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A kind of nonlinear finance system with time-delayed feedback is considered. Firstly, by
employing the polynomial theorem to analyze the distribution of the roots to the associate
characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given.
Secondly, by using the normal form theory and center manifold argument, we derive the explicit
formulas determining the stability, direction, and other properties of bifurcating periodic solutions.
Finally, we give several numerical simulations, which indicate that when the delay passes through
certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic
orbit.

1. Introduction

Since the chaotic phenomenon in economics was first found in 1985, great impact has been
imposed on the prominent western economics at present, because the chaotic phenomenon
occurring in the economic system means that the macroeconomic operation has in itself the
inherent indefiniteness. Although the government can adopt such macrocontrol measures as
the financial policies or the monetary policies to interfere, the effectiveness of the interference
is very limited. The instability and complexity make the precise economic prediction greatly
limited, and the reasonable prediction behavior has become complicated as well. In the
fields of finance, stocks, and social economics, because of the interaction between nonlinear
factors, with all kinds of economic problems being more and more complicated and with
the evolution process from low dimensions to high dimensions, the diversity and complexity
have manifested themselves in the internal structure of the system and there exists extremely
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Figure 1: Strange attractor of finance system (1.1).

complicated phenomenon and external characteristics in such a kind of system. So it has
become more and more important to study the control of the complicated continuous
economic system and stabilize the instable periodic or stationary solutions, in order to make
the precise economic prediction possible [1, 2].

Recent works [1, 2] have reported a dynamic model of finance, composed of three
first-order differential equations. The model describes the time variations of three state
variables: the interest rate x, the investment demand y, and the price index z. By choosing
an appropriate coordinate system and setting appropriate dimensions for each state variable,
[1, 2] offer the simplified finance system as

ẋ(t) = −a(x(t) + y(t)),

ẏ(t) = −y(t) − ax(t)z(t),

ż(t) = b + ax(t)y(t),

(1.1)

which is chaotic when a = 1.69, b = 4 (see Figure 1).
Over the last years, [3, 4] studied impulsive control and state feedback control of the

finance system (1.1). In this paper, we are interesting in delayed feedback control of the
finance system (1.1). The effects of the time-delayed feedback on the finance system have
long been investigated [5–8].

Recently, different techniques and methods have been proposed to achieve chaos
control. The existing control methods can be classified, mainly, into two categories. The first
one, developed by Ott et al. [9] is based on the invariant manifold structure of unstable orbits.
It is theoretically well understood but difficult to apply to fast experimental systems. The
second, proposed by Pyragas [10], uses time-delayed controlling forces. In contrast to the
former one, it is simple and convenient method of controlling chaos in continuous dynamical
system. Thus, we adopt the second one in the present paper.
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For predigesting the investigation, here we only put time delay on investment demand
y. By adding a time-delayed forceK(y(t)−y(t− τ)) to the second equation of finance system
(1.1), we obtain the following new system

ẋ(t) = −a(x(t) + y(t)),
ẏ(t) = −y(t) − ax(t)z(t) +K(

y(t) − y(t − τ)),
ż(t) = b + ax(t)y(t).

(1.2)

Here we assume that (C1) a, b, τ ∈ (0,∞) and K ∈ R. The time delay τ is taken as the
bifurcation parameter and we show that when τ passes through some certain critical values,
the equilibrium will lose its stability and hopf bifurcation will take place; by adjusting
K values, we achieve the purpose of chaos control. The research of this paper is a new
investigation about the hopf bifurcation and chaos control on the finance system and has
important theoretical and practical value.

2. Stability of Steady States and Bifurcations of Periodic Solutions

In this section, we investigate the effect of delay on the dynamic behavior of system (1.2).
Obviously, when τ = 0, system (1.2) becomes the system (1.1). First, we introduce the
following several lemmas in [1, 2] for T’s system(1.1).

