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We introduce a Halpern-type iteration for a generalized mixed equilibrium problem in uniformly
smooth and uniformly convex Banach spaces. Strong convergence theorems are also established
in this paper. As applications, we apply our main result to mixed equilibrium, generalized
equilibrium, and mixed variational inequality problems in Banach spaces. Finally, examples and
numerical results are also given.

1. Introduction

Let E be a real Banach space, C a nonempty, closed, and convex subset of E, and E∗ the dual
space of E. Let T : C → C be a nonlinear mapping. The fixed points set of T is denoted by
F(T), that is, F(T) = {x ∈ C : x = Tx}.

One classical way often used to approximate a fixed point of a nonlinear self-mapping
T on C was firstly introduced by Halpern [1]which is defined by x1 = x ∈ C and

xn+1 = αnx + (1 − αn)Txn, ∀n ≥ 1, (1.1)

where {αn} is a real sequence in [0, 1]. He proved, in a real Hilbert space, a strong convergence
theorem for a nonexpansive mapping T when αn = n−a for any a ∈ (0, 1).
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Subsequently, motivated by Halpern [1], many mathematicians devoted time to study
algorithm (1.1) in different styles. Several strong convergence results for nonlinear mappings
were also continuously established in some certain Banach spaces (see also [2–9]).

Let f : C × C → R be a bifunction, A : C → E∗ a mapping, and ϕ : C → R a
real-valued function. The generalized mixed equilibrium problem is to find x̂ ∈ C such that

f
(

x̂, y
)

+
〈

Ax̂, y − x̂
〉

+ ϕ
(

y
) ≥ ϕ(x̂), ∀y ∈ C. (1.2)

The solutions set of (1.2) is denoted by GMEP(f,A, ϕ) (see Peng and Yao [10]).
If A ≡ 0, then the generalized mixed equilibrium problem (1.2) reduces to the

following mixed equilibrium problem: finding x̂ ∈ C such that

f
(

x̂, y
)

+ ϕ
(

y
) ≥ ϕ(x̂), ∀y ∈ C. (1.3)

The solutions set of (1.3) is denoted by MEP(f, ϕ) (see Ceng and Yao [11]).
If f ≡ 0, then the generalizedmixed equilibrium problem (1.2) reduces to the following

mixed variational inequality problem: finding x̂ ∈ C such that

〈

Ax̂, y − x̂
〉

+ ϕ
(

y
) ≥ ϕ(x̂), ∀y ∈ C. (1.4)

The solutions set of (1.4) is denoted by VI(C,A, ϕ) (see Noor [12]).
If ϕ ≡ 0, then the generalizedmixed equilibrium problem (1.2) reduces to the following

generalized equilibrium problem: finding x̂ ∈ C such that

f
(

x̂, y
)

+
〈

Ax̂, y − x̂
〉 ≥ 0, ∀y ∈ C. (1.5)

The solutions set of (1.5) is denoted by GEP(f,A) (see Moudafi [13]).
If ϕ ≡ 0, then the mixed equilibrium problem (1.3) reduces to the following equilib-

rium problem: finding x̂ ∈ C such that

f
(

x̂, y
) ≥ 0, ∀y ∈ C. (1.6)

The solutions set of (1.6) is denoted by EP(f) (see Combettes and Hirstoaga [14]).
If f ≡ 0, then the mixed equilibrium problem (1.3) reduces to the following convex

minimization problem: finding x̂ ∈ C such that

ϕ
(

y
) ≥ ϕ(x̂), ∀y ∈ C. (1.7)

The solutions set of (1.7) is denoted by CMP(ϕ).
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If ϕ ≡ 0, then the mixed variational inequality problem (1.4) reduces to the following
variational inequality problem: finding x̂ ∈ C such that

〈

Ax̂, y − x̂
〉 ≥ 0, ∀y ∈ C. (1.8)

The solutions set of (1.8) is denoted by VI(C,A) (see Stampacchia [7]).
The problem (1.2) is very general in the sense that it includes, as special cases,

optimization problems, variational inequalities, minimax problems, the Nash equilibrium
problem in noncooperative games, and others. For more details on these topics, see, for
instance, [14–34].

