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The base set of primitive zero-symmetric sign pattern matrices with zero diagonal is {1, 2, . . . , 2n −
1}. In this paper, the primitive zero-symmetric sign pattern matrices with zero diagonal attaining
the maximal base 2n − 1 are characterized.

1. Introduction

A sign pattern matrix (or sign pattern) A is a matrix whose entries are from the set {1,−1, 0}.
Notice that for a square sign pattern matrixA, in the computation of (the signs of) the entries
of the power Ak, an ambiguous sign may arise when a positive sign is added to a negative
sign. So a new symbol # was introduced in [1] to denote such an ambiguous sign. The powers
of a square sign pattern have been investigated to some extent, see, for example, [1–12]. In
[1], the set Γ = {1,−1, 0, #} is defined as the generalized sign set and the matrices with entries
in the set Γ are called generalized sign pattern matrices, and the addition and multiplication
involving the symbol # are defined as follows:

(−1) + 1 = 1 + (−1) = #; a + # = # (∀a ∈ Γ),

0 · # = #· = 0; b · # = # · b = # (∀b ∈ Γ \ {0}).
(1.1)
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From now on, we assume that all the matrix operations considered in this paper are
operations of the matrices over the set Γ.

Definition 1.1. A square generalized sign pattern matrixA is called powerful if each power of
A contains no # entry.

In [1], Li et al. introduced the concepts of base and period for (powerful) sign pattern
matrices which are the generalizations of the concepts of “index of convergence” and period
for square nonnegative matrices. These concepts are extended from (powerful) sign pattern
matrices to (square) generalized sign pattern matrices by You et al. in [12] as follows.

Definition 1.2 (see [12]). Let A be a square generalized sign pattern matrix of order n and
A,A2, A3, . . . the sequence of powers ofA. (Since there are only 4n

2
different generalized sign

patterns of order n, there must be repetitions in the sequence.) Suppose Al is the first power
that is repeated in the sequence, that is, l is the least positive integer such thatAl = Al+p holds
for some positive integer p. Then l is called the generalized base (or simply base) of A, and
is denoted by l(A). The least positive integer p such that Al = Al+p holds for l = l(A) is called
the generalized period (or simply period) of A and is denoted by p(A).

For a sign pattern matrix A, we use |A| to denote the (0, 1) matrix obtained from A by
replacing each nonzero entry by 1.

A nonnegative square matrix A is primitive if some power Ak > 0. The least such
as k is called the primitive exponent (or simply exponent) of A, denoted by exp(A). For
convenience, a square sign pattern matrix A is called primitive if |A| is primitive, and in this
case we define exp(A) = exp(|A|).

Definition 1.3 (see [3]). A square sign pattern matrix A = (aij)n×n is called zero-pattern
symmetric (abbreviated zero-symmetric, or simply ZS) if |A| is symmetric.

It is well known that graph-theoretical methods are often useful in the study of the
powers of square matrices, so we now introduce some graph-theoretical concepts.

Let D be a digraph with vertex set V and arc set E (which permits loops but no
multiple arcs). By assigning a sign of 1 or −1 to each arc of the digraph D, we obtain a signed
digraph S. By a walk W in the digraph D (or the signed digraph S), we mean a sequence of
vertices (v0, v1, v2, . . . , vk) such that ei = (vi−1, vi) is an arc of D for i = 1, . . . , k. The number k
is called the length of the walkW , denoted by l(W). If the vertices v0, v1, . . . , vk−1 are distinct,
the walkW is called a path, if vk = v0, the pathW is called a cycle inD (and in S). The sign of
the walk W in S, denoted by sgn(W), is defined to be

∏k
i=1 sgn(ei) where sgn(ei) is the sign

of the arc ei.

Let A = (aij) be a sign pattern matrix of order n. Then the associated digraph D(A)
of A is defined to be the digraph with vertex set V = {1, 2, . . . , n} and arc set E = {(vi, vj) |
aij /= 0}. The associated signed digraph S(A) is obtained from D(A) by assigning the sign of
aij to each arc (vi, vj) in D(A).

Definition 1.4 (see [10]). LetD be a digraph (permitting loops but no multiple arcs). Digraph
D is called primitive if there is a positive integer k such that for all ordered pairs of vertices
vi and vj (not necessarily distinct) inD, there exists a walk of length k from vi to vj . The least
such k is called the primitive exponent of D, denoted by exp(D).

It is well known that a digraph D is primitive if and only if D is strongly connected
and the greatest common divisor (gcd for short) of the lengths of all the cycles of D is 1
(see [13]).
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Figure 1: The graph G. (All 2-cycles in G are negative, r is odd, 3 ≤ r ≤ n).

Definition 1.5 (see [3]). Let S be a signed digraph of order n. Then there is a sign pattern
matrix A of order n whose associated signed digraph S(A) is S. We say that S is powerful if
A is powerful. Also we define l(S) = l(A).

We say that a sign pattern matrix A = (aij) has zero diagonal if aii = 0 for all i. A
digraphDwith vertex set {v1, . . . , vn} and arc set E is called symmetric provided that (vi, vj) ∈
E iff (vj , vi) ∈ E for all i, j. It is clear that a sign pattern matrix A is ZS iff its associated
digraphD(A) is symmetric. For simplicity, we represent a symmetric (signed) digraph by its
underlying graph.

The base set of primitive ZS sign pattern matrices and the base set of primitive ZS sign
pattern matrices with zero diagonal are given, respectively, in [3, 10]. In [2], Cheng and Liu
characterized the primitive ZS sign pattern matrices with the maximum base.

In this paper, we characterize the primitive sign pattern matrices with zero diagonal
attaining the maximum base. Our main result is given in the following theorem.

Theorem 1.6. Let A = (aij) be an n × n primitive zero-symmetric sign pattern matrix with zero
diagonal. Then

l(A) ≤ 2n − 1 (1.2)

and the equality holds if and only if A is nonpowerful and skew symmetric, namely, aij = −aji for all
1 ≤ i ≤ j ≤ n, and the associated digraph D(A) is isomorphic to G (see Figure 1).

The proof of Theorem 1.6 will be given in Section 3.

2. Preliminary Results

In this section, we introduce some theorems, definitions, and lemmas which we need to use
in the proof of our main result in Section 3.