We know that under the assumption (C1), the system (1.1) has two equilibrium points:

S1 =

(√
ab

b
,−

√
ab

b
,
1
a

)

, S2 =

(

−
√
ab

b
,

√
ab

b
,
1
a

)

. (2.1)

The characteristic equation of the system (1.1) at S1(S2) is

λ3 + (1 + a)λ2 + abλ + 2a2b = 0. (2.2)

By analyzing the characteristic equation (2.2) and the Routh-Hurwitz criteria, we get
the following.

Lemma 2.1. For a < 1, the characteristic equation (2.2) has three eigenvalues with negative real
parts, so two equilibrium points S1, S2 of the system (1.1) are asymptotic stable.

Lemma 2.2. For a = 1, the characteristic equation (2.2) has a pair of purely imaginary eigenvalues
λ1,2 = ±iω0 (ω0 =

√
b) and a negative real eigenvalue λ3 = −2, and

λ̇(a = 1) =
5b

2b + 8
> 0. (2.3)

According to the hopf bifurcation theorem [11], a hopf bifurcation of the system (1.1) occurs at a = 1.

Lemma 2.3. For a > 1, the characteristic equation (2.2) has one negative real root and one pair of
conjugate complex roots with positive real parts, so two equilibrium points S1, S2 of the system (1.1)
are unstable.
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Clearly, the delayed feedback control system (1.2) has the same equilibria to the
corresponding system (1.1). In this section, we analyze the effect of delay on the stability of
these steady states. Due to the symmetry of S1 and S2, it is sufficient to analyze the stability
of S1. By the linear transform

x1(t) = x(t) −
√
ab

b
,

y1(t) = y(t) +

√
ab

b
,

z1(t) = z(t) − 1
a
,

(2.4)

system (1.2) becomes

ẋ1(t) = −a(x1(t) + y1(t)
)
,

ẏ1(t) = −x1(t) − y1(t) −
√
abz1(t) − ax1(t)z1(t) +K

(
y1(t) − y1(t − τ)

)
,

ż1(t) = −
√
abx1(t) +

√
aby1(t) + ax1(t)y1(t).

(2.5)

It is easy to see that the origin S0(0, 0, 0) is the equilibrium of system (2.5). The associated
characteristic equation of system (2.5) at S0(0, 0, 0) is

det

⎛

⎜
⎝
λ + a a 0
1 λ + 1 −K +Ke−λτ

√
ab√

ab −
√
ab λ

⎞

⎟
⎠ = 0. (2.6)

Expanding (2.6), we have

λ3 + (1 + a −K)λ2 + (ab − aK)λ + 2a2b +K
(
λ2 + aλ

)
e−λτ = 0. (2.7)

Thus, we need to study the distribution of the roots of the third-degree exponential pol-
ynomial equation:

λ3 + a2λ2 + a1λ + a0 +
(
b2λ

2 + b1λ + b0
)
e−λτ = 0, (2.8)

where ai, bi ∈ R (i = 0, 1, 2) and
∑2

i=0 b
2
i /= 0. We first introduce the following simple result

which was proved by Ruan and Wei [12] using Rouche’s theorem.

Lemma 2.4. Consider the exponential polynomial

P
(
λ, e−λτ1 , . . . , e−λτm

)

= λn + p(0)1 λn−1 + · · · + p(0)n−1λ + p(0)n +
[
p
(1)
1 λn−1 + · · · + p(1)n−1λ + p(1)n

]
e−λτ1

+ · · · +
[
p
(m)
1 λn−1 + · · · + p(m)

n−1λ + p(m)
n

]
e−λτm ,

(2.9)
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where τi ≥ 0 (i = 1, 2, . . . , m) and p
(i)
j (i = 0, 1, . . . , m, j = 1, 2, . . . , n) are constants. As

(τ1, τ2, . . . , τm) vary, the sum of the order of the zeros of P(λ, e−λτ1 , . . . , e−λτm) on the open right half
plane can change only if a zero appears on or crosses the imaginary axis.

