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We use the initial condition on the state variable of a hyperbolic problem as control function and
formulate a control problem whose solution implies the minimization at the final time of the
distance measured in a suitable norm between the solution of the problem and given targets.
We prove the existence and the uniqueness of the optimal solution and establish the optimality
condition. An iterative algorithm is constructed to compute the required optimal control as limit of
a suitable subsequence of controls. An iterative procedure is implemented and used to numerically
solve some test problems.

1. Introduction and Statement of the Problem

Optimal control problems for hyperbolic equations have been investigated by Lions in his
famous book [1]. Lions examined the problems in detail when the control function is at the
right hand side and in the boundary condition of the hyperbolic problem. Furthermore, when
the control is in the boundaries [2-4], in the coefficient [5, 6], and at the right hand side of
the equation [7, 8], there have been some control problem studies for different types of cost
functionals. As for the control of initial conditions, Lions mentioned the control of the initial
velocity of the system in detail but stated briefly the control of initial status of the system
solving the system in L,.
In this study, we consider the following problem of minimizing the cost functional:

1
0

! !
Ja(o) = Io [ (x, T; ) — y1(x)]2dx + J‘ [tx (x, T; ) — 12 (x)]zdx +a Io ¢idx, (1.1)
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under the following condition:

Upp — Ay = F(x,t), (x,t)€Q:=(0,1)x(0,T]
u(x,0) = p(x), wui(x,0)=¢(x), xe( (1.2)
u(0,t) =0, wu(l,t)=0, te(0,T].

Since the problem is usually ill posed for « = 0, we use the parameter a« > 0 as the
regularization parameter which is the strong convexity constant, and this guaranties the
uniqueness and stability of the regularized solution. The functional J,(¢) is called cost
functional and the term ”‘P”iﬂ is called penalization term; its role is, on one hand, to avoid
using “too large” controls inothe minimization of J,(¢) and, on the other hand, to assure
coercivity for J,(¢).

Lions in [1] mentioned the observation of u(x,T;¢) in L,(0,1) and wu(x,T;¢) in
H™(0,1) for the control ¢ € L,(0,1). Except this study, there is no investigation in the literature
about the control of initial status of the hyperbolic system up to now. In this study, we
investigate different targets. With the choice of the functional in (1.1), we use u(x, T; ¢)
and u,(x,T; ¢), which correspond to final velocity and force, respectively, for the control
¢ € Hy(0,1). Since the Fréchet differential of the cost functional cannot be obtained with
the usage of usual norm in H}, we get the differentiability with the only use of H}-Poincare
norm.

The space H}(0,1) is a Hilbert subspace of H'(0,1) and the H}-Poincare inner product
and the H;-Poincare norm are defined, respectively, as

(w,0)gy = (Vu, Vo), ullg: = [IVull,- (1.3)
Let
®,4 = closed, convex subset of Hé(O,l). (1.4)
We search for
nf Jo(®)- (15)

We organize this paper as follows. In Section 2, we establish the existence and the uniqueness
of the optimal solution. In Section 3, we derive the necessary optimality condition. In
Section 4, we construct an algorithm for the numerical approximation of the optimal solution
according to steepest descent algorithm. In Section 5, we give symbolic representation for
optimal solution by using this algorithm on some examples.

2. Existence and Uniqueness of the Optimal Solution

First we state the generalized solution of the hyperbolic problem (1.2).
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Definition 2.1. The generalized solution of (1.2) will be defined as the function u € H}(Q),
u(x,0) = ¢(x) which satisfies the following integral identity:

T T !
I ’[ (—utvt + azuxvx>dx dt = j f Fodx dt +’[ ¢ (x)v(x,0)dx, (2.1)
0 Jo 0 Jo 0

for all v € H} (Q) with v(x, T) = 0. To have this solution the following is needed:

Fely(Q), ¢@eHY0,1), ¢elLy0,1I). (2.2)

Theorem 2.2. Suppose that (2.2) holds, then (1.2) has a unique generalized solution and the follow-
ing estimate is valid for the solution:

2 2
Iy 0 < e (oo * 11T 00 + IFIE))- (23)

Proof of this theorem can easily be obtained by Galerkin method used in [9].