In [1], Li et al. showed that if an irreducible sign pattern matrix A is powerful, then
l(A) = l(|A|). That is to say the study of the base for a primitive powerful sign pattern matrix
is essentially the study of the base (i.e., exponent) for primitive (0, 1) matrices. Therefore, for
a primitive powerful ZS sign pattern matrix with zero diagonal, Theorem 2.1 gives the base.

Theorem 2.1 (see [8]). LetA be an n×n primitive symmetric (0, 1)matrix with zero diagonal. Then
exp(A) ≤ 2n − 4 and the primitive exponent set of n × n primitive symmetric (0, 1) matrix with zero
diagonal is {2, 3, . . . , 2n − 4} \D, where D is the set of odd numbers in {n − 2, n − 1, . . . , 2n − 5}.
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Theorem 2.2 (see [10]). Let A be an n × n primitive ZS sign pattern matrix with zero diagonal.
Then l(A) ≤ 2n − 1.

By Theorems 2.1 and 2.2, the sign pattern matrices with zero diagonal attaining this
upper bound l(A) = 2n− 1 must be nonpowerful. So it remains to consider nonpowerful sign
pattern matrices with zero diagonal.

Definition 2.3. Two walks W1 and W2 in a signed digraph are called a pair of SSSD walks,
if they have the same initial vertex, same terminal vertex, and same length, but they have
different signs.

Lemma 2.4 (see [8]). LetD be a symmetric digraph. ThenD is primitive if and only ifD is strongly
connected and there exists an odd cycle in D.

Lemma 2.5 (see [1, 12]). If S is a primitive signed digraph, then S is nonpowerful if and only if S
contains a pair of cyclesC1 and C2, with lengths p1 and p2, respectively, satisfying one of the following
conditions:

(A1) p1 is odd and p2 is even and sgn(C2) = −1;
(A2) both p1 and p2 are odd and sgn(C1) = − sgn(C2).

Lemma 2.6 (see [12]). Let S be a primitive, nonpowerful signed digraph. Then we have the following.

(1) There is an integer k such that there exists a pair of SSSD walks of length k from each vertex
x to each vertex y in S.

(2) If there exists a pair of SSSD walks of length k from each vertex x to each vertex y, then
there also exists a pair of SSSD walks of length k + 1 from each vertex u to each vertex v in
S.

(3) The minimal such k (as in (1)) is just l(S), the base of S.

Lemma 2.7 (see [7]). Suppose that an n × n sign pattern matrix A = (aij) is skew symmetric. Let
S(A) be the associated signed digraph of A. Let r be an odd integer with 3 ≤ r ≤ n (n ≥ 3). Then
l(S(A)) = 2n − 1 if and only if S(A) is isomorphic to G (see Figure 1).

3. Main Results

For an undirected walkW of graph G and two vertices x, y onW , we denote byQW(x → y)
a shortest path from x to y on W and by Q(x → y) a shortest path from x to y on G. For a
cycle C of G, if x and y are two (not necessarily distinct) vertices on C and P is a path from x
to y along C, then C \ P denotes the path or cycle from x to y along C obtained by deleting
the edges of P .

Lemma 3.1. Let A be an n × n primitive nonpowerful ZS sign pattern matrix with zero diagonal. If
all the 2 cycles in S(A) are positive, then l(A) ≤ 2n − 2.

Proof. Since A is primitive, it follows from Lemma 2.4 that S(A) is strongly connected and
there is an odd cycle C′ in S(A) such that l(C′) = l′. Since A has zero diagonal, there are no
loops in S(A) and so l′ ≥ 3. Without loss of generality, we assume that C′ is an odd cycle with
the least length in S(A).
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Case 1. There exists at least one negative even cycle in S(A).
Let C be a negative even cycle in S(A). Without loss of generality, we assume that C

is a negative even cycle with the least length in S(A). Since all 2 cycles in S(A) are positive,
l(C) = l ≥ 4.

Subcase 1.1. C and C′ have no common vertices.
Let P be the shortest path from C to C′. Suppose P intersects C at vertex u and

intersects C′ at vertex v and there are k vertices on P where k ≥ 2. Let G0 = C ∪ P ∪ C′.
Let x and y be any two (not necessarily distinct) vertices in S(A). Suppose that P1 is the
shortest path from x to G0 and intersects G0 at vertex x′ and P2 is the shortest path from y to
G0 and intersects G0 at vertex y′. Then 0 ≤ l(P1), l(P2) ≤ n− l− l′ −k + 2, where l ≥ 4 and l′ ≥ 3.
By the proof of Case 1 of Lemma 4.5 in [3], there exists a pair of SSSD walks from x to y of
length 2n − 2. Therefore, by Lemma 2.6, l(A) ≤ 2n − 2.

Subcase 1.2. C and C′ have at least one common vertex.
Let G1 = C ∪ C′. Let x and y be any two (not necessarily distinct) vertices in S(A).

Suppose that P1 is the shortest path from x to G1 and intersects G1 at vertex x′ and P2 is the
shortest path from y to G1 and intersects G1 at vertex y′. Denote C ∩ C′ by R. Assume R has
m vertices, where 1 ≤ m ≤ min(l, l′), then

0 ≤ l(P1), l(P2) ≤ n − l − l′ +m. (3.1)

If m ≥ 2, then R is a path with vertex set V (R) = {v1, v2, . . . , vm} and edge set E(R) =
{(v1, v2), (v2, v3), . . . , (vm−1, vm)}. In this case, if m = min(l, l′) = l, then there exists another
odd cycle with length l′ − l + 2 < l′, which contradicts our assumption that C′ is an odd cycle
with the least length in S(A). Therefore, m < l and if m = min(l, l′), then m = l′.

Subcase 1.2.1. x′ = y′ and 1 ≤ m ≤ min(l, l′).