Obviously, iω(ω > 0) is a root of (2.8) if and only if ω satisfies

−iω3 − a2ω2 + a1ωi + a0 +
(
−b2ω2 + b1ωi + b0

)
(cosωτ − i sinωτ) = 0. (2.10)

Separating the real and imaginary parts, we have

a2ω
2 − a0 =

(
b0 − b2ω2

)
cosωτ + b1ω sinωτ,

−ω3 + a1ω =
(
b0 − b2ω2

)
sinωτ − b1ω cosωτ,

(2.11)

which is equivalent to

ω6 +
(
a22 − b22 − 2a1

)
ω4 +

(
a21 − 2a0a2 − b21 + 2b0b2

)
ω2 + a20 − b20 = 0. (2.12)

Let z = ω2 and denote p = a22 − b22 − 2a1, q = a21 − 2a0a2 − b21 + 2b0b2, r = a20 − b20, then (2.12)
becomes

z3 + pz2 + qz + r = 0. (2.13)

In the following, we need to seek conditions under which (2.12) has at least one
positive root. Denote

h(z) = z3 + pz2 + qz + r. (2.14)

Therefor, applying [13], we obtain the following lemma.

Lemma 2.5. For the polynomial equation (2.13), one has the following results.

(i) If r < 0, then (2.13) has at least one positive root.

(ii) If r ≥ 0 and Δ = p2 − 3q ≤ 0, then (2.13) has no positive roots.

(iii) If r ≥ 0 and Δ = p2 − 3q > 0, then (2.13) has positive roots if and only if z∗1 = (1/3)(−p +√
Δ) > 0 and h(z∗1) ≤ 0.

Suppose that (2.13) has positive roots. Without loss of generality, we assume that it
has three positive roots, defined by z1, z2, and z3, respectively. Then (2.12) has three positive
roots:

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3. (2.15)
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From (2.11), we have

cosωτ =
b1ω

2(ω2 − a1
) − (

a2ω
2 − a0

)(
b2ω

2 − b0
)

(b2ω2 − b0)2 + b21ω2
. (2.16)

Thus, if we denote

τ
(j)
k

=
1
ωk

⎡

⎣cos−1
⎛

⎝
b1ω

2
k

(
ω2
k − a1

) − (
a2ω

2
k − a0

)(
b2ω

2
k − b0

)

(
b2ω

2
k − b0

)2 + b21ω
2
k

⎞

⎠ + 2jπ

⎤

⎦, (2.17)

where k = 1, 2, 3; j = 0, 1, 2, . . ., then ±iωk is a pair of purely imaginary roots of (2.8)with τ (j)
k
.

Define

τ0 = τ
(0)
k0

= min
k∈1,2,3

τ
(0)
k
, ω0 = ωk0 . (2.18)

Note that when τ = 0, (2.8) becomes

λ3 + (a2 + b2)λ2 + (a1 + b1)λ + a0 + b0 = 0. (2.19)

Therefor, applying Lemmas 2.4 and 2.5 to (2.8), we get the following lemma.

Lemma 2.6. For (2.8), one has

(i) if r ≥ 0 and Δ = p2 − 3q ≤ 0, then all roots with positive real parts of (2.8) have the same
sum to those of the polynomial equation (2.19) for all τ ≥ 0.

(ii) if either r < 0 or r ≥ 0, Δ = p2 − 3q > 0, z∗1 = (1/3)(−p+
√
Δ) > 0 and h(z∗1) ≤ 0, then all

roots with positive real parts of (2.8) have the same sum to those of the polynomial equation
(2.19) for τ ∈ [0, τ0).

Let

λ(τ) = α(τ) + iω(τ) (2.20)

be the root of (2.8) near τ = τ (j)
k

satisfying

α
(
τ
(j)
k

)
= 0, ω

(
τ
(j)
k

)
= ωk. (2.21)

Then by [13], we have the following transversality condition.
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Lemma 2.7. Suppose that zk = ω2
k and h

′(zk)/= 0. Then

Rλ
(
τ
(j)
k

)

dτ
/= 0, (2.22)

and Rλ(τ (j)
k
)/dτ and h′(zk) have the same sign.