The strategy to prove existence and uniqueness of this optimal control is to use
the relationship between minimization of quadratic functionals and variational problems
corresponding to symmetric bilinear forms. The key point is to write J,(¢) in the following
way:

Ja(p) =7 (9, ) —2Lp +b. (2.4)

Here

1
(g, ) = Io [ue(x, T; @) —uy(x, T; O)]de
(2.5)

. I
+ f [1x (x, T; ) — ux(x, T;O)]zdx + aJ <P3ch,
0 0

is bilinear (since the mapping ¢ — u[¢p] — u[0] is linear) and symmetric.
Also, the difference function éu = u(x, t;¢) — u(x,t;0) is the solution of the following
problem:

Suy — a’uy, =0,
6u(x/ O) =0, 6uf(xl O) = O/ (26)
6u(0,t) =0, ou(l,t) =0,

and for the solution of this problem the following estimates are valid:

(|61 (x, T)||iz(o,l) < CZ”S"”?LI(}(OJ)f [|61 (x, T)”iz(o,l) < C3”(P||§{5(0,l)' (2.7)
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Hence, we write the following;:

1 1 ]
|‘7r((Pr ‘P)l = I (6ut)2dx + j (6ux)2dx + af ‘Pidx
0 0 0

= ||5ut||i2(o,1) + ||5”x||i2(0,1) + “”‘P”;g(o,n (28)
2 “”‘P”ifg(o,z)'
and this implies the coercivity of (¢, ). Since
!
x(p,n) = j [t (x, T; ) — i (x, T;0)] [we (x, T; ) — ug(x, T;0) ] dox
0 l l (2.9)
+ f [1x (2, T; ) — 1x (2, T;0)] [z (x, T; 17) — ux(x, T;0)] dx + aJ‘ Px]xdx
0 0
applying Cauchy-Schwartz inequality, we get
|7 (o m)[ < [l (o, T3 p) = 1, T 00| 0 |1 (2, T ) = 113, T50) |
+ || (x, T; ) = ux(x, T;0) ”Lz(O,l) ||z (x, T; 1) = 1 (x, T; 0) ”Lz(O,l)
+ “”‘P”Hg 1) ||71||Hg o1’ (2.10)

|”(‘Prﬂ)| < ”‘S”t(er? (p)||L2(O,l)||6ut(x’T;71)||L2(O,l)

+ ||6ux (x, T; ) ||L2(O,l)||6ux(x’ TP’Z)”LZ(O,I) + “”‘P”Hg(o,l)||’1||H5(0,1)

for 6u(x, T;¢) = u(x,T;¢p) —u(x,T;0) and 6u(x,T;n) = u(x,T;n) —u(x,T;0).
So, we obtain

|7 (o, 1) < C4||‘P||Hg,(o,1) ”U”Hg(o,l) + C5||‘P||Hg,(o,1) ”’YHHg(o,l) + "‘”‘P”Hg(o,l) ||’1||Hg(o,l) (211)
using (2.7) and write
|7 (o, )| < C6||‘P||Hg(o,1) ||’1||H3(0,1)/ (212)

for cg = max{cy, c5,a}. Then o (¢, 77) is continuous.
The functional Ly in (2.4) is defined as

1
Ly = f [ (x, T; ) —ue(x, T;0)] [ () — ue(x, T; 0)] dx
’ (2.13)

!
+ IO [ttx (2, T; ) — ux(x, T;0)] [y2(x) — ux(x, T;0)] dox.
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We can easily write that

Lo < [|6u (2, Tl 0, |1 () = 2e(x, T 00| 01
+ 11612 (2, T) |, 0, |2 (%) = 1 (x, T; 0)|| ), Lo (2.14)

< C7||‘P||Hg(0,l)

using (2.7). Hence we see that the functional Ly is continuous.
The number b € R in (2.4) is defined as

1 1
b= f [y1(x) - u(x, T;0)]dx + f [y2(x) = ux (x, T; 0)] *dx. (2.15)
0 0

Therefore we have established the conditions of the following existence and uniqueness
theorem for the problem.

Theorem 2.3. Let o (¢, ¢) be a continuous symmetric bilinear coercive form and Ly a continuous
linear form on Hy. Then there exists a unique element ¢* € ® ,q such that

Ja(y") = Inf Ju(y). (2.16)

Proof of this theorem can easily be obtained by showing the weak lower semicontinuity of J.(y) as in

[1].

