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An analytic function f is quasi-subordinate to an analytic function g, in the open unit disk if
there exist analytic functions ϕ and w, with |ϕ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that
f(z) = ϕ(z)g(w(z)). Certain subclasses of analytic univalent functions associated with quasi-
subordination are defined and the bounds for the Fekete-Szegö coefficient functional |a3 − μa2

2|
for functions belonging to these subclasses are derived.

1. Introduction and Motivation

Let A be the class of analytic function f in the open unit disk D = {z : |z| < 1} normalized by
f(0) = 0 and f ′(0) = 1 of the form f(z) = z +

∑∞
n=2 anz

n. For two analytic functions f and g,
the function f is subordinate to g, written as follows:

f(z) ≺ g(z), (1.1)

if there exists an analytic function w, with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)).
In particular, if the function g is univalent in D, then f(z) ≺ g(z) is equivalent to f(0) = g(0)
and f(D) ⊂ g(D). For brief survey on the concept of subordination, see [1].

Ma and Minda [2] introduced the following class

S∗(φ
)
=
{

f ∈ A :
zf ′(z)
f(z)

≺ φ(z)
}

, (1.2)
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where φ is an analytic function with positive real part in D, φ(D) is symmetric with respect to
the real axis and starlike with respect to φ(0) = 1 and φ′(0) > 0. A function f ∈ S∗(φ) is called
Ma-Minda starlike (with respect to φ). The class C(φ) is the class of functions f ∈ A for which
1 + zf ′′(z)/f ′(z) ≺ φ(z). The class S∗(φ) and C(φ) include several well-known subclasses of
starlike and convex functions as special case.

In the year 1970, Robertson [3] introduced the concept of quasi-subordination. For two
analytic functions f and g, the function f is quasi-subordinate to g, written as follows:

f(z)≺qg(z), (1.3)

if there exist analytic functions ϕ and w, with |ϕ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that
f(z) = ϕ(z)g(w(z)). Observe that when ϕ(z) = 1, then f(z) = g(w(z)), so that f(z) ≺ g(z) in
D. Also notice that ifw(z) = z, then f(z) = ϕ(z)g(z) and it is said that f is majorized by g and
written f(z) 	 g(z) in D. Hence it is obvious that quasi-subordination is a generalization of
subordination as well as majorization. See [4–6] for works related to quasi-subordination.

Throughout this paper it is assumed that φ is analytic in D with φ(0) = 1. Motivated
by [2, 3], we define the following classes.

Definition 1.1. Let the class S∗
q(φ) consists of functions f ∈ A satisfying the quasi-subor-

dination

zf ′(z)
f(z)

− 1≺qφ(z) − 1. (1.4)

Example 1.2. Since

zf ′(z)
f(z)

− 1 = z
(
φ(z) − 1

)≺qφ(z) − 1, (1.5)

the function f : D → C defined by the following:

f(z) = z exp
(

−z +
∫z

0
φ(ξ)dξ

)

(1.6)

belongs to the class S∗
q(φ).

Definition 1.3. Let the class Cq(φ) consists of functions f ∈ A satisfying the quasi-subor-
dination

zf ′′(z)
f ′(z)

≺qφ(z) − 1. (1.7)
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Example 1.4. The function f : D → C defined by the following:

f(z) =
∫z

0
exp

(

−ζ +
∫ ζ

0
φ(ξ)dξ

)

dζ
(1.8)

belongs to the class Cq(φ).

The classes S∗
q(φ) and Cq(φ) are analogous to the Ma-Minda starlike and convex

classes defined in the form of quasi-subordination.

Definition 1.5. Let the class Rq(φ) consist of functions f ∈ A satisfying the quasi-subor-
dination

f ′(z) − 1≺qφ(z) − 1. (1.9)

Example 1.6. The function f : D → C defined by the following:

f(z) = z − z2

2
+ exp

(∫z

0
φ(ξ)dξ

)

(1.10)

belongs to the class Rq(φ).

It is known that a function f ∈ Awith Re f ′(z) > 0 in D is univalent. The above class of
functions defined in terms of the quasi-subordination is associated with the class of functions
with positive real part.

Functions in the following classes, Mq(α, φ) and Lq(α, φ) are analogous to the α-
convex functions of Miller et al. [7] and α-logarithmically convex functions introduced by
Lewandowski et al. [8] (see also [9]), respectively.

