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The flow of an incompressible electrically conducting viscous fluid in convergent or divergent
channels under the influence of an externally applied homogeneous magnetic field is studied
both analytically and numerically. Navier-Stokes equations of fluid mechanics and Maxwell’s
electromagnetism equations are reduced into highly non-linear ordinary differential equation. The
resulting non-linear equation has been solved analytically using a very efficient technique, namely,
differential transformmethod (DTM). The DTM solution is compared with the results obtained by
a numerical method (shootingmethod, coupledwith fourth-order Runge-Kutta scheme). The plots
have revealed the physical characteristics of flow by changing angles of the channel, Hartmann and
Reynolds numbers.

1. Introduction

The incompressible viscous fluid flow through convergent or divergent channels is one of the
most applicable cases in many applications such as aerospace, chemical, civil, environmental,
mechanical, and biomechanical engineering as well as in understanding rivers and canals.
Jeffery [1] and Hamel [2] have carried out the mathematical formulations of this problem
in 1915 and 1916, respectively. If we simplify Navier-Stokes equations in the particular case
of two-dimensional flow through a channel with inclined walls, finally we can reach Jeffery-
Hamel problem [3–6]. Jeffery-Hamel flows have been extensively studied by several authors
and discussed in many textbooks, for example, [7–11], and so forth.

The study of electrically conducting viscous fluid that flows through convergent or
divergent channels under the influence of an external magnetic field not only is fascinating
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theoretically but also finds applications in mathematical modeling of several industrial
and biological systems. A possible practical application of the theory we envisage is in
the field of industrial metal casting, the control of molten metal flows. Another area in
which the theoretical study may be of interest is in the motion of liquid metals or alloys
in the cooling systems of advanced nuclear reactors [12]. Clearly, the motion in the region
with intersecting walls may represent a local transition between two parallel channels with
different cross-sections, a widening or a contraction of the flow. The first recorded use of
the word magnetohydrodynamics (MHD) is by Bansal [13]. The theory of MHD is inducing
current in a moving conductive fluid in the presence of magnetic field which creates force on
electrons of the conductive fluid and also changes the magnetic field itself. A survey of mag-
netohydrodynamics studies in the mentioned technological field can be found in [14]. The
problem is basically an extension of classical Jeffery-Hamel flows of ordinary fluid mechanics
to MHD. In the MHD solution an external magnetic field acts as a control parameter for both
convergent and divergent channel flows. Here, beside the flow Reynolds number and the
channel angular widths, at least an additional dimensionless parameter appears, namely, the
Hartman number. Hence, a much larger variety of solutions than in the classical problem are
expected.

Zhou was the first one who introduced DTM as an efficient method to apply for
electrical circuits in his paper entitled “Differential transformation and its application for electrical
circuits,” [15]. It was used to solve both linear and nonlinear initial value problems in
electric circuit analysis. The differential transform method (DTM) is an analytical method
for solving ordinary differential equations, partial differential and integral equations. The
method provides us with easily computable components and the solution is obtained in
terms of convergent series. The main advantages of this method, compared to other analytic
methods are controllable accuracy, and high efficiency, which is exhibited by the rapid
convergence of the solution. The DTM gives exact values of the nth derivative of an analytic
function at a point in terms of known and unknown boundary conditions. This method
constructs, for differential equations, an analytical solution in the form of a polynomial. It
is different from the traditional high-order Taylor series method, which requires symbolic
computations of the necessary derivatives of the data functions. The disadvantage of Taylor
series method is that this method computationally takes long time for large orders. The DTM
is an iterative procedure for obtaining analytic Taylor series solutions of differential equations
in a fast manner. This methodology introduces a promising approach for many applications
in various domains of nonlinear problems. Various applications of DTM can be found in [15–
22].

The aim of the present work is to investigate the MHD flow through convergent or
divergent channels in presence of a high magnetic field, by the differential transform method
(DTM). The governing highly nonlinear equation of this problem is also solved numerically
by shooting method, coupled with fourth-order Runge-Kutta scheme.