For solving the generalized mixed equilibrium problem, let us assume the following
[25]:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

The purpose of this paper is to investigate strong convergence of Halpern-type
iteration for a generalized mixed equilibrium problem in uniformly smooth and uniformly
convex Banach spaces. As applications, our main result can be deduced tomixed equilibrium,
generalized equilibrium, mixed variational inequality problems, and so on. Examples and
numerical results are also given in the last section.

2. Preliminaries and Lemmas

In this section, we need the following preliminaries and lemmas which will be used in our
main theorem.

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A
Banach space E is said to be strictly convex if, for any x, y ∈ U,

x /=y implies
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1. (2.1)

It is also said to be uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0 such that, for any
x, y ∈ U,

∥

∥x − y
∥

∥ ≥ ε implies
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1 − δ. (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a
function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{

1 −
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: x, y ∈ E, ‖x‖ =
∥

∥y
∥

∥ = 1,
∥

∥x − y
∥

∥ ≥ ε

}

. (2.3)
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Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is said
to be smooth if the limit

lim
t→ 0

∥

∥x + ty
∥

∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.4) is attained
uniformly for x, y ∈ U. The normalized duality mapping J : E → 2E

∗
is defined by

J(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2
}

(2.5)

for all x ∈ E. It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on each bounded subset of E (see [35]).

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥

∥y
∥

∥

2
, ∀x, y ∈ E. (2.6)

Remark 2.1. We know the following: for any x, y, z ∈ E,

(1) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2;
(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉;
(3) φ(x, y) = ‖x − y‖2 in a real Hilbert space.

Lemma 2.2 (see [36]). Let E be a uniformly convex and smooth Banach space and let {xn} and {yn}
be sequences of E such that {xn} or {yn} is bounded and limn→∞φ(xn, yn) = 0. Then limn→∞‖xn −
yn‖ = 0.

Let E be a reflexive, strictly convex, and smooth Banach space and letC be a nonempty
closed and convex subset of E. The generalized projection mapping, introduced by Alber [37], is
a mapping ΠC : E → C, that assigns to an arbitrary point x ∈ E the minimum point of the
functional φ(y, x), that is, ΠCx = x, where x is the solution to the minimization problem:

φ(x, x) = min
{

φ
(

y, x
)

: y ∈ C
}

. (2.7)

In fact, we have the following result.

Lemma 2.3 (see [37]). Let C be a nonempty, closed, and convex subset of a reflexive, strictly convex,
and smooth Banach space E and let x ∈ E. Then there exists a unique element x0 ∈ C such that
φ(x0, x) = min{φ(z, x) : z ∈ C}.

Lemma 2.4 (see [36, 37]). Let C be a nonempty closed and convex subset of a reflexive, strictly
convex, and smooth Banach space E, x ∈ E, and z ∈ C. Then z = ΠCx if and only if

〈

Jx − Jz, y − z
〉 ≤ 0, ∀y ∈ C. (2.8)
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Lemma 2.5 (see [36, 37]). Let C be a nonempty closed and convex subset of a reflexive, strictly
convex, and smooth Banach space E and let x ∈ E. Then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.9)

Lemma 2.6 (see [38]). Let E be a uniformly convex and uniformly smooth Banach space and C a
nonempty, closed, and convex subset of E. Then ΠC is uniformly norm-to-norm continuous on every
bounded set.

We make use of the following mapping V studied in Alber [37]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.10)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).

Lemma 2.7 (see [39]). Let E be a reflexive, strictly convex, smooth Banach space. Then

V (x, x∗) + 2
〈

J−1x∗ − x, y∗
〉

≤ V
(

x, x∗ + y∗) (2.11)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.8 (see [25]). Let C be a closed and convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C × C to R which satisfies conditions (A1)–(A4), and let
r > 0 and x ∈ E. Then there exists z ∈ C such that

f
(

z, y
)

+
1
r

〈

Jz − Jx, y − z
〉 ≥ 0, ∀y ∈ C. (2.12)

Following [25, 40], we know the following lemma.