Subcase 1.2.1.1. x′ = y′ ∈ C \ R. See Figure 2(a).
We consider two subcases: the subcase 1 ≤ m < min(l, l′) and the subcase m =

min(l, l′) = l′.
First, we consider the subcase 1 ≤ m < min(l, l′). Without loss of generality, we assume

that l(QC\R(x′ → v1)) ≤ l(QC\R(x′ → vm)). Let w = l(P1) + l(C) + l(P2). If w is even, set

W ′ = P1 + C + P2. (3.2)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R(v1 −→ vm) +QC\R

(
vm −→ y′) + P2. (3.3)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.4)
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where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(QC′\R(v1 → vm)) and
l(QR(v1 → vm)) have different parity. Therefore, both l(W1) and l(W2) are even. Then, if w
is even,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ 2l = 2n − 2l′ + 2m. (3.5)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ (l −m + 1) +

(
l′ −m + 1

)
+ l = 2n − l′ + 2. (3.6)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Then, we consider the subcasem = min(l, l′) = l′. Without loss of generality, we assume
that l(QC\R(x′ → v1)) ≤ l(QC\R(x′ → vm)). Let

w = l(P1) + 2l
(
QC\R

(
x′ −→ v1

))
+ l(P2). (3.7)

If w is even, set

W ′ = P1 +QC\R
(
x′ −→ v1

)
+QC\R

(
v1 −→ x′) + P2. (3.8)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R(v1 −→ vm) +QC\R

(
vm −→ x′) + P2. (3.9)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.10)

where C2 is a positive 2-cycle that contains vertex x. SinceQC\R(x′ → v1)+QC′\R(v1 → vm)+
QC\R(vm → x′) is an odd cycle, l(QC\R(x′ → v1)) and l(QC′\R(v1 → vm) +QC\R(vm → x′))
have different parity. Therefore, both l(W1) and l(W2) are even. Then, if w is even,

l(W1) = l(W2) ≤ 2(n − l) +
(
l − l′ + 1

)
+ l = 2n − l′ + 1. (3.11)

Otherwise,

l(W1) = l(W2) ≤ 2(n − l) +
(
l − l′ + 2

)
+ l = 2n − l′ + 2. (3.12)
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Figure 2: Illustrate for Subcase 1.2.1 of Lemma 3.1.

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 1.2.1.2. x′ = y′ ∈ C′ \ R. See Figure 2(b).
The proof for this subcase is similar to that of the Subcase 1.2.1.1 and is omitted.

Subcase 1.2.1.3. x′ = y′ ∈ R. See Figure 2(c).
Let w = l(P1) + l(P2). If w is even, set

W ′ = P1 + P2. (3.13)

Otherwise, set

W ′′ = P1 + P2 + C′. (3.14)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.15)

where C2 is a positive 2-cycle that contains vertex x. Since l′ is odd, we see that both l(W1)
and l(W2) are even. Then, if w is even,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ l = 2n − l − 2l′ + 2m. (3.16)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ l′ + l = 2n − l − l′ + 2m. (3.17)
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Figure 3: Illustration for Subcases 1.2.2 and 2.2 of Lemma 3.1.

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 1.2.2. x′ /=y′ and 2 ≤ m ≤ min(l, l′).

Subcase 1.2.2.1. x′ ∈ C \ R and y′ ∈ C \ R. See Figure 3(a).
Without loss of generality, we assume that l(QC\R(x′ → v1)) ≤ l(QC\R(y′ → v1)). Let

w = l(P1) + l(QC\R(x′ → v1)) + l(QR(v1 → vm)) + l(QC\R(vm → y′)) + l(P2). If w is even, set

W ′ = P1 +QC\R
(
x′ −→ v1

)
+QR(v1 −→ vm) +QC\R

(
vm −→ y′) + P2. (3.18)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R(v1 −→ vm) +QC\R

(
vm −→ y′) + P2. (3.19)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.20)

where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(QC′\R(v1 → vm)) and
l(QR(v1 → vm)) have different parity. Therefore, both l(W1) and l(W2) are even. Noting that
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W3 = P1 + QC\R(x′ → v1) + QR(v1 → vm) + QC\R(vm → y′) and W4 = P1 + QC\R(x′ →
v1)+QC′\R(v1 → vm)+QC\R(vm → y′) are paths of S(A), we have l(W3), l(W4) ≤ n−1. Then

l(W1) = l(W2) ≤ (n − 1) +
(
n − l − l′ +m

)
+ l = 2n − l′ +m − 1. (3.21)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 1.2.2.2. x′ ∈ C \ R and y′ ∈ R. See Figure 3(b).
Without loss of generality, we assume that l(QC\R(x′ → v1)) ≤ l(QC\R(x′ → vm)).

Then we consider two subcases: the subcase x′ ∈ C \ R, y′ ∈ R and y′ /=v1 and the subcase
x′ ∈ C \ R and y′ = v1.

First, we consider the subcase x′ ∈ C\R, y′ ∈ R and y′ /=v1. Letw = l(P1)+ l(QC\R(x′ →
v1)) + l(QR(v1 → y′)) + l(P2). If w is even, set

W ′ = P1 +QC\R
(
x′ −→ v1

)
+QR

(
v1 −→ y′) + P2. (3.22)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R(v1 −→ vm) +QR

(
vm −→ y′) + P2. (3.23)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎨

⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.24)

where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(QR(v1 → y′)) and
l(QC′\R(v1 → vm)) + l(QR(vm → y′)) have different parity. Therefore, both l(W1) and l(W2)
are even. Noting that W3 = P1 + QC\R(x′ → v1) + QR(v1 → y′) and W4 = P1 + QC\R(x′ →
v1)+QC′\R(v1 → vm)+QR(vm → y′) are two paths of S(A), thenwe have l(W3), l(W4) ≤ n−1.
Then

l(W1) = l(W2) ≤ (n − 1) +
(
n − l − l′ +m

)
+ l = 2n − l′ +m − 1. (3.25)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Then, we consider the subcase x′ ∈ C \ R and y′ = v1. Let w = l(P1) + l(QC\R(x′ →
vm)) + l(QR(vm → v1(y′))) + l(P2). If w is even, set

W ′ = P1 +QC\R
(
x′ −→ vm

)
+QR

(
vm −→ v1

(
y′)) + P2. (3.26)
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Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ vm

)
+QC′\R

(
vm −→ v1

(
y′)) + P2. (3.27)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.28)

where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(QR(vm → v1(y′)))
and l(QC′\R(vm → v1(y′))) have different parity. Therefore, both l(W1) and l(W2) are even.
Noting that W3 = P1 + QC\R(x′ → vm) + QR(vm → v1(y′)) and W4 = P1 + QC\R(x′ →
vm) +QC′\R(vm → v1(y′)) are two paths of S(A), we have l(W3), l(W4) ≤ n − 1. Then

l(W1) = l(W2) ≤ (n − 1) +
(
n − l − l′ +m

)
+ l = 2n − l′ +m − 1. (3.29)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 1.2.2.3. x′ ∈ C \ R and y′ ∈ C′ \ R. See Figure 3(c).
The proof for this subcase is similar to that of the Subcase 1.2.2.1 and is omitted.

