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The main object of the present paper is to discuss some extensions of certain integral operators and
to obtain their order of convexity. Several other closely related results are also considered.

1. Introduction

Let 4 be the class of analytic functions defined in the open unit disk of the complex plane
U={zeC:|z|<1}.

We denote by S the subclass of &/ consisting of all univalent functions in U. A function
f(z) € Sis starlike function of order a if it satisfies

zf'(2)
Re( @ > >a, (zel) (1.1)

for some a (0 < a < 1). We denote by S*(a) the subclass of &/ consisting of the functions
which are starlike of order a in U. For a = 0, we obtain the class of starlike functions, denoted
by S*.

A function f(z) € S is convex of order a if it satisfies

Zf”(Z)
RE<W + 1) >a, (Z € LI) (12)
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for some a (0 < a < 1). We denote by K (a) the subclass of « consisting of the functions which

are convex of order a in U. For a = 0, we obtain the class of convex functions, denoted by K.
A function f(z) € &4 is in the class R(a) if

Re(f'(z)) >a, (zel). (1.3)

Frasin and Jahangiri introduced in [1] the family B(y, a), > 0, 0 < a < 1 consisting
of functions f € of satisfying the condition

e )<f( >>#‘1

For p = 0 we have B(0,a) = R(a), and for u = 1 we have B(1, a) = 5*(a).
In this paper, we will obtain the order of convexity of the following general integral
operators:

<l-a, (zel). (1.4)

Hyy (@) = [ TT(r")' (15)
0

i=1

Gu(2) = [ TTCh) ™ at (16)
i1

o[ (Y

i=1
where the functions f;(t) are in B(y;, a;) foralli=1,2,...,n
In order to prove our main results, we recall the following lemma.

Lemma 1.1 (see [2, General Schwarz Lemmal]). Let the function f be regqular in the disk Ug =
{z € C:|z| < R}, with |f(z)| < M for fixed M. If f has one zero with multiplicity order bigger than
m for z = 0, then

|f(2)] € = - 21" (z€Ug). (1.8)
The equality can hold only if
flz) =€ — 2", (1.9)

where 0 is constant.
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2. Main Results

Theorem 2.1. Let fi(z) € o4 be in the class B(p;, o), pi 20, 0 <y <1foralli=1,2,...,nIf
lfi(z)| < M; (M; 21, zeU) foralli=1,2,...,n, then the integral operator

H,y(z) = f H tefl(t) (2.1)
0

i=1

is in K(6), where

5=1- 1 [n + i(z - ai)Mf’] (2.2)
|Y| i=1

and 1/|y| < 1/(n+2?:1(2—a,~)Mf‘), yeC\ {0}.

Proof. Let f; € o be in the class B(p;, a;), pi >0, 0 < a; < 1. We have from (1.5) that

H,y(2) = L PO, HY (2) = 27 WN T A, (2.3)
Also
= L) s o (S
i=1
Then
EIZ; g <Z ' sz { (Z)> 25)
and, hence,
;Z;Y((ZZ)) +sz,(Z) < | | <Z|1+zf1(z)|>

(2.6)
1+

-<|>—x :|»—x

f(z)<fl( )) : <f,-(zz)>”" -IZI].

Applying the General Schwarz lemma, we have |fi(z)/z| < M;, for alli = 1,2,...,n.
Therefore, from (2.6), we obtain

zH, (z)
Hizy(z)

<3 (z)<ﬁ( )) ‘ .Mfi], (zel). (2.7)
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From (1.4) and (2.7), we see that

zH,,(2)
Hyy(z)

L[ Y- al)Mﬂl]: -5 (2.8)
|Y| i=1 O

Letting y; =0and M; = M foralli =1,2,...,n in Theorem 2.1, we have the following
corollary.

Corollary 2.2. Let fi(z) € o be in the class R(a;), 0 < a; < 1 foralli = 1,2,...,n. Then the
integral operator defined in (1.5) is in K(6), where

1 n
6=1-—(3n- f 2.9
|Y|<n Z:‘“) 22

and 1/|y| <1/Gn- 3" a), y € C\ {0}.

Letting y; =1and M; = M foralli =1,2,...,n in Theorem 2.1, we have the following
corollary.

Corollary 2.3. Let f; € of be in the class S*(a;), 0 < a; < 1foralli=1,2,...,n If |fi(z)| < M
(M2>1, zeU) foralli=1,2,...,n, then the integral operator defined in (1.5) is in K(6), where

6=1- ™ |[n+M<2n Zal>] (2.10)
i=1

and 1/|y| <1/(n+ MQ2n - 3, a;)),y € C\ {0}.

Lettinga; =6 =0, s =1,and M; = M foralli = 1,2,...,n in Theorem 2.1, we have
the following corollary.

Corollary 2.4. Let fi(z) € o be starlike functions in U for all i = 1,2,...,n. If |fi(z)] £ M
(M >1, zeU) foralli =1,2,...,n, then the integral operator defined in (1.5) is convex in U,
where 1/|y| =1/(n(2M + 1)), y € C\ {0}.