Now, we study the characteristic equation (2.7) of the system (2.5). Comparing (2.7)
with (2.8), we know that

a2 = 1 + a −K, a1 = ab − aK, a0 = 2a2b, b2 = K, b1 = aK, b0 = 0.
(2.23)

Thus,

p = a22 − b22 − 2a1 = a2 + 2a + 1 − 2ab − 2K,

q = a21 − 2a0a2 − b21 + 2b0b2 = a2b2 + 2a2bK − 4a2b − 4a3b,

r = a20 − b20 = 4a4b2 > 0,

(2.24)

and then we can compute

Δ = p2 − 3q, h(z) = z3 + pz2 + qz + r, z∗1 =
1
3

(
−p +

√
Δ
)
. (2.25)

When τ = 0, (2.7) becomes (2.2)

λ3 + (1 + a)λ2 + abλ + 2a2b = 0. (2.26)

Applying Lemmas 2.1, 2.2, 2.6, and 2.7 to (2.7), we have the following theorems.

Theorem 2.8. Let τ (j)k and τ0 be defined by (2.17) and (2.18). Suppose that conditions (C1) and a < 1
hold.

(i) If Δ ≤ 0, then (2.7) had all roots with negative real parts for all τ ≥ 0, and the equilibrium
S1 (or S2) of the system (1.2) is stable.

(ii) If Δ > 0, z∗1 > 0 and h(z∗1) ≤ 0, (2.7) had all roots with negative real parts for τ ∈ [0, τ0),
and the equilibrium S1 (or S2) of the system (1.2) is stable.

(iii) If the conditions of (ii) are satisfied, and h′(zk)/= 0, then system (1.2) exhibits the Hopf
bifurcation at the equilibrium S1 (or S2) for τ = τ (j)k .

Theorem 2.9. Let τ (j)
k

and τ0 are defined by (2.17) and (2.18). Suppose that conditions (C1) and
a > 1 hold.

(i) If Δ ≤ 0, then (2.7) had two roots with positive real parts for all τ ≥ 0, and the equilibrium
S1 (or S2) of the system (1.2) is unstable.
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(ii) If Δ > 0, z∗1 > 0 and h(z∗1) ≤ 0, (2.7) has two roots with positive real parts for τ ∈ [0, τ0),
and the equilibrium S1 (or S2) of the system (1.2) is unstable.

(iii) If the conditions of (ii) are satisfied, and h′(zk)/= 0, then system (1.2) exhibits the Hopf
bifurcation at the equilibrium S1 (or S2) for τ = τ (j)

k
.

3. Direction and Stability of the Hopf Bifurcation

In the Section 2, we obtained some conditions which guarantee that the system (1.2)
undergoes the Hopf bifurcation at a sequence values of τ . In this section, we shall study the
direction and stability of the Hopf bifurcation. The method we used is based on the normal
form theory and the center manifold theorem introduced by Hassard et al. [14]. Throughout
this section, we always assume that system (1.2) undergoes Hopf bifurcations at the steady
state (x∗,y∗, z∗) for τ = τk and then ±iωk is corresponding purely imaginary roots of the
characteristic equation at the steady state (x∗,y∗, z∗).

Letting x1 = x − x∗, x2 = y − y∗, x3 = z − z∗, xi(t) = xi(τt), τ = τk + μ and
dropping the bars for simplification of notations, system (1.2) is transformed into an FDE
in C = C([−1, 0], R3) as

ẋ(t) = Lμ(xt) + f
(
μ,xt

)
, (3.1)

where x(t) = (x1(t),x2(t),x3(t))
T ∈ R3, and Lμ : C → R, f : R × C → R are given,

respectively, by

Lμ
(
φ
)
=
(
τk + μ

)
⎛

⎝
−a −a 0
−az∗ K − 1 −ax∗
ay∗ ax∗ 0

⎞

⎠

⎛

⎝
φ1(0)
φ2(0)
φ3(0)

⎞

⎠ +
(
τk + μ

)
⎛

⎝
0 0 0
0 −K 0
0 0 0

⎞

⎠

⎛

⎝
φ1(−1)
φ2(−1)
φ3(−1)

⎞

⎠,

f
(
μ, φ

)
=
(
τk + μ

)
⎛

⎝
0

−aφ1(0)φ3(0)
aφ1(0)φ2(0)

⎞

⎠.