Definition 1.7. Let the class Mq(α, φ), (α ≥ 0) consist of functions f ∈ A satisfying the quasi-
subordination

(1 − α)
zf ′(z)
f(z)

+ α

(

1 +
zf ′′(z)
f ′(z)

)

− 1≺qφ(z) − 1. (1.11)

Example 1.8. The function f : D → C defined by the following:

(1 − α)
zf ′(z)
f(z)

+ α

(

1 +
zf ′′(z)
f ′(z)

)

− 1 = z
(
φ(z) − 1

)
(1.12)

belongs to the class Mq(φ).
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Definition 1.9. Let the class Lq(α, φ), (α ≥ 0) consist of functions f ∈ A satisfying the quasi-
subordination

(
zf ′(z)
f(z)

)α(

1 +
zf ′′(z)
f ′(z)

)1−α
− 1≺qφ(z) − 1. (1.13)

Example 1.10. The function f : D → C defined by the following:

(
zf ′(z)
f(z)

)α(

1 +
zf ′′(z)
f ′(z)

)1−α
− 1 = z

(
φ(z) − 1

)
(1.14)

belongs to the class Lq(φ).

It is well known (see [10]) that the n-th coefficient of a univalent function f ∈ A
is bounded by n. The bounds for coefficient give information about various geometric
properties of the function. Many authors have also investigated the bounds for the Fekete-
Szegö coefficient for various classes [11–25]. In this paper, we obtain coefficient estimates for
the functions in the above defined classes.

Let Ω be the class of analytic functions w, normalized by w(0) = 0, and satisfying the
condition |w(z)| < 1. We need the following lemma to prove our results.

Lemma 1.11 (see [26]). If w ∈ Ω, then for any complex number t

∣
∣
∣w2 − tw2

1

∣
∣
∣ ≤ max{1; |t|}. (1.15)

The result is sharp for the functions w(z) = z2 or w(z) = z.

2. Main Results

Although Theorems 2.1 and 2.4 are contained in the corresponding results for the classes
Mq(α, φ) and Lq(α, φ), they are stated and proved separately here because of the importance
of the classes.

Throughout, let f(z) = z + a2z
2 + a3z

3 + · · · , φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · , ϕ(z) =
c0 + c1z + c2z

2 + c3z
3 + · · · , B1 ∈ R and B1 > 0.

Theorem 2.1. If f ∈ A belongs to S∗
q(φ), then

|a2| ≤ B1,

|a3| ≤ 1
2

(
B1 +max

{
B1, B

2
1 + |B2|

})
,

(2.1)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2

(
B1 +max

{
B1,
∣
∣1 − 2μ

∣
∣B2

1 + |B2|
})

. (2.2)
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Proof. If f ∈ S∗
q(φ), then there exist analytic functions ϕ and w, with |ϕ(z)| ≤ 1, w(0) = 0 and

|w(z)| < 1 such that

zf ′(z)
f(z)

− 1 = ϕ(z)
(
φ(w(z)) − 1

)
. (2.3)

Since

zf ′(z)
f(z)

− 1 = a2z +
(
−a2

2 + 2a3

)
z2 + · · · ,

φ(w(z)) − 1 = B1w1z +
(
B1w2 + B2w

2
1

)
z2 + · · · ,

(2.4)

ϕ(z)
(
φ(w(z)) − 1

)
= B1c0w1z +

(
B1c1w1 + c0

(
B1w2 + B2w

2
1

))
z2 + · · · , (2.5)

it follows from (2.3) that

a2 = B1c0w1

a3 =
1
2

(
B1c1w1 + B1c0w2 + c0

(
B2 + B2

1c0
)
w2

1

)
.

(2.6)

Since ϕ(z) is analytic and bounded in D, we have [27, page 172]

|cn| ≤ 1 − |c0|2 ≤ 1 (n > 0). (2.7)

By using this fact and the well-known inequality, |w1| ≤ 1, we get

|a2| ≤ B1. (2.8)

Further,

a3 − μa2
2 =

1
2

(
B1c1w1 + c0

(
B1w2 +

(
B2 + B2

1c0 − 2μB2
1c0
)
w2

1

))
. (2.9)

Then

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2

(

|B1c1w1| +
∣
∣
∣
∣B1c0

(

w2 −
(

2μB1c0 − B1c0 − B2

B1

)

w2
1

)∣
∣
∣
∣

)

. (2.10)

Again applying |cn| ≤ 1 and |w1| ≤ 1, we have

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ B1

2

(

1 +
∣
∣
∣
∣w2 −

(

−(1 − 2μ
)
B1c0 − B2

B1

)

w2
1

∣
∣
∣
∣

)

