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This paper deals with theoretical and constructive existence results for solutions of nonlinear
fractional differential equations using the method of upper and lower solutions which generate
a closed set. The existence of solutions for nonlinear fractional differential equations involving
Riemann-Liouville differential operator in a closed set is obtained by utilizing various types of
coupled upper and lower solutions. Furthermore, these results are extended to the finite systems
of nonlinear fractional differential equations leading to more general results.

1. Introduction

Fractional derivative, introduced around the 17th century, was developed almost until the
19th century. Although the introduction of the concept of fractional calculus involving
fractional differentiation and integral is a few centuries old, it was realized only a few
decades ago that these functional operations play an important role in various fields of
science and engineering [1–8]. As a reason, since the significance of the fractional calculus
has been more clearly perceived, many quality researches have been put forward on this
branch of mathematical analysis in the literature (see [9–11] and the references therein),
and many physical phenomena, chemical processes, biological systems, and so forth have
described with fractional derivatives. In this framework, fractional differential equations
have been gaining much interest and attracting the attention of many researchers. Some
recent contributions on fractional differential equations can be seen in [9–20] and the
references within.

On the other hand, the study for solutions of fractional ordinary and partial differential
equations has received great interest by scientists. Especially, in the last decade, there are
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noteworthy works on the analytical and numerical solutions of fractional partial differential
equations (see [21–28] and the references there in).

The attention drawn to basic theoretical concepts like the theory of existence and
uniqueness of solutions to nonlinear fractional-order differential equations is obvious.
Recently, there have been many paper investigating the existence and uniqueness of
fractional-order differential equations [29–34].

An interesting and fruitful technique for providing existence results for nonlinear
problems is the method of upper and lower solutions. This technique permits us to establish
the existence results in a closed set, namely, the ordered interval, generated by upper and
lower solutions. Thus, in this context, we are concerned with the existence of solutions of the
following nonlinear fractional-order initial value problem (IVP):

Dqx(t) = F(t, x), t ∈ J = [t0, T], x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0, (1.1)

where F ∈ C[J × R,R] and Dq is Riemann-Liouville (R-L) fractional derivative of order q,
0 < q < 1.

The corresponding Volterra fractional integral equation of (1.1) is defined as

x(t) =
x0(t − t0)q−1

Γ
(

q
) +

1
Γ
(

q
)

∫ t

t0

(t − s)q−1F(s, x(s))ds. (1.2)

In recent years, Lakshmikantham and Vatsala investigated the existence theory and
established a Peanos type local existence theorem for (1.1) by using integral inequalities
and perturbation techniques [35]. McRae also studied an important existence result utilizing
the method of upper and lower solutions [36], by means of which, monotone iterative and
quasilinearization techniques are developed to fractional differential equations [37–40].

In this paper, we utilize the technique of upper and lower solutions and establish some
existence results in terms of various types of coupled upper and lower solutions. Thenwewill
extend this idea to the finite systems of nonlinear fractional differential equations.

The organization of this paper is as follows. In Section 2, we provide necessary
background. In Section 3, we focus on the existence of solutions of nonlinear fractional
differential equations in a sector. Finally, in Section 4, we extend our results to the finite
systems of fractional differential equations.

2. Preliminaries

Now, we present some basic definitions and theorems which are used throughout the paper.

Definition 2.1. Let p = 1 − q, then a function σ(t) is said to be a Cp function if σ ∈ Cp where

Cp[J,R] =
{

u ∈ C[(t0, T],R] : u(t)(t − t0)p ∈ C[J,R]
}

. (2.1)
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If we replace F(t, x) in (1.1) by the sum of two functions such that F = f + g where
f, g ∈ C[J × R,R], then problem (1.1) takes the following form:

Dqx(t) = f(t, x) + g(t, x), x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0. (2.2)

We give a variety of possible definitions of upper and lower solutions relative to (2.2).