Lemma 2.9 (see [41]). Let C be a nonempty closed and convex subset of a smooth, strictly convex,
and reflexive Banach space E. Let A : C → E∗ be a continuous and monotone mapping, let f be a
bifunction from C × C to R satisfying (A1)–(A4), and let ϕ be a lower semicontinuous and convex
function from C to R. For all r > 0 and x ∈ E, there exists z ∈ C such that

f
(

z, y
)

+
〈

Az, y − z
〉

+ ϕ
(

y
)

+
1
r

〈

Jz − Jx, y − z
〉 ≥ ϕ(z), ∀y ∈ C. (2.13)

Define the mapping Tr : E → 2C as follows:

Tr(x) =
{

z ∈ C : f
(

z, y
)

+
〈

Az, y − z
〉

+ ϕ
(

y
)

+
1
r

〈

Jz − Jx, y − z
〉 ≥ ϕ(z), ∀y ∈ C

}

. (2.14)
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Then, the followings hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive-type mapping [42], that is, for all x, y ∈ E,

〈

Trx − Try, JTrx − JTry
〉 ≤ 〈

Trx − Try, Jx − Jy
〉

; (2.15)

(3) F(Tr) = GMEP(f,A, ϕ);

(4) GMEP(f,A, ϕ) is closed and convex.

Remark 2.10. It is known that T is of firmly nonexpansive type if and only if

φ
(

Tx, Ty
)

+ φ
(

Ty, Tx
)

+ φ(Tx, x) + φ
(

Ty, y
) ≤ φ

(

Tx, y
)

+ φ
(

Ty, x
)

(2.16)

for all x, y ∈ dom T (see [42]).

The following lemmas give us some nice properties of real sequences.

Lemma 2.11 (see [43]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + bn, ∀n ≥ 1, (2.17)

where {αn} is a sequence in (0, 1) and {bn} is a sequence such that
(a)

∑∞
n=1 αn = +∞;

(b) lim supn→∞bn/αn ≤ 0 or
∑∞

n=1 |bn| < +∞.

Then limn→∞an = 0.

Lemma 2.12 (see [44]). Let {γn} be a sequence of real numbers such that there exists a subsequence
{γnj} of {γn} such that γnj < γnj+1 for all j ≥ 1. Then there exists a nondecreasing sequence {mk} of N

such that limk→∞mk = ∞ and the following properties are satisfied by all (sufficiently large) numbers
k ≥ 1:

γmk ≤ γmk+1, γk ≤ γmk+1. (2.18)

In fact,mk is the largest number n in the set {1, 2, . . . , k} such that the condition γn < γn+1 holds.

3. Main Results

In this section, we prove our main theorem in this paper. To this end, we need the following
proposition.

Proposition 3.1. Let C be a nonempty closed and convex subset of a reflexive, strictly convex, and
uniformly smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4),
A : C → E∗ a continuous and monotone mapping, and ϕ a lower semicontinuous and convex function
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from C to R such that GMEP(f,A, ϕ)/= ∅. Let {rn} ⊂ (0,∞) be such that lim infn→∞rn > 0. For
each n ≥ 1, let Trn be defined as in Lemma 2.9. Suppose that x ∈ C and {xn} is a bounded sequence in
C such that limn→∞‖xn − Trnxn‖ = 0. Then

lim sup
n→∞

〈

Jx − Jp, xn − p
〉 ≤ 0, (3.1)

where p = ΠGMEP(f,A,ϕ)x and ΠGMEP(f,A,ϕ) is the generalized projection of C onto GMEP(f,A, ϕ).

