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Here we give a very short and elegant proof of an extension of two recent results on global
periodicity of two systems of difference equations in a work of Elsayed et al. 2012.

1. Introduction

For a solution (x(1)
n , . . . , x

(k)
n ), n ≥ −l, l ∈ N, of the system of difference equations

x
(j)
n = fj

(
x
(1)
n−1, . . . , x

(k)
n−1, . . . , x

(1)
n−l, . . . , x

(k)
n−l

)
, j = 1, k, n ∈ N0, (1.1)

is said that it is eventually periodic with period p̂, if there is an n1 ≥ −l such that

(
x
(1)
n+p̂, . . . , x

(k)
n+p̂

)
=
(
x
(1)
n , . . . , x

(k)
n

)
, for n ≥ n1. (1.2)

If n = −l, then for the solution is said that it is periodic with period p̂. If all well-defined
solutions of system (1.1) are eventually periodic with period p̂, it is said that the system is
p̂-periodic.
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For some periodic difference equations and systems see, for example, [1–11] and the
references therein. Periodic systems are essentially subclasses of the systems which can be
solved explicitly, an area that has again attracted attention recently (see, e.g., [12–21]). For
some classical results in the topic see, for example, [22].

In the recent paper [23] are formulated two results on global periodicity of
particular systems of difference equations. Namely, they gave some tedious straightforward
calculations which suggest that all the solutions with nonzero real initial values of the
following systems of difference equations

xn+1 =
1

xn−pyn−p
, yn+1 =

xn−pyn−p
xn−qyn−q

, (1.3)

xn+1 =
1

xn−pyn−pzn−p
, yn+1 =

xn−pyn−pzn−p
xn−qyn−qzn−q

, zn+1 =
xn−qyn−qzn−q
xn−ryn−rzn−r

(1.4)

are periodic with periods q+1 and r +1, respectively, without giving complete proofs of these
statements.

2. Main Result

Here we prove a result which naturally extends the results on systems (1.3) and (1.4), and
give a very short and elegant proof of it.

Theorem 2.1. Assume that k, l, s ∈ N, k ≥ 2, functions gj : (R \ {0})l → R \ {0}, j = 1, k, satisfy
the following condition

k∏
j=1

gj(t1, t2, . . . , tl) = 1, (2.1)

for every (t1, t2, . . . , tl) ∈ (R \ {0})l.
Consider the following system of difference equations

x
(j)
n = gj

(
k∏
i=1

x
(i)
n−1, . . . ,

k∏
i=1

x
(i)
n−l

)
, j = 1, k − 1,

x
(k)
n = gk

(
k∏
i=1

x
(i)
n−1, . . . ,

k∏
i=1

x
(i)
n−l

)(
k∏
i=1

x
(i)
n−s

)−1
, n ∈ N0.

(2.2)

Then every solution (x(1)
n , . . . , x

(k)
n ) of system (2.2) whose initial values are arbitrary nonzero

real numbers is eventually periodic with period 2s.
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Proof. Since x(j)
n /= 0 for every −max{l, s} ≤ n ≤ −1 and j = 1, k, functions gj , j = 1, k, map the

set (R \ {0})l to R \ {0} and

h(t1, . . . , tk) =

(
k∏
i=1

ti

)−1
, (2.3)

map the set (R \ {0})k to R \ {0}, from (2.2) with n = 0, we see that x(j)
0 /= 0 for every j = 1, k.

Assume we have proved that x(j)
i /= 0 for −max{l, s} ≤ i ≤ n0 and every j = 1, k. Then

from this, (2.2) and since functions gj , j = 1, k, map the set (R \ {0})l to R \ {0}, and h map

the set (R \ {0})k to R \ {0}, we get x(j)
n0+1 /= 0 for every j = 1, k. So, by induction it follows

that x(j)
n /= 0 for every n ∈ N0 and j = 1, k. Hence, every solution (x(1)

n , . . . , x
(k)
n ) of system (2.2)

whose initial values are arbitrary nonzero real numbers is well-defined.
Multiplying all the equations in (2.2), then using condition (2.1) and the above proven

fact that
∏k

i=1x
(i)
n /= 0, for every n ≥ −max{l, s}, we get

k∏
j=1

x
(j)
n =

∏k
j=1gj

(∏k
j=1x

(i)
n−1, . . . ,

∏k
j=1x

(i)
n−l

)