Definition 2.2. Let v, w ∈ Cp[J,R], p = 1 − q, 0 < q < 1 be locally Hölder continuous with
exponent λ > q,Dqv, Dqw exist, and f, g ∈ C[J×R,R], then v andw are said to be as follows:

(i) natural upper and lower solutions of (2.2), respectively, if

Dqv ≤ f(t, v) + g(t, v), v0 ≤ x0,

Dqw ≥ f(t,w) + g(t,w), w0 ≥ x0, t ∈ J,
(2.3)

(ii) coupled upper and lower solutions of type I of (2.2), respectively, if

Dqv ≤ f(t, v) + g(t,w), v0 ≤ x0,

Dqw ≥ f(t,w) + g(t, v), w0 ≥ x0, t ∈ J,
(2.4)

(iii) coupled upper and lower solutions of type II of (2.2), respectively, if

Dqv ≤ f(t,w) + g(t, v), v0 ≤ x0,

Dqw ≥ f(t, v) + g(t,w), w0 ≥ x0, t ∈ J,
(2.5)

(iv) coupled upper and lower solutions of type III of (2.2), respectively, if

Dqv ≤ f(t,w) + g(t,w), v0 ≤ x0,

Dqw ≥ f(t, v) + g(t, v), w0 ≥ x0, t ∈ J,
(2.6)

where v0 = v(t)(t − t0)
1−q|t=t0 and w0 = w(t)(t − t0)

1−q|t=t0 .

Lemma 2.3. Let m ∈ Cp([t0, T], R) be locally Hölder continuous with exponent λ > q and for any
t1 ∈ (t0, T], and one has

m(t1) = 0, m(t) ≤ 0 for t0 ≤ t ≤ t1, (2.7)

then it follows that

Dqm(t1) ≥ 0. (2.8)

Proof. For the proof, see [16].
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Remark 2.4. A dual result for Lemma 2.3 is valid.
The explicit solution of the following nonhomogeneous linear fractional differential

equation

Dqx = αx + f(t), x0 = x(t)(t − t0)1−q
∣
∣
∣
t=t0

, (2.9)

involving R-L fractional differential operator of order q (0 < q < 1), is necessary for further
development of our main results. In (2.9), α is a real number and f ∈ Cp([t0, T],R).

When we apply the method of successive approximations [16] to find the solution
x(t) = x(t, t0, x0) explicitly for the given nonhomogeneous IVP (2.9), we obtain

x(t) = x0(t − t0)q−1Eq,q

(

α(t − t0)q
)

+
∫ t

t0

(t − s)q−1Eq,q

(

α(t − s)q
)

f(s)ds, t ∈ [t0, T], (2.10)

where Eq,q denotes the two-parameter Mittag-Leffler function and Eq,q(tq) =
∑∞

k=0 t
qk/Γ(q(k+

1)), q > 0.
If f(t) ≡ 0, we get

x(t) = x0(t − t0)q−1Eq,q

(

α(t − t0)q
)

, t ∈ [t0, T], (2.11)

as the solution of the corresponding homogeneous IVP for (2.9).
We next give a Peano’s type local existence result and then an existence result in a

special closed set generated by upper and lower solutions.

Theorem 2.5. Assume that F ∈ C(R0,R
n) and |F(t, x)| ≤ M on R0 where R0 = {(t, x) : t0 ≤ t ≤

t0 + a and |x − x0(t)| ≤ b} and x0(t) = x0(t − t0)
q−1/Γ(q), then IVP (1.1) possesses at least one

solution x(t) on [t0, t0 + α] where α = min{a, ((b/M)Γ(q + 1))1/q}.