(3.2)

By the Riesz representation theorem, there exists a function η(θ, μ) of bounded variation for
θ ∈ [−1, 0], such that

Lμφ =
∫0

−1
dη(θ, 0)φ(θ) (3.3)

for φ ∈ C[−1, 0].
In fact, we can choose

η
(
θ, μ

)
=
(
τk + μ

)
⎛

⎝
−a −a 0
−az∗ K − 1 −ax∗
ay∗ ax∗ 0

⎞

⎠δ(θ) − (
τk + μ

)
⎛

⎝
0 0 0
0 −K 0
0 0 0

⎞

⎠δ(θ + 1), (3.4)
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where δ is the Dirac delta function. For φ ∈ C1([−1, 0], (R3)∗), define

A
(
μ
)
φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1
dη

(
μ, s

)
φ(s), θ = 0,

R
(
μ
)
φ =

{
0, θ ∈ [−1, 0),
f
(
μ, φ

)
, θ = 0.

(3.5)

Then system (3.1) is equivalent to

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (3.6)

where xt(θ) = x(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], R3), define

A∗ψ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],
∫0

−1
dηT (t, 0)ψ(−t), s = 0,

(3.7)

and a bilinear inner product

〈
ψ(s), φ(θ)

〉
= ψ(0) · φ(0) −

∫0

θ=−1

∫θ

ξ=0
ψT (ξ − θ)dη(θ)φ(ξ)dξ, (3.8)

where η(θ) = η(θ, 0). Then A = A(0) and A∗ = A∗(0) are adjoins operators.
By the discussion in Section 2, we know that ±iωkτk are eigenvalues of A, thus they

are also eigenvalues of A∗.
By direct computation, we obtain that q(θ) = q0eiθωkτk , with

q(0) =
(
1, α, β

)T =

(

1,−a + iωk

a
,
a
(
y∗ − x∗

) − iωkx∗
iωk

)T

, (3.9)

is the eigenvector of A corresponding to iωkτk, and q∗(s) = Dq∗0e
isωkτk , with

q∗0 =
(
1, α∗, β∗

)T =
(
1,

iωk(a − iωk)
a2x∗y∗ − iωkaz∗

,
(a − iωk)ax∗

a2x∗y∗ − iωkaz∗

)T

, (3.10)

is the eigenvector of A∗ corresponding to −iωkτk, where

D =
1

1 + αα∗ + ββ∗ −Kτkαα∗eiωkτk
. (3.11)
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Using the same notation as in [14], we compute the coordinates to describe the center
manifold C0 at μ = 0. Let xt be the solution of (3.1)when μ = 0. Define

z(t) =
〈
q∗,xt

〉
, W(t, θ) = xt(θ) − 2Re

{
z(t)q(θ)

}
. (3.12)

On the center manifold C0, we have

W(t, θ) =W(z(t), z(t), θ), (3.13)

where

W(z, z, θ) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · , (3.14)

z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note that
W is real if xt is real. We consider only real solutions. For the solution xt ∈ C0 of (3.1), since
μ = 0, we have

ż(t) = iτkωkz + q
∗(θ)f

(
0,W(z, z, θ) + 2Re

{
zq(θ)

})

= iτkωkz + q
∗(0)f

(
0,W(z, z, 0) + 2Re

{
zq(0)

}) def= iτkωkz + q
∗(0)f0(z, z).