2. Problem Statement and Mathematical Formulation

Consider a system of cylindrical polar coordinates (r, θ, z), where the steady two-dimens-
ional flow of an incompressible conducting viscous fluid from a source or sink at channel
walls lie in planes and intersect in z-axis. The schematic diagram of problem is illustrated
in Figure 1. We assumed that uθ = 0; it means that there are no changes with respect to z
direction; thus the motion is purely in radial direction and merely depends on r and θ [3, 23],
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Figure 1: The schematic diagram of MHD flow through convergent or divergent channels.

and there is no magnetic field along z-axis. The reduced form of continuity, Navier-Stokes
and Maxwell’s equations in polar system are

ρ
∂

r∂r
(ru(r, θ)) = 0, (2.1)

u(r, θ)
∂u(r, θ)

∂r
= −1

ρ

∂P

∂r
+ ν

[
∂2u(r, θ)

∂r2
+
1
r

∂u(r, θ)
∂r

+
1
r2

∂2u(r, θ)
∂θ2

− u(r, θ)
r2

]
− σB2

0

ρr2
u(r, θ),

(2.2)

1
ρr

∂P

∂θ
− 2ν

r2
∂u(r, θ)

∂θ
= 0, (2.3)

where B0 is the electromagnetic induction strength, σ the conductivity of the fluid, u the
velocity along radial direction, P the fluid pressure, ν the coefficient of kinematic viscosity,
and ρ the fluid density. From (2.1),

f(θ) = ru(r, θ). (2.4)

Using dimensionless parameters,

f
(
η
)
=

f(θ)
fmax

, η =
θ

α
, (2.5)

where α is the semiangle between the two inclined walls. Substituting (2.5) into (2.2) and
(2.3) and eliminating P , one can obtain an ordinary differential equation for the normalized
function profile f(η) [3]:

f ′′′(η) + 2αRef
(
η
)
f ′(η) + (4 −H)α2f ′(η) = 0, (2.6)
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where the Reynolds number is

Re =
fmaxα

ν
=

Umaxrα

ν

{
divergent-channel: α > 0, fmax > 0,
convergent-channel: α < 0, fmax < 0.

(2.7)

Then we have boundary condition as follows:

f(0) = 1, f ′(0) = 0, f(1) = 0. (2.8)

The Hartmann number is

H =

√
σB2

0

ρν
. (2.9)

3. Analytical Approximations by Means of DTM

The differential transformation method is an analytical method for a vast variety of
differential equations including ODEs and PDEs [15]. This method uses polynomials form
to approximate the exact solutions. We now take a brief review to the DTM. The differential
transform of the kth derivative of function f(t) is defined as follows [24]:

F(k) =
1
k!

[
dkf(t)
dtk

]
t=t0

, (3.1)

where f(t) is the base function and F(k) is the transformed function. The differential inverse
transform of F(k) is defined as

f(t) =
∞∑
k=0

F(k)(t − t0)k. (3.2)

Equations (3.1) and (3.2) give the following:

f(t) =
∞∑
k=0

(t − t0)
k

k!

[
dkf(t)
dtk

]
t=t0

. (3.3)

This shows that differential transform is derived from Taylor series expansion, but the
method does not evaluate the derivatives symbolically. However, relative derivatives are
calculated by an iterative way which is described by the transformed equations of the base
function. We approximate f(t) by a finite series and (3.2) can be written as,

f(t) ≈
N∑
k=0

F(k)(t − t0)
k. (3.4)
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The main steps of the DTM are the following. First, we apply the differential transform
(3.1) to the given differential equation or a system of differential equations to obtain a
recursive relation. Second, solving the recursive relation and then using the differential
inverse transform (3.2) we obtain the solution of the problem.

Using (3.1) and (3.2) the following theorems can be deduced.

Theorem 3.1. If u(t) = x(t) ± y(t), thenU(k) = X(k) ± Y (k).

Theorem 3.2. If u(t) = αX(t), then U(k) = αX(k), where α is a constant.

Theorem 3.3. If u(t) = (dmx(t)/dtm), thenU(k) = ((m + k)!/k!)X(k +m).

Theorem 3.4. If u(t) = x(t)y(t), thenU(k) =
∑k

r X(r)Y (k − r)

Theorem 3.5. If u(t) = tn, then U(k) = δ(k − n), δ(k − n) =
{ 1, k = n,
0, k /=n.

Taking differential transform from (2.6), one can obtain:

(k + 1)(k + 2)(k + 3)F(k + 3)+2αRe
∞∑
r=0

(r + 1)F(r + 1)F(k − r)+(4 −H)α2(k + 1)F(k + 1) = 0.