Proof. Let x ∈ C and put p = ΠGMEP(f,A,ϕ)x. Since E is reflexive and {xn} is bounded, there
exists a subsequence {xnk} of {xn} such that xnk ⇀ v ∈ C and

lim sup
n→∞

〈

Jx − Jp, xn − p
〉

=
〈

Jx − Jp, v − p
〉

. (3.2)

Put yn = Trnxn. Since limk→∞‖xnk − ynk‖ = 0, we have ynk ⇀ v. On the other hand, since E is
uniformly smooth, J is uniformly norm-to-norm continuous on bounded subsets of E. So we
have

lim
k→∞

∥

∥Jxnk − Jynk

∥

∥ = 0. (3.3)

Since lim infk→∞rnk > 0,

lim
k→∞

∥

∥Jxnk − Jynk

∥

∥

rnk

= 0. (3.4)

By the definition of Trnk , for any y ∈ C, we see that

f
(

ynk , y
)

+
〈

Aynk , y − ynk

〉

+ ϕ
(

y
)

+
1
rnk

〈

Jynk − Jxnk , y − ynk

〉 ≥ ϕ
(

ynk

)

. (3.5)

By (A2), for each y ∈ C, we obtain

f
(

y, ynk

)

+ ϕ
(

ynk

) ≤ −f(ynk , y
)

+ ϕ
(

ynk

)

≤ 〈

Aynk , y − ynk

〉

+ ϕ
(

y
)

+
1
rnk

〈

Jynk − Jxnk , y − ynk

〉

.
(3.6)

For any t ∈ (0, 1) and y ∈ C, we define yt = ty + (1 − t)v. Then yt ∈ C. It follows by the
monotonicity of A that

f
(

yt, ynk

)

+ ϕ
(

ynk

) ≤ 〈

Aynk −Ayt, yt − ynk

〉

+
〈

Ayt, yt − ynk

〉

+ ϕ
(

yt

)

+
1
rnk

〈

Jynk − Jxnk , yt − ynk

〉

≤ 〈

Ayt, yt − ynk

〉

+ ϕ
(

yt

)

+
1
rnk

〈

Jynk − Jxnk , yt − ynk

〉

.

(3.7)
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By (A4), (3.4), and the weakly lower semicontinuity of ϕ, letting k → ∞, we obtain

f
(

yt, v
)

+ ϕ(v) ≤ 〈

Ayt, yt − v
〉

+ ϕ
(

yt

)

. (3.8)

By (A1), (A4), and the convexity of ϕ, we have

0 = f
(

yt, yt

)

+ ϕ
(

yt

) − ϕ
(

yt

)

≤ tf
(

yt, y
)

+ (1 − t)f
(

yt, v
)

+ tϕ
(

y
)

+ (1 − t)ϕ(v) − ϕ
(

yt

)

= t
(

f
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

))

+ (1 − t)
(

f
(

yt, v
)

+ ϕ(v) − ϕ
(

yt

))

≤ t
(

f
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

))

+ (1 − t)〈Ayt, yt − v〉
= t

(

f
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

))

+ (1 − t)t〈Ayt, y − v〉.

(3.9)

It follows that

f
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

)

+ (1 − t)
〈

Ayt, y − v
〉 ≥ 0. (3.10)

By (A3), the weakly lower semicontinuity of ϕ, and the continuity of A, letting t → 0, we
obtain

f
(

v, y
)

+ ϕ
(

y
) − ϕ(v) +

〈

Av, y − v
〉 ≥ 0, ∀y ∈ C. (3.11)

This shows that v ∈ GMEP(f,A, ϕ). By Lemma 2.4, we have

lim sup
n→∞

〈

Jx − Jp, xn − p
〉

=
〈

Jx − Jp, v − p
〉 ≤ 0. (3.12)

This completes the proof.

Theorem 3.2. Let C be nonempty, closed, and convex subset of a uniformly smooth and uniformly
convex Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4), A : C → E∗ a
continuous and monotone mapping, and ϕ a lower semicontinuous and convex function from C to R

such that GMEP(f,A, ϕ)/= ∅. Define the sequence {xn} as follows: x1 = x ∈ C and

f
(

yn, y
)

+
〈

Ayn, y − yn

〉

+ ϕ
(

y
)

+
1
rn

〈

Jyn − Jxn, y − yn

〉 ≥ ϕ
(

yn

)

, ∀y ∈ C,

xn+1 = ΠCJ
−1(αnJx + (1 − αn)Jyn

)

, ∀n ≥ 1,

(3.13)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the following conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1 αn = ∞;

(c) lim infn→∞rn > 0.