Subcase 1.2.2.4. x′ ∈ R and y′ ∈ R. See Figure 3(d).
Let w = l(P1) + l(QC′(x′ → y′)) + l(P2). If w is even, set

W ′ = P1 +QC′
(
x′ −→ y′) + P2. (3.30)

Otherwise, set

W ′′ = P1 + C′ \QC′
(
x′ −→ y′) + P2. (3.31)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.32)



Journal of Applied Mathematics 11

where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(QC′(x′ → y′)) and
l(C′ \QC′(x′ → y′)) have different parity. Therefore, both l(W1) and l(W2) are even. Then if
w is even,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+
l′ − 1
2

+ l = 2n + 2m − l − 3l′

2
− 1
2
. (3.33)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+
(
l′ − 1

)
+ l = 2n − l − l′ + 2m − 1. (3.34)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 1.2.2.5. x′ ∈ R and y′ ∈ C′ \ R. See Figure 3(e).
The proof for this subcase is similar to that of Subcase 1.2.2.4, so we omit it.

Subcase 1.2.2.6. x′ ∈ C′ \ R and y′ ∈ C′ \ R. See Figure 3(f).
Without loss of generality, we assume that l(QC′\R(x′ → v1)) ≤ l(QC′\R(y′ → v1)). Let

w = l(P1) + l(QC′\R(x′ → v1)) + l(QR(v1 → vm)) + l(QC′\R(vm → y′)) + l(P2). Ifw is even, set

W ′ = P1 +QC′\R
(
x′ −→ v1

)
+QR(v1 −→ vm) +QC′\R

(
vm −→ y′) + P2. (3.35)

Otherwise, set

W ′′ = P1 +QC′\R
(
x′ −→ y′) +QC′\R

(
y′ −→ vm

)
+QC′\R

(
vm −→ y′) + P2. (3.36)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.37)

where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(QC′\R(x′ → y′)) and
l(QC′\R(x′ → v1))+l(QR(v1 → vm))+l(QC′\R(vm → y′)) have different parity. Therefore, both
l(W1) and l(W2) are even. Noting thatW3 = P1+QC′\R(x′ → v1)+QR(v1 → vm)+QC′\R(vm →
y′) and W4 = P1 + QC′\R(x′ → y′) + QC′\R(y′ → vm) are two paths of S(A), then we have
l(W3) ≤ n − 1 and l(W4) ≤ n −m. Then, if w is even,

l(W1) = l(W2) ≤ (n − 1) +
(
n − l − l′ +m

)
+ l = 2n − l′ +m − 1. (3.38)

Otherwise,

l(W1) = l(W2) ≤
(
n − l − l′ +m

)
+ (n −m) +

(
l′ −m − 1

)
+ l = 2n −m − 1. (3.39)
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Figure 4: Illustrate for Subcase 1.2.3 of Lemma 3.1.

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 1.2.3. m = 1 and x′ /=y′. We assume that V (C) ∩ V (C′) = {u}.

Subcase 1.2.3.1. x′ ∈ C and y′ ∈ C. See Figure 4(a).
Let w = l(P1) + l(QC(x′ → u)) + l(QC(u → y′)) + l(P2). If w is even, set

W ′ = P1 +QC

(
x′ −→ u

)
+QC

(
u −→ y′) + P2. (3.40)

Otherwise, set

W ′′ = P1 +QC

(
x′ −→ u

)
+QC

(
u −→ y′) + P2 + C′. (3.41)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.42)
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where C2 is a positive 2-cycle that contains vertex x. Since l′ is odd, both l(W1) and l(W2) are
even. Then, if w is even,

l(W1) = l(W2) ≤ 2
(
n − l − l′ + 1

)
+ (l − 1) + l = 2n − 2l′ + 1. (3.43)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ + 1

)
+ (l − 1) + l′ + l = 2n − l′ + 1. (3.44)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.2.3.2. x′ ∈ C, y′ ∈ C′, and x′ /=y′ /=u. See Figure 4(b).
Let w = l(P1) + l(QC(x′ → u)) + l(QC′(u → y′)) + l(P2). If w is even, set

W ′ = P1 +QC

(
x′ −→ u

)
+QC′

(
u −→ y′) + P2. (3.45)

Otherwise, set

W ′′ = P1 +QC

(
x′ −→ u

)
+ C′ \QC′

(
u −→ y′) + P2. (3.46)

Let

W1 =

{
W ′ + C, w is even,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ +
l

2
C2, w is even,

W ′′ +
l

2
C2, otherwise,

(3.47)

where C2 is a positive 2-cycle that contains vertex x. Since C′ is odd, l(C′ \QC′(u → y′)) and
l(QC′(u → y′)) have different parity. Therefore, both l(W1) and l(W2) are even. Noting that
W3 = P1 +QC(x′ → u) +QC′(u → y′) andW4 = P1 +QC(x′ → u) +C′ \QC′(u → y′) are two
paths of S(A), we have l(W3), l(W4) ≤ n − 1. Then,

l(W1) = l(W2) ≤ (n − 1) +
(
n − l − l′ + 1

)
+ l = 2n − l′. (3.48)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.2.3.3. x′ ∈ C′ and y′ ∈ C′. See Figure 4(c).
The proof for this subcase is similar to that of the Subcase 1.2.3.1 and is omitted.
Thus in each of the above subcases, there exists a pair of SSSD walks from x to y with

length 2n − 2. Therefore, we get l(A) ≤ 2n − 2 by Lemma 2.6.

Case 2. There exists no negative even cycle in S(A).



14 Journal of Applied Mathematics

Since A is primitive, nonpowerful and there exist no negative even cycles in S(A), it
follows from Lemma 2.5 that there exist two odd cycles C and C′ with different signs in S(A).
We assume that l(C) = l and l(C′) = l′. Since the trace of A is zero, there are no loops in S(A)
and so l, l′ ≥ 3. Without loss of generality, we assume l ≥ l′ ≥ 3.