(3.5)

The boundary conditions, (2.8), are transformed into:

F(0) = 1, F(1) = 0,
∞∑
k=0

F(k) = 0. (3.6)

4. Numerical Simulation

Many categories of numerical methods have been developed for the numerical solution of
differential equations; among them are the well-known fitted Runge-Kutta (RK) and Runge-
Kutta-Nyström (RKN) methods [24]. In the last decade exponentially fitted RK and RKN
methods have been constructed by many authors. Simos [25, 26] and Vanden Berghe et al.
[27, 28] first constructed exponentially fitted RK methods. Also exponentially fitted RKN
methods have been studied by Simos [29], Van de Vyver [30], and Franco [31].

In recent years, modern numerical techniques have been successfully employed to
solve various types of mathematics and engineering problems. For example, Anastassi and
Simos have applied Phase-fitted Runge-Kutta-Nystrom method for the numerical solution
of initial value problems with oscillating solutions [32]. Simos has analyzed the Schrodinger
equation by a newNumerov-type method [33]. The solution of the Schrodinger equation and
related problems by means of the optimized explicit Runge-Kutta method with increased
phase-lag order has been presented by Kosti et al. [34]. Stavroyiannis investigated the
linear periodic initial value problems by nonlinear explicit two-step fourth-algebraic-order
method [35]. The symmetric eight-step predictor-corrector method was applied for the radial
Schrodinger equation and related IVPs with oscillating solutions by Panopoulos et al. [36].
Briefly speaking, this shows the great potential of modern numerical techniques for solving
different problems in science and engineering.
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The shooting method works by considering the boundary conditions as a multivari-
able function of initial conditions at some point, reducing the boundary value problem to
finding the initial conditions that give a root. The advantage of the shooting method is that it
takes advantage of the speed and adaptivity of methods for initial value problems. The basic
concept of the shooting method can be obtained from [37]. In this paper the shooting method,
coupledwith fourth-order Runge-Kutta scheme, is used for solving the problem ofMHDflow
through convergent or divergent channel in presence of a high magnetic field. An important
point to note is that the numerical results have been obtained using Mathematica software. It
is worth to mentioning that authors intend to apply some modern numerical techniques for
the present problem and to compare the efficiency of different methods in the future.

5. Results and Discussions

The objective of the present study was to apply the differential transformmethod to obtain an
explicit analytic solution of MHD flow through convergent or divergent channels in presence
of a high magnetic field. The magnetic field plays its role in nondimensional parameter,
namely, the Hartmann number. Figure 2 that shows velocity profile variation for a convergent
channel with fixed Re number reveals the fact that by increasing magnetic field the velocity
profile becomes flat and thickness of boundary layer decreases. In fact magnetic field induces
a force in opposite of the momentum’s direction that stabilizes the velocity profile. There is
a reverse behavior in velocity profile as shown in Figure 3 for divergent channel, where we
see that, by decreasing Hartman number, the velocity profile becomes flat and thickness of
boundary layer decreases. As demonstrated in Figure 4 for pure inflow regime (negative Re
number) in divergent channel, when Hartmann number increases we have a little change
in velocity profile. Comparison of Figures 3 and 5 shows moderate increases in the velocity
with increasing Hartmann numbers at small angle α = 2.5◦ and differences between velocity
profiles are more noticeable at greater angle α = 5◦. Figures 6 and 7 show the velocity profile
in divergent and convergent channels, respectively. In Figure 6, we can see that as α increases
the effect of walls on fluid flow decreases when we move away from them which lead to an
increase of velocity, while there is a reverse behavior in velocity profile as shown in Figure 7,
where the values of α decrease. Figures 8 and 9 illustrate the effect of Reynolds numbers on
the fluid velocity for fixed Hartmann numbers. According to Figure 8, for inflow regime as
Re number increases, in a particular distance from the wall, velocity decreases and effects
of backflow phenomenon are revealed. There is a reverse behavior in Figure 9 where as Re
number increases, value of local velocity becomes more close to value of centerline velocity.
We can infer from Figures 8 and 9 for inflow regime, back flow is prevented in the case of
convergent channels but is possible for large Reynolds numbers in the case of divergent
channels. Figures 8 and 9 show that there is a reverse condition for outflow regime.

For comparison, a few limited cases of the DTM solutions are compared with the
numerical results. The comparison between the numerical results and DTM solution for
velocity when Re = 100 andH = 1500 is shown in Table 1. The error bar shows an acceptable
agreement between the results observed, which confirms the validity of the DTM. In this table
error is introduced as Error = |f(η)NM − f(η)DTM|.