Journal of Applied Mathematics 9

Then {xn} converges strongly toΠGMEP(f,A,ϕ)x, whereΠGMEP(f,A,ϕ) is the generalized projection of C
onto GMEP(f,A, ϕ).

Proof. From Lemma 2.9(4), we know that GMEP(f,A, ϕ) is closed and convex. Let p =
ΠGMEP(f,A,ϕ)x. Put yn = Trnxn and zn = J−1(αnJx+(1−αn)Jyn) for all n ∈ N. So, by Lemma 2.5,
we have

φ
(

p, xn+1
) ≤ φ

(

p, zn
)

≤ αnφ
(

p, x
)

+ (1 − αn)φ
(

p, yn

)

≤ αnφ
(

p, x
)

+ (1 − αn)φ
(

p, xn

)

.

(3.14)

By induction, we can show that φ(p, xn) ≤ φ(p, x) for each n ∈ N. Hence {φ(p, xn)} is bounded
and thus {xn} is also bounded.

We next show that if there exists a subsequence {xnk} of {xn} such that

lim
k→∞

(

φ
(

p, xnk+1
) − φ

(

p, xnk

))

= 0, (3.15)

then

lim
k→∞

(

φ
(

p, ynk

) − φ
(

p, xnk

))

= 0. (3.16)

Since αnk → 0,

lim
k→∞

∥

∥Jznk − Jynk

∥

∥ = lim
k→∞

αnk

∥

∥Jx − Jynk

∥

∥ = 0. (3.17)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, so is J−1. It follows
that

lim
k→∞

∥

∥znk − ynk

∥

∥ = 0. (3.18)

Since E is uniformly smooth and uniformly convex, by Lemma 2.6,ΠC is uniformly norm-to-
norm continuous on bounded sets. So we obtain

lim
k→∞

∥

∥xnk+1 − ynk

∥

∥ = lim
k→∞

∥

∥ΠCznk −ΠCynk

∥

∥ = 0, (3.19)

and hence

lim
k→∞

∥

∥Jxnk+1 − Jynk

∥

∥ = 0. (3.20)
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Furthermore, limk→∞φ(xnk+1, ynk) = 0. Indeed, by the definition of φ, we observe that

φ
(

xnk+1, ynk

)

= ‖xnk+1‖2 − 2
〈

xnk+1, Jynk

〉

+
∥

∥ynk

∥

∥

2

=
〈

xnk+1, Jxnk+1 − Jynk

〉

+
〈

ynk − xnk+1, Jynk

〉

.
(3.21)

It follows from (3.19) and (3.20) that limk→∞φ(xnk+1, ynk) = 0. On the other hand, from
Remark 2.1(2), we have

φ
(

p, ynk

) − φ
(

p, xnk

)

=
(

φ
(

p, xnk+1
) − φ

(

p, xnk

))

+
(

φ
(

p, ynk

) − φ
(

p, xnk+1
))

=
(

φ
(

p, xnk+1
) − φ

(

p, xnk

))

+ φ
(

xnk+1, ynk

)

+ 2
〈

p − xnk+1, Jxnk+1 − Jynk

〉

.

(3.22)

It follows from (3.20) and (3.21) that lim
k→∞

(φ(p,ynk
)−φ(p,xnk

))=0.

We next consider the following two cases.