Subcase 2.1. C and C′ have no common vertices.
Let P be the shortest path from C to C′. Suppose P intersects C at vertex u and

intersects C′ at vertex v and there are k vertices on P where k ≥ 2. Let G2 = C ∪ P ∪ C′.
Let x and y be two arbitrary (not necessarily distinct) vertices in S(A). Suppose that P1 is the
shortest path from x to G2 and intersects G2 at vertex x′ and P2 is the shortest path from y to
G2 and intersects G2 at vertex y′. Then

0 ≤ l(P1), l(P2) ≤ n − l − l′ − k + 2. (3.49)

SinceC andC′ have diffident signs, if there exists an evenwalkW with length l(W) ≤ 2n−2−l,
thenW1 = W +C andW2 = W +((l− l′)/2)C2+C′ have the same length l(W1) = l(W2) ≤ 2n−2
and different signs. As the proof of Subcase 1.1, we can construct an even walkW with length
l(W) ≤ 2n − 2 − l. So there exists a pair of SSSD walks from x to y of length 2n − 2. It remains
to consider the following subcase.

Subcase 2.2. C and C′ have at least one common vertex.

LetG3 = C∪C′. Let x and y be two arbitrary (not necessarily distinct) vertices in S(A).
Suppose that P1 is the shortest path from x to G3 and intersects G3 at vertex x′ and P2 is the
shortest path from y to G3 and intersects G3 at vertex y′. Denote C ∩ C′ by R. Assume R has
m vertices, where 1 ≤ m ≤ min(l1, l2), then

0 ≤ l(P1), l(P2) ≤ n − l1 − l2 +m. (3.50)

If m > 1, then R is a path with vertex set V (R) = {v1, v2, . . . , vm} and edge set E(R) =
{(v1, v2), (v2, v3), . . . , (vm−1, vm)}. If m = l′, since there exists no negative even cycles in S(A),
then C and C′ have the same sign, a contradiction. Therefore, 1 ≤ m < l′.

Subcase 2.2.1. x′ ∈ C \ R and y′ ∈ C \ R. See Figure 3(a).
Without loss of generality, we assume that l(QC\R(x′ → v1)) ≤ l(QC\R(y′ → v1)). Let

w = l(P1) + l(QC\R(x′ → v1)) + l(QR(v1 → vm)) + l(QC\R(vm → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC\R
(
x′ −→ v1

)
+QR(v1 −→ vm) +QC\R

(
vm −→ y′) + P2. (3.51)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R(v1 −→ vm) +QC\R

(
vm −→ y′) + P2. (3.52)
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Let

W1 =

{
W ′ + C, w is odd,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ + C′ +
l − l′

2
C2, w is odd,

W ′′ + C′ +
l − l′

2
C2, otherwise,

(3.53)

where C2 is a positive 2-cycle that contains x. Since C′ is odd, l(QR(v1 → vm)) and
l(QC′\R(v1 → vm)) have different parity. Therefore, both l(W1) and l(W2) are even. Then,
if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ l + l = 2n − 2l′ + 2m. (3.54)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ (l −m + 1) +

(
l′ −m + 1

)
+ l = 2n − l′ + 2. (3.55)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 2.2.2. x′ ∈ C \ R and y′ ∈ R. See Figure 3(b).
Let w = l(P1) + l(QC(x′ → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC

(
x′ −→ y′) + P2. (3.56)

Otherwise, set

W ′′ = P1 + C \QC

(
x′ −→ y′) + P2. (3.57)

Let

W1 =

{
W ′ + C, w is odd,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ + C′ +
l − l′

2
C2, w is odd,

W ′′ + C′ +
l − l′

2
C2, otherwise,

(3.58)

where C2 is a positive 2-cycle that contains x. Since C is odd, C \QC(x′ → y′) and QC(x′ →
y′) have different parity, Therefore, both l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+
l − 1
2

+ l = 2n − 2l′ + 2m − l + 1
2

. (3.59)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ (l − 1) + l = 2n − 2l′ + 2m − 1. (3.60)
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Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 2.2.3. x′ ∈ C \ R and y′ ∈ C′ \ R. See Figure 3(c).
Without loss of generality, we assume that l(QC\R(x′ → v1)) ≤ l(QC\R(x′ → vm)). Let

w = l(P1) + l(QC\R(x′ → v1)) + l(QC′\R(v1 → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R

(
v1 −→ y′) + P2. (3.61)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ v1

)
+QR(v1 −→ vm) +QC′\R

(
vm −→ y′) + P2. (3.62)

Let

W1 =

{
W ′ + C, w is odd,
W ′′ + C, otherwise,

W2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ′ + C′ +
l − l′

2
C2, w is odd,

W ′′ + C′ +
l − l′

2
C2, otherwise,

(3.63)

where C2 is a positive 2-cycle that contains x. Since C′ is odd, l(QC′\R(v1 → y′)) and
l(QR(v1 → vm)) + l(QC′\R(vm → y′)) have different parity. Therefore, both l(W1) and l(W2)
are even. Noting that W3 = P1 +QC\R(x′ → v1) +QC′\R(v1 → y′) and W4 = P1 +QC\R(x′ →
v1) +QR(v1 → vm) +QC′\R(vm → y′) are paths of S(A), then we have l(W3), l(W4) ≤ n − 1.
Therefore,

l(W1) = l(W2) ≤ (n − 1) +
(
n − l − l′ +m

)
+ l = 2n − l′ +m − 1. (3.64)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see that the
pair W1, W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of SSSD
walks from x to y with length 2n − 2.

Subcase 2.2.4. x′ ∈ R and y′ ∈ R. See Figure 3(d).
The proof for this subcase is similar to that of Subcase 2.2.2, so we omit it.

Subcase 2.2.5. x′ ∈ R and y′ ∈ C′ \ R. See Figure 3(e).
The proof for this subcase is similar to that of Subcase 2.2.2, so we omit it.

Subcase 2.2.6. x′ ∈ C′ \ R and y′ ∈ C′ \ R. See Figure 3(f).
The proof for this subcase is similar to that of Subcase 2.2.1, so we omit it.
From all the above subcases, there exists a pair of SSSD walks from x to y with length

2n − 2. Therefore, we get l(A) ≤ 2n − 2 by Lemma 2.6.

Lemma 3.2. Let A be an n × n primitive nonpowerful ZS sign pattern matrix with zero diagonal. If
there exist a negative 2-cycle and a positive 2-cycle in S(A), then l(A) ≤ 2n − 2.
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Figure 5: Illustration for Case 3 of Lemma 3.2.

Proof. Since A is primitive, it follows from Lemma 2.4 that S(A) is strongly connected and
there is an odd cycle C in S(A) with length l(C) = l. Since A has zero diagonal, there are no
loops in S(A) and so l ≥ 3. Without loss of generality, we assume that C is an odd cycle with
the least length in S(A). Since A is ZS and S(A) contain a positive 2-cycle and a negative 2-
cycle, there exists a positive 2-cycle C′

2 and a negative 2-cycle C′′
2 such that V (C′

2) ∩ V (C′′
2)/= ∅.