For the proof of the theorem, see [35].
If the existence of upper and lower solutions w,v such that v(t) ≤ w(t), t ∈ J for IVP

(1.1) is known, the existence of solutions can be proved in the closed set

Ω = [(t, x) : v(t) ≤ x(t) ≤ w(t), t ∈ [t0, T]]. (2.12)

Theorem 2.6. Let v and w ∈ Cp[[t0, T],R] be natural upper and lower solutions of IVP (1.1),
which are locally Hölder continuous with exponent λ > q such that v(t) ≤ w(t) on J = [t0, T] and
f ∈ C(Ω,R), then there exists a solution x(t) of IVP (1.1) satisfying v(t) ≤ x(t) ≤ w(t), t ∈ [t0, T].

For the detailed proof of the above theorem, see [36].

3. Existence Theorems

We are in position to give existence of solutions in the closed set Ω.
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Theorem 3.1. Let v and w ∈ Cp[[t0, T],R] be coupled upper and lower solutions of type I of (2.2)
such that f, g ∈ C(Ω,R) and v(t) ≤ w(t), t ∈ [t0, T]. Moreover, assume that g(t, x) is nonincreasing
in x for each t, then there exists a solution x(t) of (2.2) satisfying v(t) ≤ x(t) ≤ w(t) on [t0, T].

Proof. Let p : [t0, T] × R → R be defined by

p(t, x) = min[w(t),max(x(t), v(t))]. (3.1)

Then f(t, p(t, x)) + g(t, p(t, x)) defines a continuous extension of f + g to [t0, T] × R

which is also bounded since f + g is bounded on Ω. Employing Theorem 2.5, we get the
following equation:

Dqx(t) = f
(

t, p(t, x)
)

+ g
(

t, p(t, x)
)

, x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0, (3.2)

having a solution x(t) on [t0, T]. We wish to prove that v(t) ≤ x(t) ≤ w(t) on [t0, T]. For this
purpose, consider the following equations:

wε(t) = w(t) + εγ(t), vε(t) = v(t) − εγ(t), (3.3)

where γ(t) = (t − t0)
q−1Eq,q((t − t0)

q) and ε > 0. This implies that

wε(t)(t − t0)1−q
∣
∣
∣
t=t0

= w0
ε = w(t)(t − t0)1−q

∣
∣
∣
t=t0

+εγ(t)(t − t0)1−q
∣
∣
∣
t=t0

,

vε(t)(t − t0)1−q
∣
∣
∣
t=t0

= v0
ε = v(t)(t − t0)1−q

∣
∣
∣
t=t0

−εγ(t)(t − t0)1−q
∣
∣
∣
t=t0

,
(3.4)

which gives w0
ε = w0 + εγ0, v0

ε = v0 − εγ0 where γ0 > 0. It follows that v0
ε < x0 < w0

ε in view
of the upper and lower definitions of w(t) and v(t). It is enough to show that

vε(t) < x(t) < wε(t) on [t0, T], (3.5)

which proves the claim of the theorem as ε → 0. First, suppose that the inequality x(t) <
wε(t) on [t0, T] is not true, then there would exist a t1 ∈ (t0, T] such that

x(t1) = wε(t1), x(t) < wε(t) on [t0, t1). (3.6)
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Hence, x(t1) > w(t1) ≥ v(t1), therefore p(t1, x(t1)) = w(t1) and v(t1) ≤ p(t1, x(t1)) ≤ w(t1). If
we construct m(t) = x(t) − wε(t), we get m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. Employing
Lemma 2.3,we obtain Dqm(t1) ≥ 0 which gives a contradiction

f(t1, w(t1)) + g(t1, w(t1)) = f
(

t1, p(t1, x(t1))
)

+ g
(

t1, p(t1, x(t1))
)

= Dqx(t1)

≥ Dqwε(t1)

= Dqw(t1) + εγ(t1)

> Dqw(t1)

≥ f(t1, w(t1)) + g(t1, v(t1))

≥ f(t1, w(t1)) + g(t1, w(t1)).

(3.7)

Here, we have used the nonincreasing property of g(t, x) in x for each t and the fact that
γ(t1) > 0.