Theorem 2.5. Let fi(z) be in the class B(pi, i), i > 1, 0 < a; < 1foralli =1,2,...,n If
lfi(z)] < M; (M; >1, zeU) foralli=1,2,...,n, then the integral operator

Gu(z) = fO T1( ) ar (2.11)
i=1
is in K(6), where
= zn: - 1|2 - a)MP (2.12)

i=1

and S 1B - 1|2 - a)MI <1, e Cforalli=1,2,...,n
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Proof. Let fi(z) be in the class B(p;, a;), pi > 1, 0 < a; < 1. It follows from (1.6) that

Gn(z) _ Z": (Bi-1)fi(2)

G2 - 2 ) , (2.13)
and, hence,
zGy(z) fi(z)
Cnl2) Z " f ® (2.14)

STy

Applying the General Schwarz lemma, we have |f;(z)/z| < M;, (ze U) foralli=1,2,...,n
Therefore, from (2.14), we obtain

zG)(z)
Gnu(2)

Zlﬂz ‘f ( ) ' M (zeu. (2.15)

From (1.4) and (2.15), we see that

zG)(z)
Gnu(2)

Zlﬂz—ll @-a) M =1-6. (2.16)

This completes the proof. O

Letting & = 0 and M; = M foralli =1,2,...,n in Theorem 2.5, we have the following
corollary.

Corollary 2.6. Let fi(z) be in the class B(ui, ), pi > 1, 0 < a; < 1 foralli =1,2,...,n. If
lfi(z)| < M (M > 1,z € U)foralli =1,2,...,n, then the integral operator defined in (1.6) is
convex function in U, where

n
SIp-1Q-a)Mt =1, feCVi=12,...,n (2.17)

Letting y; = 1 and M; = M foralli=1,2,...,nin Theorem 2.5, we have the following
corollary.

Corollary 2.7. Let fi(z) be in the class S*(a;), 0 < a; < 1 foralli =1,2,...,n If |fi(z)| < M
(M>1, zelU)foralli=1,2,...,n, then the integral operator defined in (1.6) is in K(6), where

n

=1-> -1 - 2-a) (2.18)

i=1

and 371 1Bi—1]-2-a;) <1, pieCforalli=1,2,...,n
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Lettingn =1, y; =1, Mj=M,anda; =6 =0foralli =1,2,...,n in Theorem 2.5, we
have the following corollary.

Corollary 2.8. Let f(z) be a starlike function in U. If | f(z)] < M (M > 1, z € U), then the integral
operator | F(t)F'dt is convex in U, where |f-1| = 1/2, p e C.

Theorem 2.9. Let f;(z) be in the class B(p;, i), pi > 1, 0 < a; < 1 foralli =1,2,...,n If
lfi(z)| < M; (M; 21, zeU) foralli=1,2,...,n, then the integral operator

F(z) = I‘[(f ’(t)> dt (2.19)

0 =1

is in K(6), where

-1- 3|4 [(2 —a) M+ 1] (2.20)

i=1

and S 1B [2-a) MM 41 <1, BieCforalli=1,2,...n.
i=1 i

Proof. Let fi(z) be in the class B(p;, a;), pi > 1, 0 < a; < 1. It follows from (1.7) that

zF"(z) & zfi(z)
T &P < 8 1>' 220
So, from (2.21), we have

zF"(z)
F(z)

zfi(2)

Zlﬂz < 1>
< §|pi|<‘fg(z)<fi(zz)>”i| , ‘(fiiZ))#i—l +1>.

Applying the General Schwarz lemma, we have |f;(z)/z| < M;, (ze U) foralli=1,2,...,n
Therefore, from (2.22), we obtain

(2.22)

zF"(z) , z A\ e
Fl2) Z|ﬂl (‘fi(z)<fi(z ) ' M +1>, (zel). (2.23)
From (1.4) and (2.23), we see that
ZF”(Z) B i1 _
P | §| lle-apMi T +1] =16, (2.24)

This completes the proof. O
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Letting & = 0 and M; = M foralli =1,2,...,n in Theorem 2.9, we have the following
corollary.

Corollary 2.10. Let fi(z) be in the class B(p;, i), pi > 1, 0 < a; < 1foralli =1,2,...,n If
lIfi(z)] < M (M >1, ze U) foralli =1,2,...,n, then the integral operator defined in (1.7) is
convex function in U, where

T [(2 —a)MH 1] =1, peCVi=12,...,n (2.25)
i=1

Letting y; = 1and M; = M foralli=1,2,...,nin Theorem 2.9, we have the following
corollary.

Corollary 2.11. Let fi(z) € 4 bein the class S*(a;), 0 < aj < 1foralli=1,2,...,n If |fi(z)| < M
(M>1, zelU)foralli=1,2,...,n, then the integral operator defined in (1.7) is in K(6), where

5=1->|6|B-a) (2.26)
i=1

and 371 |Bil(B-ai) <1, pieCforalli=1,2,...,n

Lettingn =1, p; =1, M; =M,and a; =6 =0foralli =1,2,...,nin Theorem 2.9, we
have the following corollary.

Corollary 2.12. Let f(z) € o# be a starlike function in U. If |f(z)| < M (M > 1, z € U), then the
integral operator joz (f(t)/t)ﬁdt is convex in U, where || =1/3, p e C.
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