Let u ∈ V (C′
2) ∩ V (C′′

2).
Let P be the shortest path from u to C. Let x and y be two arbitrary (not necessarily

distinct) vertices in S(A). Suppose there are k vertices on P and P intersects C at v, where
k ≥ 1. Suppose P1 is the shortest path from x to P ∪C and P1 intersects P ∪C at x′ and P2 is the
shortest path from y to P ∪C and P2 intersects P ∪C at y′ where 0 ≤ l(P1), l(P2) ≤ n− l−k + 1.
We consider the following three cases.

Case 1. x′ ∈ P and y′ ∈ P .

By the Subcase 2.1 of Lemma 4.2 in [3], there exists a pair of SSSD walks from x to y
of length 2n − 2.

Case 2. Only one of x′ and y′ belongs to P .

By the Subcase 2.2 of Lemma 4.2 in [3], there exists a pair of SSSD walks from x to y
of length 2n − 2.

It remains to consider the following case.

Case 3. x′ /∈ P and y′ /∈ P . See Figure 5.

Subcase 3.1. x′ = y′.

Let w = l(P1) + l(QC(x′ → v)) + 2l(P) + l(QC(v → y′)) + l(P2). If w is even, set

W ′ = P1 +QC

(
x′ −→ v

)
+ 2P +QC

(
v −→ y′) + P2. (3.65)

Otherwise, set

W ′′ = P1 +QC

(
x′ −→ v

)
+ 2P + C \QC

(
v −→ y′) + P2. (3.66)
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Let

W1 =

{
W ′ + C′

2, w is even,
W ′′ + C′

2, otherwise,
W2 =

{
W ′ + C′′

2, w is even,
W ′′ + C′′

2, otherwise.
(3.67)

Since C is odd, l(QC(v → x′)) and l(C \ QC(v → x′)) have different parity. Therefore, both
l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2(n − l − k + 1) + 2(k − 1) + (l − 1) + 2 = 2n − l + 1. (3.68)

Otherwise,

l(W1) = l(W2) ≤ 2(n − l − k + 1) + 2(k − 1) + l + 2 = 2n − l + 2. (3.69)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 3.2. x′ /=y′.
Without loss of generality, we assume that l(QC(x′ → v)) ≤ l(QC(y′ → v)). Let

P3 = QC(x′ → v) and P4 = QC\P3(v → y′). Let w = l(P1) + l(P3) + l(P4) + 2l(P) + l(P2), If w is
odd, set

W ′ = P1 +QC

(
x′ −→ v

)
+ 2P + P4 + P2. (3.70)

Otherwise, set

W ′′ = P1 +QC

(
x′ −→ v

)
+ 2P +QC

(
v −→ x′) +QC\{P3+P4}

(
x′ −→ y′) + P2. (3.71)

Let

W1 =

{
W ′ + C′

2, w is even,
W ′′ + C′

2, otherwise,
W2 =

{
W ′ + C′′

2, w is even,
W ′′ + C′′

2, otherwise.
(3.72)

Since C is odd, l(P3) + l(P4) and l(QC\{P3+P4}(x
′ → y′)) have different parity. Therefore, both

l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2(n − l − k + 1) + 2(k − 1) + (l − 1) + 2 = 2n − l + 1. (3.73)

Otherwise,

l(W1) = l(W2) ≤ 2(n − l − k + 1) + 2(k − 1) + (l − 1) + (l − 2) + 2 = 2n − 1. (3.74)
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Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Therefore, l(A) ≤ 2n − 2 by Lemma 2.6.

Lemma 3.3. Let A be an n × n primitive nonpowerful ZS sign pattern matrix with zero diagonal. If
l(A) = 2n − 1, then all 2-cycles in S(A) are negative.

Proof. Assume that l(A) = 2n − 1. By Lemma 3.1, S(A) has at least one negative 2-cycle. It
then follows from Lemma 3.2 that all 2-cycles in S(A) are negative.

Lemma 3.4. Let A be an n × n primitive nonpowerful ZS sign pattern matrix with zero diagonal.
Suppose that l(A) = 2n−1. Then there exists an odd cycle C in S(A) and C is the only cycle of length
at least 3 in S(A).

Proof. Since A is primitive, it follows from Lemma 2.4 that S(A) is strongly connected and
there is an odd cycle C = (v1, v2, . . . , vl) in S(A) with length l(C) = l. Since A has zero
diagonal, there is no loop in S(A) and so l ≥ 3. Consider the following two directed cycles:

C1 = (v1, v2, . . . , vl, v1), C2 = (v1, vl, . . . , v2, v1). (3.75)

Since there exists no positive 2-cycle in S(A) by Lemma 3.3, the arcs (vi, vi+1) and (vi+1, vi)
have different signs. Thus sgn(C1) = − sgn(C2) by the fact that l is odd. Without loss of
generality, we assume that C is an odd cycle with the least length in S(A).

If l(A) = 2n − 1, suppose there exists another cycle C′ with length l(C′) = l′ ≥ 3, we
consider the following two cases.

Case 1. C and C′ have no common vertices.
Let P be the shortest path from C to C′. Suppose P intersects C at vertex u and

intersects C′ at vertex v and there are k vertices on P where k ≥ 2. Let G4 = C ∪ P ∪ C′.
Let x and y be two arbitrary (not necessarily distinct) vertices in S(A). Suppose that P1 is the
shortest path from x to G4 and intersects G4 at vertex x′ and P2 is the shortest path from y to
G4 and intersects G4 at vertex y′. Then

0 ≤ l(P1), l(P2) ≤ n − l − l′ − k + 2. (3.76)

We consider the following six subcases.

Subcase 1.1. x′ ∈ C and y′ ∈ C. See Figure 6(a).

Let w = l(P1) + l(QC(x′ → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC

(
x′ −→ y′) + P2. (3.77)

Otherwise, set

W ′′ = P1 + C \QC

(
x′ −→ y′) + P2. (3.78)
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Figure 6: Illustration for Lemma 3.4.

