1}} + \frac{D_nT'(-n^i x, \ldots, -n^i x)}{4n^{i+1}} \right) = T'(x) - J_k T'(x)
\]

(3.14)

for any \(k \in \mathbb{N} \) and \(x \in H \). Since \(T' \) is a solution of (1.4), it follows from the last equality that

\[
T'(x) = J_k T'(x)
\]

(3.15)

for any \(k \in \mathbb{N} \) and \(x \in H \). Obviously, this equality also holds for \(T \).

Consequently, by considering that \(|n| \leq 1 \), it follows from (N3), (3.1), (3.4), and (3.8) that

\[
\|T(x) - T'(x)\| = \lim_{k \to \infty} \|J_k T(x) - J_k T'(x)\|
\]

\[
\leq \lim_{k \to \infty} \max \{ \|J_k T(x) - J_k f(x)\|, \|J_k f(x) - J_k T'(x)\| \}
\]
\[
\leq \lim_{k \to \infty} |2|^{-1n}|n|^{-2k} \max \left\{ \| T(n^k x) - f(n^k x) \|, \| T(-n^k x) - f(-n^k x) \|, \right. \\
\| f(n^k x) - T(n^k x) \|, \left. \| f(-n^k x) - T(-n^k x) \| \right\} \\
\leq \lim_{k \to \infty} \lim_{m \to \infty} \max_{k \leq m+k} \left\{ \frac{\varphi(n^i x, \ldots, n^i x)}{|8||n|^{2i+2}}, \frac{\varphi(-n^i x, \ldots, -n^i x)}{|8||n|^{2i+2}} \right\} \\
= 0
\]

(3.16)

for all \(x \in H \). Therefore, \(T = T' \), which proves the uniqueness of \(T \).

Corollary 3.2. Let \(X \) and \(Y \) be non-Archimedean normed spaces over \(\mathbb{K} \) with \(|n| < 1 \). If \(Y \) is complete and \(f : X \to Y \) satisfies the inequality

\[
\| Df(x_1, x_2, \ldots, x_n) \| \leq \theta \sum_{i=1}^{n} \| x_i \|^r
\]

(3.17)

for all \(x_1, x_2, \ldots, x_n \in X \) and for some \(r > 2 \), then there exists a unique quadratic-additive function \(T : X \to Y \) such that

\[
\| f(x) - T(x) \| \leq \frac{n\theta}{|4||n|^2} \| x \|^r
\]

(3.18)

for all \(x \in X \).

Proof. Let \(\varphi(x_1, x_2, \ldots, x_n) = \theta \sum_{i=1}^{n} \| x_i \|^r \). Since \(|n| < 1 \) and \(r - 2 > 0 \), we get

\[
\lim_{m \to \infty} |n|^{-2m} \varphi(n^m x_1, n^m x_2, \ldots, n^m x_n) = \lim_{m \to \infty} |n|^{m(r-2)} \varphi(x_1, x_2, \ldots, x_n) = 0
\]

(3.19)

for all \(x_1, x_2, \ldots, x_n \in X \). Therefore, the conditions of Theorem 3.1 are satisfied. Indeed, it is easy to see that \(\varphi(x) = n\theta(|4|^{-1}|n|^{-2}) \| x \|^r \). By Theorem 3.1, there exists a unique quadratic-additive function \(T : X \to Y \) such that (3.18) holds.

Acknowledgments

The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2011-0004919).

References