. (2.11)
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Applying Lemma 1.11 to

∣
∣
∣
∣w2 −

(

−(1 − 2μ
)
B1c0 − B2

B1

)

w2
1

∣
∣
∣
∣ (2.12)

yields

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ B1

2

(

1 +max
{

1,
∣
∣
∣
∣−
(
1 − 2μ

)
B1c0 − B2

B1

∣
∣
∣
∣

})

. (2.13)

Observe that

∣
∣
∣
∣−
(
1 − 2μ

)
B1c0 − B2

B1

∣
∣
∣
∣ ≤ B1|c0|

∣
∣1 − 2μ

∣
∣ +
∣
∣
∣
∣
B2

B1

∣
∣
∣
∣, (2.14)

and hence we can conclude that

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ B1

2

(

1 +max
{

1, B1
∣
∣1 − 2μ

∣
∣ +
∣
∣
∣
∣
B2

B1

∣
∣
∣
∣

})

. (2.15)

For μ = 0, the above will reduce to the estimate of |a3|.

Remark 2.2. For ϕ(z) ≡ 1, Theorem 2.1 gives a particular case of the estimates in [13, Theorem
1] for p = 1 and [14, Theorem 2.1] for k = 1.

Theorem 2.3. If f ∈ A satisfies

zf ′(z)
f(z)

− 1 	 φ(z) − 1, (2.16)

then the following inequalities hold:

|a2| ≤ B1,

|a3| ≤ 1
2

(
B1 + B2

1 + |B2|
)
,

(2.17)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2

(
B1 +

∣
∣1 − 2μ

∣
∣B2

1 + |B2|
)
. (2.18)

Proof. The result follows by taking w(z) = z in the proof of Theorem 2.1.



Abstract and Applied Analysis 7

Theorem 2.4. If f ∈ A belongs to Cq(φ), then

|a2| ≤ B1

2
,

|a3| ≤ 1
6

(
B1 +max

{
B1, B

2
1 + |B2|

})
,

(2.19)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

6

(

B1 +max
{

B1,

∣
∣
∣
∣1 −

3
2
μ

∣
∣
∣
∣B

2
1 + |B2|

})

. (2.20)

Proof. Observe that when zf ′ ∈ S∗
q, equality (2.3) becomes

z
(
zf ′(z)

)′

zf ′(z)
− 1 = ϕ(z)

(
φ(w(z)) − 1

)
, (2.21)

or equally

zf ′′(z)
f ′(z)

≺ φ(w(z)) − 1, (2.22)

and the converse can be verified easily. By the Alexander relation, that is f ∈ Cq if and only if
zf ′ ∈ S∗

q, we can obtain the required estimates.

Theorem 2.5. If f ∈ A satisfies

zf ′′(z)
f ′(z)

	 φ(z) − 1, (2.23)

then the following inequalities hold:

|a2| ≤ B1

2
,

|a3| ≤ 1
6

(
B1 + B2

1 + |B2|
)
,

(2.24)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

6

(

B1 +
∣
∣
∣
∣1 −

3
2
μ

∣
∣
∣
∣B

2
1 + |B2|

)

. (2.25)
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Theorem 2.6. If f ∈ A belongs to Rq(φ), then

|a2| ≤ B1

2
,

|a3| ≤ 1
3
(B1 +max{B1, |B2|}),

(2.26)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

3

(

B1 +max
{

B1,
3
4
∣
∣μ
∣
∣B2

1 + |B2|
})

. (2.27)

Proof. For f ∈ Rq(φ), we know that by Definition 1.5 there exist analytic functions ϕ and w,
with |ϕ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that

f ′(z) − 1 = ϕ(z)
(
φ(w(z)) − 1

)
. (2.28)

Since

f ′(z) − 1 = 2a2z + 3a3z
2 + · · · , (2.29)

it follows from (2.28) and (2.5) that

a2 =
1
2
B1c0w1,

a3 =
1
3

(
B1c1w1 + c0

(
B1w2 + B2w

2
1

))
.

(2.30)

Following the same argument as in Theorem 2.1, where |c0| ≤ 1 and |c1| ≤ 1, we can deduce
that

|a2| ≤ B1

2
,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ B1

3

(

1 +
∣
∣
∣
∣w2 −

(
3B1c0
4

μ − B2

B1

)

w2
1

∣
∣
∣
∣

)

.