(3.15)

We rewrite this equation as

ż(t) = iτkωkz(t) + g(z, z), (3.16)

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.17)

Noticing

xt(θ) = (x1t(θ),x2t(θ),x3t(θ)) =W(t, θ) + zq(θ) + zq(θ),

q(θ) =
(
1, α, β

)T
eiθωkτk ,

(3.18)

we have

x1t(0) = z + z +W
(1)
20 (0)

z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+O

(
|(z, z)|3

)
,

x2t(0) = αz + αz +W
(2)
20 (0)

z2

2
+W (2)

11 (0)zz +W
(2)
02 (0)

z2

2
+O

(
|(z, z)|3

)
,

x3t(0) = βz + βz +W
(3)
20 (0)

z2

2
+W (3)

11 (0)zz +W
(3)
02 (0)

z2

2
+O

(
|(z, z)|3

)
.

(3.19)
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Thus, form (3.17), we have

g(z, z) = q∗(0)f0(z, z) = Dτk
(
1, α∗, β∗

)
⎛

⎝
0

−ax1t(0)x3t(0)
ax1t(0)x2t(0)

⎞

⎠

= −aDτkα∗
[

z + z +W (1)
20 (0)

z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

[

βz + βz +W (3)
20 (0)

z2

2
+W (3)

11 (0)zz +W
(3)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

+ aDτkβ∗
[

z + z +W (1)
20 (0)

z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

[

αz + αz +W (2)
20 (0)

z2

2
+W (2)

11 (0)zz +W
(2)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

.

(3.20)

Comparing the coefficients of (3.17), we get

g20 = −2aDτk
(
β∗α − α∗β

)
,

g11 = 2aDτk
(
β∗ Re(α) − α∗ Re(β)

)
,

g02 = −2aDτk
(
β∗α − α∗β

)
,

g21 = −aDτkα∗
[
2W (3)

11 (0) +W
(3)
20 (0) + 2βW (1)

11 (0) + βW
(1)
20 (0)

]

+ aDτkβ∗
[
2W (2)

11 (0) +W
(2)
20 (0) + 2αW (1)

11 (0) + αW
(1)
20 (0)

]
.

(3.21)

Since there areW20(θ) andW11(θ) in g21, we need to compute them.
From (3.6) and (3.12), we have

Ẇ = ẋt − żq − żq =

{
AW − 2Re

{
q∗(0)f0q(θ)

}
, θ ∈ [−1, 0),

AW − 2Re
{
q∗(0)f0q(0)

}
+ f0, θ = 0.

def= AW +H(z, z, θ),

(3.22)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.23)

Expanding the above series and comparing the corresponding coefficients, we obtain

(A − 2iτkωk)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), . . . . (3.24)
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From (3.22), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(0) = −gq(θ) + gq(θ). (3.25)

Comparing the coefficients with (3.23) gives that

H20(θ) = −g20q(θ) − g02q(θ), (3.26)

H11(θ) = −g11q(θ) − g11q(θ). (3.27)

From (3.24), (3.26) and the definition of A, it follows that

Ẇ20(θ) = 2iτkωkW20(θ) + g20q(θ) + g02q(θ). (3.28)

Notice that q(θ) = (1, α, β)Teiθωkτk , hence

W20(θ) = − ig20
ωkτk

q(0)eiθωkτk +
ig02

3ωkτk
q(0)e−iθωkτk + E1e

2iθωkτk , (3.29)

where E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 )

T ∈ R3 is a constant vector.
Similarly, from (3.24) and (3.27), we can obtain

W11(θ) = − ig11
ωkτk

q(0)eiθωkτk +
ig11

ωkτk
q(0)e−iθωkτk + E2, (3.30)

where E2 = (E(1)
2 , E

(2)
2 , E

(3)
2 )

T ∈ R3 is also a constant vector.
In what follows, we shall seek appropriate E1 andE2. From the definition of A and

(3.24), we obtain

∫0

−1
dη(θ)W20(θ) = 2iωkτkW20(0) −H20(0), (3.31)