3. Lagrange Multipliers and Optimality Condition

To derive the optimality condition, let us introduce the Lagrangian L(u, ¢, z;), given by

1 1
Lg=) = [ [ Ti0) =+ [ s Tog) - o)
(3.1)

l T Al
¥ af (px) da + f f |t - @t~ F(x, 1) ziddx .
0 0Jo
Notice that L is linear in z;, therefore
L, (u ¢, z1) =0 (32)

corresponds to the state equation (1.2). Moreover,

Ly, (u,¢,2z) =0 (3.3)
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generates the following adjoint problem:

2
Zp — A Zxx = 0,

zi(x, T) = =2[ue (x, T; ) = y1(x)],

2 (3.4)
2, T) = = [ux (x, T; ) = 2(x)],
z(0,t) =0, z(I,t) =0,
while
L, (u,¢,2) =0 (3.5)
constitutes the following Euler equation:
!
(Jn (‘P)f6‘P>H;(o,1) = f (—a2zx (x,0) + 2a(px> (69) dx =0, V6p e D,q. (3.6)
0

So, we can state the following theorem in view of [10].

Theorem 3.1. The control ¢* and the state u* = u(p*) are optimal if there exists a multiplier z; €
@ ,q such that z* and ¢* satisfy the following optimality conditions:

<—azz* (x,0) +2a¢, ¢ — (p*> (3.7)

>0,
HYO) ~

for Yy € @ 4.

4. An Iterative Algorithm and Its Convergence

Now, we can apply standard steepest descent iteration. Gradient of ], at any ¢ is given by
V]a(p) = —a*z(x,0) + 2aep. (4.1)

It turns out that -V J,(¢) plays the role of the steepest descent direction for J,. This suggests
an iterative procedure to compute a sequence of controls {¢y} convergent to the optimal one.

Select an initial control ¢q. If ¢ is known (k > 0) then ¢y, is computed according to
the following scheme.

(1) Solve the state problem (1.2) in the sense (2.1) and get corresponding uy.
(2) Knowing uy solve the adjoint problem (3.4).

(3) Using zj get the gradient (V Ja);.

(4) Set

Pie1 = @k — P Va(@x), (4.2)
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and select the relaxation parameter fi in order to assure that

I < o) = Do P 22 <o 49

for sufficiently small i > 0.

Concerning the choice of the relaxation parameter, there are several possibilities and
these can be found in any optimization books.
One of the following can be taken as a stopping criterion to the iteration process:

o —oill <€, [Jalorn) = Ja(or)| <e2,  |[Ta(or)| < 3. (4.4)

Lemma 4.1. The cost functional (1.1) is strongly convex with the strong convexity constant a.
From the following strongly convex functional definition:

Ja(Bopr + (1= B)g2) < Bla(pr) + (1= B)Ja(92) = XB(L = P)llpr = 92l 710y (45)

we can see that the cost functional (1.1) is strongly convex with the constant y = a.

So, we can give the following theorem which states the convergence of the minimizer
to optimal solution.

Theorem 4.2. Let ¢* be optimum solution of the problem (1.1)—(1.5). Then the minimizer given in
(4.2) satisfies the following inequality:

* 2 *
llox = 71" < = Ualpi) = Ja(9"), k=0,1,2,.... (4.6)
Proof. If we take f = 1/2 in the definition of the strongly convex functional, we write
1 1., 1 1 . 1 -2
Ju<§<pk +59 ) < 5Ja(9i) + 5Ta(@") = agllox =" [|L, 0 (4.7)
Since
Jao) < Jo (591 59" 8)
a\P ) S Ja Z(Pk 2‘/’ ’ .
we find

w1 1 . 1 ]2
Ja(9) < 5Ta(i) + 5Ta(9) —azlloe = 9" 1, 0
(4.9)

ok =9I < 2 Ueo) - Ta9)
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5. Numerical Examples

Example 5.1. Let us consider the following problem of minimizing the cost functional:

12

1 1 2 0<x< 1
]“((P)zj ui(x,1;9) — | —sin(1)4 4 L, 5, 1 1 2 dx
0 _ - Zx -—<x<
x +4x 4x > <x<1 ]
1\ 72
1 —x 0<x<= (5.1)
[ AP
0 Bxl+x-- Z<x<
3x +2x i3 <x<1 |
1
+aI @idx
0
under the following condition:
1, ., 1
_Z_L<x +2) 0§x<§,te(0,1]
U — Uxx = COS(t)
1 1
Z(4x3 —5x% +25x — 10) 5 <x<1, te(0,1], (5.2)
u(x,0) =p(x), w(x,0)=0, x€(0,1),
u(0,t) =0, u(1,t)=0, te(0,1].
Rewrite the functional as
Ju(#) = Ja(p) + ]z (), (5.3)
where
52
) 1 ‘ 1 2 0<x< 1
]a((p):J u(x,1;¢) - | —sin(1) 4 L5, 1 1 2 dx
0 - “xX2-Zx Z<x<
X +4x 4x 5 <x<1 |
42
1 1x 0<x Sl (5.4)
+f uy(x,1;¢) — | cos(1) 2 5 1 1 2 dx,
0 BxZ+Zx-- ngﬁl