6. Final Remarks

In this investigation, the flow of an incompressible electricallyconducting viscous fluid in
convergent or divergent channels under the influence of an externally applied homogeneous



Journal of Applied Mathematics 7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
(η
)

η

H = 0
H = 1000

H = 2000
H = 4000

Figure 2: DTM solution for velocity in convergent channel for Re = 100 and α = −2.5o.
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Figure 3: DTM solution for velocity in divergent channel for Re = 100 and α = 2.5◦.
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Figure 4: DTM solution for velocity in divergent channel for Re = −400 and α = −2.5◦.
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Figure 5: DTM solution for velocity in divergent channel for Re = 100 and α = 5◦.
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Figure 6: DTM solution for velocity in divergent channels for Re = 100 and H = 1500.
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Figure 8: DTM solution for velocity in divergent channel for α = 2.5◦ and H = 1500.
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Figure 9: DTM solution for velocity in convergent channel for α = −2.5◦ and H = 1500.

magnetic field is studied both analytically and numerically. The governing highly non-
linear equation has been solved analytically using the differential transform method (DTM)
and numerically by shooting method, coupled with fourth-order Runge-Kutta scheme. The
behavior of the DTM solution is in good agreement with the numerical simulation. Graphical
results are presented to investigate the influence of the angles of the channel, Hartmann
number and Reynolds number on the velocity profiles. From the presented analysis, the
following observations are noted.

(i) For a convergent channel with fixed Re number, with increasing the magnetic field,
the velocity profile becomes flat and thickness of boundary layer decreases. While
there is a reverse behavior in velocity profile for divergent channel.
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Table 1: The comparison between the numerical results and DTM solution for velocity when Re = 100 and
H = 1500.

η
α = 2.5◦ α = −2.5◦

DTM Numerical Error DTM Numerical Error
0.00 1.00000000 1.00000000 0.00000000 1.00000000 1.00000000 0.00000000
0.05 0.99651592 0.99651592 0.00000000 0.99887174 0.99887174 0.00000000
0.10 0.98611456 0.98611455 0.00000001 0.99545428 0.99545428 0.00000000
0.15 0.96894623 0.96894623 0.00000000 0.98964873 0.98964873 0.00000000
0.20 0.94525393 0.94525392 0.00000001 0.98128773 0.98128772 0.00000001
0.25 0.91536246 0.91536246 0.00000000 0.97013152 0.97013151 0.00000001
0.30 0.87966426 0.87966426 0.00000000 0.95586263 0.95586262 0.00000001
0.35 0.83860260 0.83860260 0.00000000 0.93807899 0.93807898 0.00000001
0.40 0.79265312 0.79265312 0.00000000 0.91628580 0.91628578 0.00000002
0.45 0.74230468 0.74230468 0.00000000 0.88988619 0.88988617 0.00000002
0.50 0.68804028 0.68804027 0.00000001 0.85817118 0.85817117 0.00000001
0.55 0.63031878 0.63031877 0.00000001 0.82030940 0.82030938 0.00000002
0.60 0.56955800 0.56955800 0.00000000 0.77533733 0.77533732 0.00000001
0.65 0.50611946 0.50611946 0.00000000 0.72215163 0.72215162 0.00000001
0.70 0.44029483 0.44029483 0.00000000 0.65950492 0.65950492 0.00000000
0.75 0.37229410 0.37229410 0.00000000 0.58600786 0.58600786 0.00000000
0.80 0.30223504 0.30223503 0.00000001 0.50014060 0.50014060 0.00000000
0.85 0.23013349 0.23013349 0.00000000 0.40027797 0.40027799 0.00000002
0.90 0.15589396 0.15589396 0.00000000 0.28473379 0.28473382 0.00000003
0.95 0.07929949 0.07929949 0.00000000 0.15183034 0.15183037 0.00000003
1.00 0.00000000 0.00000000 0.00000000 0.00000000 0.00000004 0.00000004

(ii) For a divergent channel, increasing in the Reynolds numbers leads to adverse
pressure gradient causing velocity reduction near the walls.

(iii) For pure outflow regime (positive Re number), there are moderate increases in the
velocity with increasing Hartmann number.

(iv) For divergent channels, as α increases the effect of walls on fluid flow decreases
when we move away from them which lead to an increase of velocity, while there
is a reverse behavior in velocity profile for convergent channels.

(v) For inflow regime (negative Re number), as Re number increases, in a particular
distance from the wall, velocity decreases and effects of backflow phenomenon are
revealed.
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