∫0

−1
dη(θ)W11(θ) = −H11(0), (3.32)

where η(θ) = η(θ, 0). By (3.22), we have

H20(0) = −g20q(0) − g02q(0) + 2τk

⎛

⎝
0
−β
α

⎞

⎠, (3.33)

H11(0) = −g11q(0) − g11q(0) + 2τk

⎛

⎝
0

−Re
(
β
)

Re(α)

⎞

⎠. (3.34)
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Substituting (3.29) and (3.33) into (3.31), we obtain

(

2iωkτkI −
∫0

−1
e2iθωkτkdη(θ)

)

E1 = 2τk

⎛

⎝
0
−β
α

⎞

⎠, (3.35)

which leads to

⎛

⎝
2iωk + a a 0
az∗ 2iωk −K + 1 +Ke−2ωkτk ax∗
−ay∗ −ax∗ 2iωk

⎞

⎠E1 = 2

⎛

⎝
0
−β
α

⎞

⎠,

E
(1)
1 =

2a
(
2iωkβ + aαx∗

)

A
,

E
(2)
1 =

−2(2iωk + a)
(
2iωkβ + aαx∗

)

A
,

E
(3)
1 =

2
A
A1,

(3.36)

where

A = det

⎛

⎝
2iωk + a a 0
az∗ 2iωk −K + 1 +Ke−2ωkτk ax∗
−ay∗ −ax∗ 2iωk

⎞

⎠,

A1 = det

⎛

⎝
2iωk + a a 0
az∗ 2iωk −K + 1 +Ke−2ωkτk −β
−ay∗ −ax∗ α

⎞

⎠.

(3.37)

Similarly, substituting (3.30) and (3.34) into (3.32), we can get

⎛

⎝
a a 0
az∗ 1 ax∗
−ay∗ −ax∗ 0

⎞

⎠E2 = 2

⎛

⎝
0

−Re
(
β
)

Re(α)

⎞

⎠,

E
(1)
2 =

2a2x∗ Re(α)
B

,

E
(2)
2 =

−2a2x∗ Re(α)
B

,

E
(3)
2 =

2
B
B1,

(3.38)

where

B = det

⎛

⎝
a a 0
az∗ 1 ax∗
−ay∗ −ax∗ 0

⎞

⎠, B1 = det

⎛

⎝
a a 0
az∗ 1 −Re

(
β
)

−ay∗ −ax∗ Re(α)

⎞

⎠. (3.39)
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Thus, we can determine W20(0) and W11(0) from (3.29) and (3.30). Furthermore, we can
determine g21. Therefore, each gij in (3.21) is determined by the parameters and delay in
(3.1). Thus, we can compute the following values:

c1(0) =
i

2τkωk

(

g11g20 − 2
∣
∣g11

∣
∣2 −

∣
∣g02

∣
∣2

3

)

+
g21
2
,

μ2 = − Re(c1(0))
Re(λ′(τk))

,

β2 = 2Re(c1(0)),

T2 = − Im(c1(0)) + μ2 Im(λ′(τk))
τkωk

,

(3.40)

which determine the quantities of bifurcating periodic solutions in the center manifold at the
critical value τk, that is, μ2 determines the directions of the Hopf bifurcation: if μ2 > 0(μ2 < 0)
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions
exist for τ > τk(τ < τk); β2 determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if β2 < 0(β2 > 0); and T2 determines the
period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0(T2 < 0).

4. Application to Control Chaos

In the present section, we apply the results in the previous sections to system (1.2) for the
purpose of control of chaos. From Section 2, we know that under certain conditions, a family
of periodic solutions bifurcate from the steady states of system (1.2) at some critical values of
τ and the stability of the steady state maybe change along with increase of τ . If the bifurcating
periodic solution is orbitally asymptotically stable or some steady state becomes local stable,
then chaos may vanish. Following this ideal, we consider the following delayed feedback
control system:

ẋ(t) = −1.69(x(t) + y(t)),
ẏ(t) = −y(t) − 1.69x(t)z(t) +K

(
y(t) − y(t − τ)),

ż(t) = 4 + 1.69x(t)y(t),

(4.1)

which has two steady states S+=̇(0.65,−0.65, 0.5917), S−=̇(−0.65, 0.65, 0.5917). Clearly, when
τ = 0 or K = 0, system (3.1) is chaotic (as depicted in Figure 1).