Similarly, it can be proved that the other side of the inequality (3.5) is valid for t0 ≤ t ≤
T . To do this, wemust show that vε(t) < x(t) on [t0, T]. Suppose that it is not true and so there
exists a t1 such that vε(t1) = x(t1) and vε(t) < x(t) for t0 ≤ t < t1, then x(t1) < v(t1) ≤ w(t1)
and p(t1, x(t1)) = v(t1). Hence, v(t1) ≤ p(t1, x(t1)) ≤ w(t1). If we put m(t) = vε(t) − x(t), we
getm(t1) = 0 andm(t) ≤ 0, t0 ≤ t ≤ t1. Employing Lemma 2.3, we find Dqm(t1) ≥ 0. Since the
nonincreasing property of g(t, x) in x for each t and the fact that γ(t1) > 0, we arrive at the
contradiction

f(t1, v(t1)) + g(t1, v(t1)) = f
(

t1, p(t1, x(t1))
)

+ g
(

t1, p(t1, x(t1))
)

= Dqx(t1)

≤ Dqvε(t1)

= Dqv(t1) − εγ(t1)

< Dqv(t1)

≤ f(t1, v(t1)) + g(t1, w(t1))

≤ f(t1, v(t1)) + g(t1, v(t1)).

(3.8)

Consequently, we have vε(t) < x(t) < wε(t) on [t0, T], and letting ε → 0, we get v(t) ≤ x(t) ≤
w(t) on [t0, T] proving the theorem.

Theorem 3.2. Let v and w ∈ Cp[[t0, T],R] be coupled upper and lower solutions of type II of
(2.2) such that f, g ∈ C(Ω,R) and v(t) ≤ w(t), t ∈ [t0, T]. Moreover, assume that f(t, x) is
nonincreasing in x for each t, then there exists a solution x(t) of (2.2) satisfying v(t) ≤ x(t) ≤ w(t)
on [t0, T].

Proof. Let p : [t0, T] × R → R be defined by

p(t, x) = min[w(t),max(x(t), v(t))]. (3.9)
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Then f(t, p(t, x)) + g(t, p(t, x)) defines a continuous extension of f + g to [t0, T] × R

which is also bounded since f + g is bounded on Ω. Therefore, by Theorem 2.5,

Dqx(t) = f
(

t, p(t, x)
)

+ g
(

t, p(t, x)
)

, x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0 (3.10)

has a solution x(t) on [t0, T]. We intend to show that v(t) ≤ x(t) ≤ w(t) on [t0, T]. For this
purpose, consider the following equations:

wε(t) = w(t) + εγ(t), vε(t) = v(t) − εγ(t), (3.11)

where γ(t) and ε are defined as before. It follows that v0
ε < x0 < w0

ε . It is enough to show that

vε(t) < x(t) < wε(t) on [t0, T]. (3.12)

Suppose that it is not true. Thus, there would exist a t1 ∈ (t0, T] such that

x(t1) = wε(t1), vε(t) < x(t) < wε(t) on [t0, t1). (3.13)

Hence, x(t1) > w(t1) ≥ v(t1); therefore, we get p(t1, x(t1)) = w(t1) and v(t1) ≤ p(t1, x(t1)) ≤
w(t1). Setting m(t) = x(t) − wε(t), we have m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. Employing
Lemma 2.3, we obtain Dqm(t1) ≥ 0 which yields a contradiction

f(t1, w(t1)) + g(t1, w(t1)) = f
(

t1, p(t1, x(t1))
)

+ g
(

t1, p(t1, x(t1))
)

= Dqx(t1)

≥ Dqwε(t1)

= Dqw(t1) + εγ(t1)

> Dqw(t1)

≥ f(t1, v(t1)) + g(t1, w(t1))

≥ f(t1, w(t1)) + g(t1, w(t1)).

(3.14)

Here, we have used the nonincreasing property of f(t, x) in x for each t and the fact
that γ(t1) > 0. Thus, we get x(t) < wε(t) on [t0, T].