Case 1. φ(p, xn+1) ≤ φ(p, xn) for all sufficiently large n. Hence the sequence {φ(p, xn)} is
bounded and nonincreasing. So limn→∞φ(p, xn) exists. This shows that limn→∞(φ(p, xn+1) −
φ(p, xn)) = 0 and hence

lim
n→∞

(

φ
(

p, yn

) − φ
(

p, xn

))

= 0. (3.23)

Since Trn is of firmly nonexpansive type, by Remark 2.10, we have

φ
(

yn, p
)

+ φ
(

p, yn

)

+ φ
(

yn, xn

)

+ φ
(

Trnp, p
) ≤ φ

(

yn, p
)

+ φ
(

p, xn

)

, (3.24)

which implies

φ
(

p, yn

)

+ φ
(

yn, xn

) ≤ φ
(

p, xn

)

. (3.25)

Hence

φ
(

yn, xn

) ≤ φ
(

p, xn

) − φ
(

p, yn

) −→ 0 (3.26)

as n → ∞. By Lemma 2.2, we obtain

lim
n→∞

∥

∥xn − yn

∥

∥ = 0. (3.27)

Proposition 3.1 yields that

lim sup
n→∞

〈

Jx − Jp, xn − p
〉 ≤ 0. (3.28)



Journal of Applied Mathematics 11

It also follows that

lim sup
n→∞

〈

Jx − Jp, yn − p
〉 ≤ 0. (3.29)

Finally, we show that xn → p. Using Lemma 2.7, we see that

φ
(

p, xn+1
) ≤ φ

(

p, zn
)

= V
(

p, αnJx + (1 − αn)Jyn

)

≤ V
(

p, αnJx + (1 − αn)Jyn − αn

(

Jx − Jp
))

+
〈

αn

(

Jx − Jp
)

, zn − p
〉

= V
(

p, αnJp + (1 − αn)Jyn

)

+ αn

〈

Jx − Jp, zn − p
〉

≤ αnV
(

p, Jp
)

+ (1 − αn)V
(

p, Jyn

)

+ αn

〈

Jx − Jp, zn − p
〉

= (1 − αn)φ
(

p, yn

)

+ αn

〈

Jx − Jp, zn − p
〉

≤ (1 − αn)φ
(

p, xn

)

+ αn

〈

Jx − Jp, zn − p
〉

= (1 − αn)φ
(

p, xn

)

+ αn

(〈

Jx − Jp, zn − yn

〉

+
〈

Jx − Jp, yn − p
〉)

.

(3.30)

Set an = φ(p, xn) and bn = αn(〈Jx − Jp, zn − yn〉 + 〈Jx − Jp, yn − p〉). We see
that lim supn→∞bn/αn ≤ 0. By Lemma 2.11, since

∑∞
n=1 αn = +∞, we conclude that

limn→∞φ(p, xn) = 0. Hence xn → p as n → ∞.

Case 2. There exists a subsequence {φ(p, xnj )} of {φ(p, xn)} such that φ(p, xnj ) < φ(p, xnj+1) for
all j ∈ N. By Lemma 2.12, there exists a strictly increasing sequence {mk} of positive integers
such that the following properties are satisfied by all numbers k ∈ N:

φ
(

p, xmk

) ≤ φ
(

p, xmk+1
)

, φ
(

p, xk

) ≤ φ
(

p, xmk+1
)

. (3.31)

So we have

0 ≤ lim
k→∞

(

φ
(

p, xmk+1
) − φ

(

p, xmk

))

≤ lim sup
n→∞

(

φ
(

p, xn+1
) − φ

(

p, xn

))

≤ lim sup
n→∞

(

φ
(

p, zn
) − φ

(

p, xn

))

≤ lim sup
n→∞

(

αnφ
(

p, x
)

+ (1 − αn)φ
(

p, yn

) − φ
(

p, xn

))

= lim sup
n→∞

(

αn

(

φ
(

p, x
) − φ

(

p, yn

))

+
(

φ
(

p, yn

) − φ
(

p, xn

)))

≤ lim sup
n→∞

αn

(

φ
(

p, x
) − φ

(

p, yn

))

= 0.