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.79)

Since C is odd, l(QC(x′ → y′)) and l(C \QC(x′ → y′)) have different parity. Therefore, both
l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+
l − 1
2

+ l = 2n − 2l′ − 2k − l

2
+
7
2
. (3.80)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ l + l = 2n − 2l′ − 2k + 4. (3.81)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.2. x′ ∈ C and y′ ∈ P . See Figure 6(b).
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Let W = l(P1) + l(QC(x′ → u)) + l(QP (u → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC

(
x′ −→ u

)
+QP

(
u −→ y′) + P2. (3.82)

Otherwise, set

W ′ = P1 + C \QC

(
x′ −→ u

)
+QP

(
u −→ y′) + P2. (3.83)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.84)

Since C is odd, l(QC(x′ → u)) and l(C \ QC(x′ → u)) have different parity. Therefore, both
l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+
l − 1
2

+ (k − 1) + l = 2n − 2l′ − k − l

2
+
5
2
. (3.85)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ (k − 1) + l + l = 2n − 2l′ − k + 3. (3.86)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.3. x′ ∈ C and y′ ∈ C′. See Figure 6(c).
Let w = l(P1) + l(QC(x′ → u)) + l(P) + l(QC′(v → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC

(
x′ −→ u

)
+ P +QC′

(
v −→ y′) + P2. (3.87)

Otherwise, set

W ′′ = P1 + C \QC

(
x′ −→ u

)
+ P +QC′

(
v −→ y′) + P2. (3.88)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.89)
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Since C is odd, l(QC(x′ → u)) and l(C \ QC(x′ → u)) have different parity. Therefore, both
l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+
l − 1
2

+ (k − 1) +
l′

2
+ l = 2n − k − l

2
− 3l′

2
+
5
2
. (3.90)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ l + (k − 1) +

l′

2
+ l = 2n − k − 3l′

2
+ 3. (3.91)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.4. x′ ∈ P and y′ ∈ P . See Figure 6(d).
Without loss of generality, we assume that l(QP (x′ → u)) ≤ l(QP (y′ → u)). Let

w = l(P1) + l(QP (x′ → u)) + l(P) + l(QP (v → y′)) + l(P2). If w is odd, set

W ′ = P1 +QP

(
x′ −→ u

)
+ P +QP

(
v −→ y′) + P2. (3.92)

Otherwise, set

W ′′ = P1 +QP

(
x′ −→ u

)
+ P +QP

(
v −→ y′) + P2 + C. (3.93)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.94)

Therefore, both l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ 2(k − 1) + l = 2n − l − 2l′ + 2. (3.95)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ 2(k − 1) + l + l = 2n − 2l′ + 2. (3.96)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.5. x′ ∈ P and y′ ∈ C′. See Figure 6(e).
Let w = l(P1) + l(QP (x′ → u)) + l(P) + l(QC′(v → y′)) + l(P2), if w is odd, set

W ′ = P1 +QP

(
x′ −→ u

)
+ P +QC′

(
v −→ y′) + P2. (3.97)
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Otherwise, set

W ′′ = P1 +QP

(
x′ −→ u

)
+ P +QC′

(
v −→ y′) + P2 + C. (3.98)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.99)

Since C is odd, both l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ 2(k − 1) +

l′

2
+ l = 2n − l − 3l′

2
+ 2. (3.100)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ 2(k − 1) +

l′

2
+ l + l = 2n − 3l′

2
+ 2. (3.101)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 1.6. x′ ∈ C′ and y′ ∈ C′. See Figure 6(f).
Let w = l(P1) + l(QC′(x′ → v)) + l(QC′(v → y′)) + 2l(P) + l(P2). If w is odd, set

W ′ = P1 +QC′
(
x′ −→ v

)
+ 2P +QC′

(
v −→ y′) + P2. (3.102)

Otherwise, set

W ′′ = P1 +QC′
(
x′ −→ v

)
+ 2P +QC′

(
v −→ y′) + P2 + C. (3.103)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.104)

Since C is odd, both l(W1) and l(W2) are even. Then if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ 2(k − 1) + l′ + l = 2n − l − l′ + 2. (3.105)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ − k + 2

)
+ 2(k − 1) + l′ + l + l = 2n − l′ + 2. (3.106)
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Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Therefore, l(A) ≤ 2n − 2 by Lemma 2.6, a contradiction.

Case 2. C and C′ have at least one common vertex.
LetG5 = C∪C′. Let x and y be two arbitrary (not necessarily distinct) vertices in S(A).

Suppose that P1 is the shortest path from x to G5 and intersects G5 at vertex x′ and P2 is the
shortest path from y to G5 and intersects G5 at vertex y′. Denote C ∩ C′ by R. Assume R has
m vertices, where 1 ≤ m ≤ min(l1, l2), then

0 ≤ l(P1), l(P2) ≤ n − l1 − l2 +m. (3.107)

If m > 1, then R is a path with vertex set V (R) = {v1, v2, . . . , vm} and edge set E(R) =
{(v1, v2), (v2, v3), . . . , (vm−1, vm)}. If l′ is odd, m = min(l, l′) = l by the minimality of C. If
l′ is even, suppose min(l, l′) = l′, then there exists an odd cycle C′ with l(C′) < l which
contradicts our assumption that C is an odd cycle with the least length in S(A). Therefore, if
m = min(l, l′), thenm = l < l′. We consider the following three subcases.

Subcase 2.1. x′ ∈ C and y′ ∈ C.
Let w = l(P1) + l(QC(x′ → y′)) + l(P2). If w is odd, set

W ′ = P1 +QC

(
x′ −→ y′) + P2. (3.108)

Otherwise, set

W ′′ = P1 + C \QC

(
x′ −→ y′) + P2. (3.109)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.110)

Since C is odd, l(QC(x′ → y′)) and l(C \QC(x′ → y′)) have different parity. Therefore, both
l(W1) and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+
l − 1
2

+ l = 2n − 2l′ + 2m − l

2
− 1
2
. (3.111)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ l + l = 2n − 2l′ + 2m. (3.112)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.
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Subcase 2.2. x′ ∈ C \ R and y′ ∈ C′ \ R.
Without loss of generality, we assume that l(QC\R(x′ → v1)) ≤ l(QC\R(x′ → vm)). Let

w = l(P1) + l(QC\R(x′ → v1)) + l(QC′\R(v1 → y′)) + l(P2). If w odd, set

W ′ = P1 +QC\R
(
x′ −→ v1

)
+QC′\R

(
v1 −→ y′) + P2. (3.113)

Otherwise, set

W ′′ = P1 +QC\R
(
x′ −→ vm

)
+QR(vm −→ v1) +QC′\R

(
v1 −→ y′) + P2. (3.114)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.115)

Since C is odd, l(QC\R(x′ → v1)) and l(QC\R(x′ → vm)) + l(QR(vm → v1)) have different
parity. Therefore, both l(W1) and l(W2) are even.