After utilizing the similar procedure, the other case can be proved easily. Conse-
quently, we have vε(t) < x(t) < wε(t) on [t0, T], and letting ε → 0, we get v(t) ≤ x(t) ≤ w(t)
on [t0, T]which proves the theorem.

Theorem 3.3. Let v and w ∈ Cp[[t0, T],R] be coupled upper and lower solutions of type III of
(2.2) such that f, g ∈ C(Ω,R) and v(t) ≤ w(t), t ∈ [t0, T]. Moreover, assume that both f(t, x)
and g(t, x) are nonincreasing in x for each t, then there exists a solution x(t) of (2.2) satisfying
v(t) ≤ x(t) ≤ w(t) on [t0, T].

Proof. In a similar manner in previous theorems, the existence of the solution can be proved.
Thus, we omit the details.
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4. Extensions to the Systems of Differential Equations

We can generalize the result of Theorem 2.6 to finite systems of fractional differential equa-
tions. Consider the following fractional differential system:

Dqx(t) = F(t, x), x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0, (4.1)

where F ∈ C[[t0, T]×R
n,Rn], andDqx is the fractional derivative of x ∈ R

n and 0 < q < 1, p =
1 − q.

At this point, we shall need an important property, known as quasimonotone non-
decreasing relative to systems of inequalities.

Definition 4.1. A function F ∈ C[J × R
n,Rn] is said to possess quasimonotone nondecreasing

property if u ≤ v, ui = vi for some i, 1 ≤ i ≤ n, then Fi(t, u) ≤ Fi(t, v).
Here, we shall be using vectorial inequalities, which are understood to mean the same

inequalities hold between their corresponding components.
Next, we give the following existence result for systems of differential equations.

Theorem 4.2. Let v andw ∈ Cp[[t0, T],Rn] be upper and lower solutions of (4.1), respectively, such
that F ∈ C(Ω,Rn) and v(t) ≤ w(t), t ∈ [t0, T] where Ω = [(t, x) : v(t) ≤ x(t) ≤ w(t), t ∈ [t0, T]].
Moreover, assume that F(t, x) is quasimonotone nondecreasing in x for each t, then there exists a
solution x(t) of (4.1) satisfying v(t) ≤ x(t) ≤ w(t) on [t0, T].

The proof of this theorem is a special case of the following theorem in which we choose
F not to be quasimonotone nondecreasing in x provided that we strengthen the notion of
upper and lower solutions of (4.1) as follows:

For each i, 1 ≤ i ≤ n,

Dqvi(t) ≤ Fi

(

t, ρ
) ∀ρ such that vi(t) = ρi(t), v(t) ≤ x(t) ≤ w(t) on [t0, T],

Dqwi(t) ≤ Fi

(

t, ρ
) ∀ρ such that wi(t) = ρi(t), v(t) ≤ x(t) ≤ w(t) on [t0, T].

(4.2)

We state and prove the following existence result relative to the definition of upper and lower
solutions in (4.2).

Theorem 4.3. Let v and w ∈ Cp[[t0, T],Rn] be upper and lower solutions of (4.1), respectively,
satisfying the relations given in (4.2), which are also locally Hölder continuous with exponent λ > q
such that v(t) ≤ w(t) and F ∈ C(Ω,Rn), then there exists a solution x(t) of (4.1) satisfying v(t) ≤
x(t) ≤ w(t) on [t0, T].