(3.32)
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This shows that

lim
k→∞

(

φ
(

p, xmk+1
) − φ

(

p, xmk

))

= 0. (3.33)

Following the proof line in Case 1, we can show that

lim sup
k→∞

〈

Jx − Jp, ymk − p
〉 ≤ 0,

φ
(

p, xmk+1
) ≤ (1 − αmk)φ

(

p, xmk

)

+ αmk

(〈

Jx − Jp, zmk − ymk

〉

+
〈

Jx − Jp, ymk − p
〉)

.

(3.34)

This implies

αmkφ
(

p, xmk

) ≤ φ
(

p, xmk

) − φ
(

p, xmk+1
)

+ αmk

(〈

Jx − Jp, zmk − ymk

〉

+
〈

Jx − Jp, ymk − p
〉)

≤ αmk

(〈

Jx − Jp, zmk − ymk

〉

+
〈

Jx − Jp, ymk − p
〉)

.

(3.35)

Hence limk→∞φ(p, xmk) = 0. Using this and (3.33) together, we conclude that

lim sup
k→∞

φ
(

p, xk

) ≤ lim
k→∞

φ
(

p, xmk+1
)

= 0. (3.36)

This completes the proof.

As a direct consequence of Theorem 3.2, we obtain the following results.

Corollary 3.3. Let C be nonempty closed and convex subset of a uniformly smooth and uniformly
convex Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and ϕ a lower
semicontinuous and convex function from C to R such that MEP(f, ϕ)/= ∅. Define the sequence {xn}
as follows: x1 = x ∈ C and

f
(

yn, y
)

+ ϕ
(

y
)

+
1
rn

〈

Jyn − Jxn, y − yn

〉 ≥ ϕ
(

yn

)

, ∀y ∈ C,

xn+1 = ΠCJ
−1(αnJx + (1 − αn)Jyn

)

, ∀n ≥ 1,

(3.37)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the following conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1 αn = ∞;

(c) lim infn→∞rn > 0.

Then {xn} converges strongly to ΠMEP(f,ϕ)x, where ΠMEP(f,ϕ) is the generalized projection of C onto
MEP(f, ϕ).
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Corollary 3.4. Let C be nonempty, closed, and convex subset of a uniformly smooth and uniformly
convex Banach space E. Let f be a bifunction from C×C to R satisfying (A1)–(A4), andA : C → E∗

a continuous and monotone mapping such that GEP(f,A)/= ∅. Define the sequence {xn} as follows:
x1 = x ∈ C and

f
(

yn, y
)

+
〈

Ayn, y − yn

〉

+
1
rn

〈

Jyn − Jxn, y − yn

〉 ≥ 0, ∀y ∈ C,

xn+1 = ΠCJ
−1(αnJx + (1 − αn)Jyn

)

, ∀n ≥ 1,

(3.38)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the following conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1 αn = ∞;

(c) lim infn→∞rn > 0.

Then {xn} converges strongly to ΠGEP(f,A)x, where ΠGEP(f,A) is the generalized projection of C onto
GEP(f,A).

Corollary 3.5. Let C be nonempty, closed, and convex subset of a uniformly smooth and uniformly
convex Banach space E. Let A : C → E∗ be a continuous and monotone mapping, and ϕ a lower
semicontinuous and convex function from C to R such that VI(C,A, ϕ)/= ∅. Define the sequence {xn}
as follows: x1 = x ∈ C and

〈

Ayn, y − yn

〉

+ ϕ
(

y
)

+
1
rn

〈

Jyn − Jxn, y − yn

〉 ≥ ϕ
(

yn

)

, ∀y ∈ C,

xn+1 = ΠCJ
−1(αnJx + (1 − αn)Jyn

)

, ∀n ≥ 1,

(3.39)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the following conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1 αn = ∞;

(c) lim infn→∞rn > 0.

Then {xn} converges strongly to ΠVI(C,A,ϕ)x, where ΠVI(C,A,ϕ) is the generalized projection of C onto
VI(C,A, ϕ).

4. Examples and Numerical Results

In this section, we give examples and numerical results for our main theorem.