(2.31)

Applying Lemma 1.11, we get

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ B1

3

(

1 +max
{

1,
∣
∣
∣
∣
3B1c0
4

μ − B2

B1

∣
∣
∣
∣

})

. (2.32)
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Since

∣
∣
∣
∣
3B1c0
4

μ − B2

B1

∣
∣
∣
∣ ≤

3B1

4
∣
∣μ
∣
∣|c0| +

∣
∣
∣
∣
B2

B1

∣
∣
∣
∣,

(2.33)

and |c0| ≤ 1 we can conclude the hypothesis.

Theorem 2.7. If f ∈ A satisfies

f ′(z) − 1 	 φ(z) − 1, (2.34)

then the following inequalities hold:

|a2| ≤ B1

2
,

|a3| ≤ 1
3
(B1 + |B2|),

(2.35)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

3

(

B1 +
3
4
∣
∣μ
∣
∣B2

1 + |B2|
)

. (2.36)

Let the class Rρ
q(φ) consist of functions f ∈ A satisfying the quasi-subordination

1
ρ

(
f ′(z) − 1

)≺qφ(z) − 1, (2.37)

where ρ ∈ C \ {0}. The following corollary gives the results for f ∈ Rρ
q(φ).

Corollary 2.8. Let ρ ∈ C \ {0}. If f ∈ A belongs to Rρ
q(φ), then

|a2| ≤
∣
∣ρ
∣
∣

2
B1,

|a3| ≤
∣
∣ρ
∣
∣

3
(B1 +max{B1, |B2|}),

(2.38)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤
∣
∣ρ
∣
∣

3

(

B1 +max
{

B1,
3
4
∣
∣μρ
∣
∣B2

1 + |B2|
})

. (2.39)
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Remark 2.9. (1) For ϕ(z) ≡ 1, Corollary 2.8 gives a particular case of the estimates in [13,
Theorem 3] for p = 1 and [14, Theorem 2.3] for k = 1.

(2) For ϕ(z) ≡ 1 and φ(z) = (1 +Az)/(1 + Bz), (−1 ≤ B < A ≤ 1), Corollary 2.8 reduces
to the results in [19, Theorem 4].

Theorem 2.10. Let α ≥ 0. If f ∈ A belongs toMq(α, φ), then

|a2| ≤ B1

1 + α
,

|a3| ≤ 1
2(1 + 2α)

(

B1 +max

{

B1,
1 + 3α

(1 + α)2
B2
1 + |B2|

})

,

(2.40)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2(1 + 2α)

(

B1 +max

{

B1,

∣
∣2μ(1 + 2α) − (1 + 3α)

∣
∣

(1 + α)2
B2
1 + |B2|

})

. (2.41)

Proof. If f ∈ Mq(α, φ), for α ≥ 0 then there are analytic functions ϕ and w, with |ϕ(z)| ≤ 1,
w(0) = 0 and |w(z)| < 1 such that

(1 − α)
zf ′(z)
f(z)

+ α

(

1 +
zf ′′(z)
f ′(z)

)

− 1 = ϕ(z)
(
φ(w(z)) − 1

)
. (2.42)

A computation shows that

(1 − α)
zf ′(z)
f(z)

= (1 − α) + (1 − α)a2z + (1 − α)
(
−a2

2 + 2a3

)
z2 + · · · ,

α

(

1 +
zf ′′(z)
f ′(z)

)

= α + 2αa2z + 2α
(
−2a2

2 + 3a3

)
z2 + · · · .

(2.43)

Hence from (2.43), we have

(1 − α)
zf ′(z)
f(z)

+ α

(

1 +
zf ′′(z)
f ′(z)

)

− 1 = (1 + α)a2z +
(
−(1 + 3α)a2

2 + 2(1 + 2α)a3

)
z2 + · · · ,

(2.44)

It then follows from relation (2.42) and (2.5) that

a2 =
B1c0w1

1 + α
,

a3 =
1

2(1 + 2α)

(

B1c1w1 + B1c0w2 +

(

B2c0 +
1 + 3α

(1 + α)2
B2
1c

2
0

)

w2
1

)

.

(2.45)

We can then conclude the proof by proceeding similarly as previous theorems.
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Remark 2.11. (1) When α = 0, Theorem 2.10 reduces to Theorem 2.1.
(2)When α = 1, Theorem 2.10 reduces to Theorem 2.4.
(3) For ϕ(z) ≡ 1, Theorem 2.10 gives a particular case of the estimates in [14, Theorem

2.9] for k = 1.