Proof. Let p : [t0, T] × R
n → R

n given by

p(t, x) = min[w(t),max(x(t), v(t))] for each i, (4.3)
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then F(t, p(t, x)) defines a continuous extension of F to [t0, T] × R
n which is also bounded

since f + g is bounded on Ω. Therefore, by Theorem 2.5,

Dqx(t) = F
(

t, p(t, x)
)

, x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0 (4.4)

has a solution x(t) on [t0, T]. For ε > 0 and e = (1, 1, . . . , 1), consider wε(t) = w(t) + εγ(t)e
and vε(t) = v(t) − εγ(t)e where γ(t) = (t − t0)

q−1Eq,q((t − t0)
q). It is clear that v0

ε < x0 < w0
ε . We

wish to show that vε(t) < x(t) < wε(t) on [t0, T]. Suppose that it is not true, then there exists
an index j, 1 ≤ j ≤ n and a t1 ∈ (t0, T] such that

xj(t1) = wεj(t1), x(t) ≤ wε(t), t0 ≤ t ≤ t1, xi(t1) ≤ wεi(t1) for i /= j. (4.5)

Thus, we have v(t1) ≤ p(t1, x(t1)) ≤ w(t1) and pj(t1, x(t1)) = wj(t1). Setting mj(t) = vj(t) −
wj(t), it follows that

mj(t1) = 0, mj(t) ≤ 0, t ∈ [t0, t1]; mi(t1) ≤ 0, i /= j. (4.6)

Applying Lemma 2.3 to the component mj(t), we get Dqmj(t1) ≥ 0 or Dqxj(t1) ≥
Dqwεj(t1)which yields a contradiction

Fj(t1, w(t1)) = Fj

(

t1, p(t1, x(t1))
)

= Dqxj(t1)

≥ Dqwεj(t1)

= Dqwj(t1) + εγ(t1)

> Dqwj(t1)

≥ Fj(t1, w(t1)).

(4.7)

Now, letting ε → 0, we arrive at v(t) ≤ x(t) ≤ w(t) on [t0, T] which proves the conclusion of
the theorem.

Sometimes, we can have arbitrary coupling relative to upper and lower solutions. Let
pi and qi be nonnegative integers for each i, 1 ≤ i ≤ n, so that we can split the vector x into
(xi, [x]pi , [x]qi). Then the system (4.1) can be written as

Dqxi(t) = Fi

(

t, xi, [x]pi , [x]qi
)

, x(t)(t − t0)1−q
∣
∣
∣
t=t0

= x0, (4.8)

where F ∈ C[[t0, T] × R
n,Rn].

Definition 4.4. A function F ∈ C[[t0, T] × R
n,Rn] is said to possess a mixed quasimonotone

property if for each i, Fi(t, xi, [x]pi , [x]qi) is monotone nondecreasing in [x]pi and monotone
nonincreasing in [x]qi .
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Definition 4.5. The functions v andw ∈ Cp[[t0, T],Rn] are said to be coupled upper and lower
quasisolutions of (4.8) if they satisfy

Dqvi ≤ Fi

(

t, vi, [v]pi, [v]qi
)

, v0 ≤ x0,

Dqwi ≥ Fi

(

t,wi, [w]pi, [w]qi
)

, w0 ≥ x0,
(4.9)

for each i, 1 ≤ i ≤ n.
Next, we give an existence result which is also a special case of Theorem 4.3.

Theorem 4.6. Let v,w ∈ Cp[[t0, T],Rn] be coupled upper and lower quasisolutions of (4.8) and
F ∈ C[[t0, T] × R

n,Rn]. If F(t, x) possesses a mixed quasimonotone property, then there exists a
solution x(t) of (4.8) such that v(t) ≤ x(t) ≤ w(t) on [t0, T].

It should be noted that if F satisfies a mixed quasimonotone property, then (4.2) holds
for coupled upper and lower quasisolutions given by (4.9). Therefore, Theorem 4.3 includes
Theorem 4.6 as a special case.

5. Conclusion

In this work, some existence theorems have been established for nonlinear fractional-order
differential equations relative to coupled upper and lower solutions. The differential operator
is taken in the Riemann-Liouville sense. For the further developments in applications of
dynamical systems, we have generalized these results to the finite systems of nonlinear
fractional differential equations. Being defined by a suitable differential operator, the process
of finding a solution between upper and lower solutions generating a closed set could be
applied to various types of linear and nonlinear fractional partial differential equations as a
future work.
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