Example 4.1. Let E = R and C = [−1, 1]. Let f(x, y) = −9x2+xy+8y2, ϕ(x) = 3x2, andAx = 2x.
Find x̂ ∈ [−1, 1] such that

f
(

x̂, y
)

+
〈

Ax̂, y − x̂
〉

+ ϕ
(

y
) ≥ ϕ(x̂), ∀y ∈ [−1, 1]. (4.1)
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Solution. It is easy to check that f , ϕ, and A satisfy all conditions in Theorem 3.2. For each
r > 0 and x ∈ [−1, 1], Lemma 2.9 ensures that there exists z ∈ [−1, 1] such that, for any
y ∈ [−1, 1],

f
(

z, y
)

+ 〈Az, y − z〉 + ϕ
(

y
)

+
1
r
〈z − x, y − z〉 ≥ ϕ(z)

⇐⇒ −9z2 + yz + 8y2 + 2z
(

y − z
)

+ 3y2 +
1
r
(z − x)

(

y − z
) ≥ 3z2

⇐⇒ 11ry2 + (3rz + z − x)y −
(

14rz2 + z2 − xz
)

≥ 0.

(4.2)

Put G(y) = 11ry2 + (3rz + z − x)y − (14rz2 + z2 − xz). Then G is a quadratic function of y
with coefficient a = 11r, b = (3rz + z − x), and c = −(14rz2 + z2 − xz). We next compute the
discriminant Δ of G as follows:

Δ = b2 − 4ac

= [(3r + 1)z − x]2 + 44r
(

14rz2 + z2 − xz
)

= x2 − 2(3r + 1)xz + (3r + 1)2z2 + 616r2z2 + 44rz2 − 44rxz

= x2 − 50rxz − 2xz + 625r2z2 + 50rz2 + z2

= x2 − 2(25rz + z)x +
(

625r2z2 + 50rz2 + z2
)

= [x − (25rz + z)]2.

(4.3)

We know that G(y) ≥ 0 for all y ∈ [−1, 1] if it has at most one solution in [−1, 1]. So Δ ≤ 0 and
hence x = 25rz + z. Now we have z = Trx = x/(25r + 1).

Let {xn}∞n=1 be the sequence generated by x1 = x ∈ [−1, 1] and

f
(

yn, y
)

+
〈

Ayn, y − yn

〉

+ ϕ
(

y
)

+
1
rn

〈

yn − xn, y − yn

〉 ≥ ϕ
(

yn

)

, ∀y ∈ [−1, 1],

xn+1 = αnx + (1 − αn)yn, ∀n ≥ 1,

(4.4)

and, equivalently,

xn+1 = αnx + (1 − αn)Trnxn, ∀n ≥ 1. (4.5)

We next give two numerical results for algorithm (4.5).

Algorithm 4.2. Let αn = 1/80n and rn = n/(n + 1). Choose x1 = x = 1. Then algorithm (4.5)
becomes

xn+1 =
1

80n
+
(

1 − 1
80n

)(

n + 1
26n + 1

)

xn, ∀n ≥ 1. (4.6)
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Table 1

n xn

1 1.0000
2 0.0856
3 0.0111
4 0.0047
5 0.0033
...

...
261 0.0001
262 0.0000

Table 2

n xn

1 −1.0000
2 −0.0481
3 −0.0074
4 −0.0038
5 −0.0027
...

...
217 −0.0001
218 0.0000

Numerical Result I

See Table 1.

Algorithm 4.3. Let αn = 1/100n and rn = (n+ 1)/2n. Choose x1 = x = −1. Then algorithm (4.5)
becomes

xn+1 = − 1
100n

+
(

1 − 1
100n

)(

2n
27n + 25

)

xn, ∀n ≥ 1. (4.7)

Numerical Result II

See Table 2.

5. Conclusion

Tables 1 and 2 show that the sequence {xn} converges to 0 which solves the generalized
mixed equilibrium problem. On the other hand, using Lemma 2.9(3), we can check that
GMEP(f,A, ϕ) = F(Tr) = {0}.

Remark 5.1. In the view of computation, our algorithm is simple in order to get strong
convergence for generalized mixed equilibrium problems.
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