∏k
i=1x

(i)
n−s

=
1

∏k
i=1x

(i)
n−s

, (2.4)

from which it follows that

k∏
j=1

x
(j)
n =

k∏
j=1

x
(j)
n−2s, (2.5)

that is, the sequence
∏k

j=1x
(j)
n is eventually periodic with period 2s. In particular, the

sequences
∏k

j=1x
(j)
n−q are eventually periodic with period 2s, for every q ∈ N.

This implies that the sequences

gj

(
k∏
i=1

x
(i)
n−1, . . . ,

k∏
i=1

x
(i)
n−l

)
, j = 1, k,

(
k∏
i=1

x
(i)
n−s

)−1 (2.6)

are eventually periodic with period 2s, which along with (2.2) implies that the sequences
(x(j)

n )n≥−max{l,s} are eventually periodic with period 2s, for j = 1, k, from which the theorem
follows.

Now we present the main results in paper [23] as two corollaries.

Corollary 2.2. Assume that (xn, yn), n ≥ −max{p, q}, is an arbitrary solution of system (1.3)whose
initial values are arbitrary nonzero real numbers. Then the solution is eventually periodic with period
2q + 2.
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Proof. Note that for system (1.3), l = p+1, s = q+1, g1(t1, . . . , tp+1) = 1/tp+1 and g2(t1, . . . , tp+1)
= tp+1, so that

g1
(
t1, . . . , tp+1

)
g2
(
t1, . . . , tp+1

)
= 1 for

(
t1, . . . , tp+1

) ∈ (R \ {0})p+1. (2.7)

Hence, all the conditions of Theorem 2.1 are fulfilled from which the corollary follows.

Corollary 2.3. Assume that (xn, yn, zn), n ≥ −max{p, q, r}, is an arbitrary solution of system (1.4)
whose initial values are arbitrary nonzero real numbers. Then the solution is eventually periodic with
period 2r + 2.

Proof . For system (1.4), we have that l = max{p + 1, q + 1}, s = r + 1,

g1(t1, . . . , tl) =
1

tp+1
, g2(t1, . . . , tl) =

tp+1

tq+1
, g3(t1, . . . , tl) = tq+1, (2.8)

so that

g1(t1, . . . , tl)g2(t1, . . . , tl)g3(t1, . . . , tl) = 1 for (t1, . . . , tl) ∈ (R \ {0})l. (2.9)

Hence, all the conditions of Theorem 2.1 are fulfilled from which the corollary follows.

The next corollary, which corresponds to case k = 4 in Theorem 2.1, is obtained
similarly, so we omit the proof.

Corollary 2.4. Assume that (xn, yn, zn,wn), n ≥ −max{p, q, r, s}, is an arbitrary solution of the
following system

xn+1 =
1

xn−pyn−pzn−pwn−p
, yn+1 =

xn−pyn−pzn−pwn−p
xn−qyn−qzn−qwn−q

,

zn+1 =
xn−qyn−qzn−qwn−q
xn−ryn−rzn−rwn−r

, wn+1 =
xn−ryn−rzn−rwn−r
xn−syn−szn−swn−s

,

(2.10)

n ∈ N0, whose initial values are arbitrary nonzero real numbers. Then the solution is eventually
periodic with period 2s + 2.
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[17] S. Stević, “On a system of difference equations,” Applied Mathematics and Computation, vol. 218, no. 7,

pp. 3372–3378, 2011.
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[21] S. Stević, J. Diblı́k, B. Iričanin, and Z. Šmarda, “On a third-order system of difference equations with

variable coefficients,” Abstract and Applied Analysis, vol. 2012, Article ID 508523, 22 pages, 2012.
[22] H. Levy and F. Lessman, Finite Difference Equations, The Macmillan Company, New York, NY, USA,

1961.
[23] E. M. Elsayed, M. M. El-Dessoky, and A. M. Alotaibi, “On the solutions of a general system of

difference equations,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 892571, 12 pages,
2012.