Then, if w is odd,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ (l −m + 1) +

(
l′ −m + 1

)
+ l = 2n − l′ + 2. (3.116)

Otherwise,

l(W1) = l(W2) ≤ 2
(
n − l − l′ +m

)
+ (l −m) +

(
l′ − 1

)
+ l = 2n − l′ +m − 1. (3.117)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Subcase 2.3. x′ ∈ C′ \ R and y′ ∈ C′ \ R.
The verification for this subcase is similar to that of the Subcase 2.2 and is omitted.
Therefore, l(A) ≤ 2n − 2 by Lemma 2.6, a contradiction.

Lemma 3.5. Let A be an n × n primitive nonpowerful ZS sign pattern matrix with zero diagonal. If
l(A) = 2n − 1, then S(A) is isomorphic to G (see Figure 1).

Proof. Let A be an n × n primitive nonpowerful ZS sign pattern matrix with zero diagonal.
Since A is primitive, it follows from Lemma 2.4 that S(A) is strongly connected and there is
an odd cycle C = (v1, v2, . . . , vl) in S(A)with length l(C) = l. Since A has zero diagonal, there
is no loop in S(A) and so 3 ≤ l ≤ n. Without loss of generality, we assume that C is an odd
cycle with the least length in S(A). If l(A) = 2n−1, then by Lemma 3.3, there exists no positive
2-cycle in S(A). Then S(A) is isomorphic toG by Lemma 2.7. We will give anther proof of the
theorem.

Denote the vertex set of S(A) by V and the vertex set of C by V ′. By Lemmas 3.4 and
3.3, the cycle C is the only cycle of length at least 3 in S(A) and there exists no positive 2-cycle
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in S(A). Consider the two directed cycles C1 = (v1, v2, . . . , vl, v1) and C2 = (v1, vl, . . . , v2, v1).
Since there exists no positive 2-cycle in S(A), the arcs (vi, vi+1) and (vi+1, vi) have different
signs. Thus sgn(C1) = − sgn(C2) by the fact that l is odd. Let x and y be two arbitrary (not
necessarily distinct) vertices in S(A). Suppose that P1 is the shortest path from x to C and
intersects C at vertex x′ and P2 is the shortest path from y to C and intersects C at vertex y′. If
l = n, S(A) is isomorphic to an odd cycle of length n. If l < n, it is enough to show that there
exists a vertex u /∈ V ′ in S(A) such that l(P) = n − l where P is the shortest path from u to C
and P intersects C at v. Suppose not, then

l(P1), l(P2) ≤ n − l − 1. (3.118)

Now we consider the following three cases.

Case 1. x ∈ V \ V ′ and y ∈ V \ V ′.
Let w = l(P1) + l(QC(x′ → y′)) + l(P2)). If w is odd, set

W ′′ = P1 +QC

(
x′ −→ y′) + P2. (3.119)

Otherwise, set

W ′ = P1 + C \QC

(
x′ −→ y′) + P2. (3.120)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.121)

Since C is odd,QC(x′ → y′) and C \QC(x′ → y′) have different parity. Therefore, both l(W1)
and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ 2(n − l − 1) +
l − 1
2

+ l = 2n − l

2
− 5
2
. (3.122)

Otherwise,

l(W1) = l(W2) ≤ 2(n − l − 1) + l + l = 2n − 2. (3.123)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Case 2. x ∈ V \ V ′ and y ∈ V .
In this case, y′ = y. Let w = l(P1) + l(QC(x′ → y)). If w is odd, set

W ′′ = P1 +QC

(
x′ −→ y

)
. (3.124)
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Otherwise, set

W ′ = P1 + C \QC

(
x′ −→ y

)
. (3.125)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.126)

Since C is odd, QC(x′ → y) and C \QC(x′ → y) have different parity. Therefore, both l(W1)
and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ (n − l − 1) +
l − 1
2

+ l = n +
l

2
− 3
2
. (3.127)

Otherwise,

l(W1) = l(W2) ≤ (n − l − 1) + l + l = n + l − 1. (3.128)

Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

Case 3. x ∈ V and y ∈ V .
In this case, x′ = x and y′ = y. Let w = QC(x → y). If w is odd, set

W ′′ = QC

(
x −→ y

)
. (3.129)

Otherwise, set

W ′ = C \QC

(
x −→ y

)
. (3.130)

Let

W1 =

{
W ′ + C1, w is odd,
W ′′ + C1, otherwise,

W2 =

{
W ′ + C2, w is odd,
W ′′ + C2, otherwise.

(3.131)

Since C is odd, QC(x → y) and C \QC(x → y) have different parity. Therefore, both l(W1)
and l(W2) are even. Then, if w is odd,

l(W1) = l(W2) ≤ l − 1
2

+ l =
3l
2
− 1
2
. (3.132)

Otherwise,

l(W1) = l(W2) ≤ l + l = 2l. (3.133)
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Since both l(W1) and l(W2) are even, it follows that l(W1) = l(W2) ≤ 2n − 2. We see
that the pairW1,W2 is a pair of SSSD walks with even length. Therefore, there exists a pair of
SSSD walks from x to y with length 2n − 2.

From all the above cases, there exists a pair of SSSD walks from x to y with length
2n − 2, therefore, l(A) ≤ 2n − 2 by Lemma 2.6, a contradiction.

Proof of Theorem 1.6. We get l(A) ≤ 2n − 1 from Theorem 2.2. Suppose that A is nonpowerful
and skew symmetric and S(A) is isomorphic to G. Then l(A) = 2n − 1 by Lemma 2.7.

Conversely, suppose that l(A) = 2n − 1. We need to prove that A is nonpowerful and
skew symmetric and S(A) is isomorphic toG. In [1], Li et al. showed that if an irreducible sign
pattern matrixA is powerful, then l(A) = l(|A|). Therefore, ifA is powerful, then l(A) ≤ 2n−4
by Theorem 2.1, which contradicts l(A) = 2n − 1. Hence A is nonpowerful. Consequently, A
is skew symmetric by Lemma 3.3 and S(A) is isomorphic to G by Lemma 3.5.
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