For the steady state S+ or S−, we have the corresponding characteristic equation of
system (4.1) as follows:

λ3 + (2.69 −K)λ2 + (6.76 − 1.69K)λ + 22.8488 +K
(
λ2 + 1.69λ

)
e−λτ = 0. (4.2)

Clearly, when τ = 0, (4.2) has a negative root and a pair of complex roots with positive
real parts. Following Section 2, we can obtain p = −2K − 6.2839, q = 22.8488K − 77.2289,
r = 522.0677 > 0, Δ = p2 − 3q > 0, and z∗1 = (1/3)(−p +

√
Δ) > 0 for all K ∈ R. When
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Figure 2: Chaos still exists for K = −1, τ = 0.2.
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Figure 3: Chaos still exists for K = −1, τ = 2.5.

K < −0.1907 or K > 12.107, h(z∗) < 0. Thus, from Lemma 2.6 and Theorem 2.9, we know that
(4.2) has roots with positive real parts. In particular, we have K = −1, that is,

ẋ(t) = −1.69(x(t) + y(t)),
ẏ(t) = −y(t) − 1.69x(t)z(t) − (

y(t) − y(t − τ)),
ż(t) = 4 + 1.69x(t)y(t).

(4.3)

In this case, we can compute

p=̇ − 4.2839, q=̇ − 100.077, r=̇522.0677, Δ=̇318.5850,

z1=̇8.9478, ω1 = 2.9913, τ
(j)
1 =̇0.2205 +

2jπ
ω1

, h′(z1)=̇63.4487,

z2=̇5.6545, ω2 = 2.3779, τ
(j)
2 =̇0.5227 +

2jπ
ω2

, h′(z2)=̇ − 52.6043.

(4.4)
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Figure 4: When K = −1, τ = 0.8, chaos vanishes, and S1 becomes local stable. Here initial value is
(0.5, −0.5, 0.6).
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Figure 5: When K = −1, τ = 0.8, chaos vanishes, and S2 becomes local stable. Here initial value is
(−0.5, 0.5, 0.6).
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Figure 6: When K = −1, τ = 2, chaos vanishes, and S2 becomes a stable periodic solution. Here initial
value is (5, −5, 5).
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Thus, from Lemma 2.7, we have Reλ(τ (j)1 )/dτ > 0 and Reλ(τ (j)2 )/dτ < 0. In addition,
notice that

τ
(0)
1 =̇0.2205 < τ (0)2 =̇0.5227 < τ (1)1 =̇2.3210 < τ (1)2 =̇3.1650. (4.5)

Thus, from Theorem 2.8, we have the following conclusion about the stability of the steady
states of system (4.3) and Hopf bifurcation.

5. Conclusion

Suppose that τ (j)
k
, k = 1, 2; j = 0, 1, 2, . . . is defined by (4.4).

(i) When τ ∈ [0, τ (0)2 ) ∪ (τ (1)1 ,∞), the steady states S1 and S2 of the system (4.1) are
unstable (see Figures 2 and 3).

(ii) When τ ∈ (τ (0)2 , τ
(1)
1 ), the steady states S1 and S2 of the system (4.1) are as-

ymptotically (see Figures 4 and 5).

(iii) When τ = τ (j)
k
, system (4.1) undergoes a Hopf bifurcation at the steady states states

S1 and S2.

The above simulations indicate that when the steady state is stable or the bifurcating
periodic solutions are orbitally asymptotically stable, chaos vanishes (see Figures 4–6).
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