Theorem 2.12. Let α ≥ 0. If f ∈ A satisfies

(1 − α)
zf ′(z)
f(z)

+ α

(

1 +
zf ′′(z)
f ′(z)

)

− 1 	 φ(z) − 1, (2.46)

then the following inequalities hold:

|a2| ≤ B1

1 + α
,

|a3| ≤ 1
2(1 + 2α)

(

B1 +
1 + 3α

(1 + α)2
B2
1 + |B2|

)

,

(2.47)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2(1 + 2α)

(

B1 +

∣
∣2μ(1 + 2α) − (1 + 3α)

∣
∣

(1 + α)2
B2
1 + |B2|

)

. (2.48)

Theorem 2.13. Let α ≥ 0 and β = 1 − α. If f ∈ A belongs to Lq(α, φ), then

|a2| ≤ B1∣
∣α + 2β

∣
∣
,

|a3| ≤ 1
2
∣
∣α + 3β

∣
∣

⎛

⎝B1 +max

⎧
⎨

⎩
B1,

∣
∣
∣
(
α + 2β

)2 − 3
(
α + 4β

)∣∣
∣

2
(
α + 2β

)2 B2
1 + |B2|

⎫
⎬

⎭

⎞

⎠,

(2.49)

and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2
∣
∣α + 3β

∣
∣

⎛

⎝B1 +max

⎧
⎨

⎩
B1,

∣
∣
∣
(
α + 2β

)2 − 3
(
α + 4β

) − 4μ
(
α + 3β

)∣∣
∣

2
(
α + 2β

)2 B2
1 + |B2|

⎫
⎬

⎭

⎞

⎠.

(2.50)

Proof. If f ∈ Lq(α, φ), for α ≥ 0 and β = 1 − α then there are analytic functions ϕ and w, with
|ϕ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that

(
zf ′(z)
f(z)

)α(

1 +
zf ′′(z)
f ′(z)

)β

− 1 = ϕ(z)
(
φ(w(z)) − 1

)
. (2.51)
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A computation shows that

(
zf ′(z)
f(z)

)α

= 1 + αa2z +
1
2

((
α2 − 3α

)
a2
2 + 4αa3

)
z2 + · · · ,

(

1 +
zf ′′(z)
f ′(z)

)β

= 1 + 2βa2z +
(
2
(
β2 − 3β

)
a2
2 + 6βa3

)
z2 + · · · .

(2.52)

Thus (2.52) give

(
zf ′(z)
f(z)

)α(

1 +
zf ′′(z)
f ′(z)

)β

− 1

=
(
α + 2β

)
a2z +

1
2

(((
α + 2β

)2 − 3
(
α + 4β

))
a2
2 + 4

(
α + 3β

)
a3

)
z2 + · · · ,

(2.53)

By using the above equation and (2.5) in (2.51)we have

a2 =
B1c0w1

α + 2β

a3 =
B1

2
(
α + 3β

)

(

B1c1w1 + B1c0w2 +

(

B2c0 −
(
α + 2β

)2 − 3
(
α + 4β

)

2
(
α + 2β

)2 B2
1c

2
0

)

w2
1

)

.

(2.54)

We can proceed similarly as previous theorems and proof the hypothesis.

Remark 2.14. (1) When α = 0, Theorem 2.13 reduces to Theorem 2.4.
(2)When α = 1, Theorem 2.13 reduces to Theorem 2.1.
(3) For ϕ(z) ≡ 1, Theorem 2.13 gives a particular case of the estimates in [14, Theorem

2.7] for k = 1.

Theorem 2.15. Let α ≥ 0 and β = 1 − α. If f ∈ A satisfies

(
zf ′(z)
f(z)

)α(

1 +
zf ′′(z)
f ′(z)

)1−α
− 1 	 φ(z) − 1, (2.55)

then the following inequalities hold:

|a2| ≤ B1∣
∣α + 2β

∣
∣
,

|a3| ≤ 1
2
∣
∣α + 3β

∣
∣

⎛

⎝B1 +

∣
∣
∣
(
α + 2β

)2 − 3
(
α + 4β

)∣∣
∣

2
(
α + 2β

)2 B2
1 + |B2|

⎞

⎠,

(2.56)
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and, for any complex number μ,

∣
∣
∣a3 − μa2

2

∣
∣
∣ ≤ 1

2
∣
∣α + 3β

∣
∣

⎛

⎝B1 +

∣
∣
∣
(
α + 2β

)2 − 3
(
α + 4β

) − 4μ
(
α + 3β

)∣∣
∣

2
(
α + 2β

)2 B2
1 + |B2|

⎞

⎠. (2.57)
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