1
HORIREEE

Choosing a = 0.1 and starting the initial element ¢y = sinorx, then we get the minimizing
sequence. Here the relaxation parameter i = 0.01 assures the inequality Jo1(¢x+1) < Jo1 (k).
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In this example if we use the stopping criteria Jo1(¢x+1) — Jo1(¢x) > —0.166 x 1072, we get the
following minimizing element after 250 iterations:

(paso = 0.00134242 sin(15.70796327x) + 0.00859668 sin(9.424777962x)
—0.00037644 sin(25.13274123x) — 0.00148524 sin(18.84955592x)
+ 0.06814824 sin(3.141592654x) — 0.03968284 sin(6.283185308x) (5.5)
—0.00032149 sin(31.41592654x) + 0.00024578 sin(28.27433389x)
—0.00299971 sin(12.56637062x) + 0.00061268 sin(21.99114858x)

and for this optimal control the values of the ]&_1 (¢p250) and ]5,1(‘1’250) are such as

Jo1(p250) = 0.00005173,  J3,(gpas0) = 0.05881965. (5.6)

For different a the values of J1(¢), J?(¢) and optimal controls ¢* are given in Table 1.

Example 5.2. We consider the following problem of minimizing the cost functional:

2

1
§(5x3—13x2+9x) 0<x<1
3
L&¢)=J; u(x,2;) - %x2—2x+2 l<x<2 || 9>
0 2<x<3 (5.7)
1 2
3 —(15x2-26x+9) 0<x<1 5
+I ur(x,2;9) = | 3y x-2 1<x<2 dx+af prdx
0 -0 0
0 2<x<3
subject to
15613 0<x<1, te(0,2]
Uy — 4y = -4t +1)4 1 1<x<2, te(0,2]
0 2<x<3, te(0,2]
e 2
~(5x° —13x*+9x) 0<x<1
2 (5.8)
u(x,0) = (x),  w(x,0)= %xz_zﬁz 1<x<?2
0 2<x<3

u(0,H)=0, u(3,t =0, te(0,2].



10

Table 1
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Ja(9*) Ja(y*)

4

*

0.06066266 sin(3.14159265x) —

+0.00825020 sin(9.42477796x

)

05 0.00066463 0.05016802  +0.00130929 sin(15.7079632x)
)

)

+0.00060179 sin(21.9911485x
+0.00024238 sin (28.2743338x

0.03734277 sin(6.28318530x)
0.00290788 sin(12.5663706x)
0.00145454 sin(18.8495559x)
0.00037057 sin(25.1327412x)
0.00031746 sin(31.4159265x)

0.06418794 sin(3.14159265x) —

+0.00841988 sin(9.42477796x
+0.00132564 sin (15.7079632x
+0.00060719 sin(21.9911485x
+0.00024407 sin(28.2743338x

0.3 0.00027601 0.05420087

— — — =

0.03847726 sin (6.28318530x)
- 0.00295308 sin(12.5663706x)
—0.00146973 sin(18.8495559x)
—0.00037348 sin(25.1327412x)
—0.00031946 sin(31.4159265x)

0.06814824 sin (3.14159265x) —

+0.00859668 sin (9.42477796x
+0.00134242 sin(15.7079632x
+0.00061268 sin(21.9911485x
+0.00024579 sin(28.2743338x

0.1 0.00005173 0.05881966

— — —

0.03968284 sin (6.28318530x)
—0.00299971 sin(12.5663706x)
—0.00148524 sin(18.8495559x)
—0.00037644 sin(25.1327412x)
—0.00032149 sin(31.4159265x)

0.06965236 sin(3.14159265x) —

+0.00866032 sin (9.42477796x
+0.00134839 sin(15.7079632x
+0.00061463 sin (21.9911485x
+0.00024640 sin(28.2743338x

0.03 0.00002314 0.06059838

NENEANEANLA

0.04012284 sin(6.28318530x)
—0.00301638 sin(12.5663706x)
—0.00149075 sin(18.8495559x)
—0.00037749 sin(25.1327412x)
—0.000322205in(31.4159265x)

0.06814824 sin(3.14159265x) —

+0.00859668 sin (9.42477796x
+0.00134242 sin(15.7079632x
+0.00061268 sin(21.9911485x
+0.00024579 sin(28.2743338x

0.01 0.00002053 0.06112368

— — — =

0.03968284 sin (6.28318530x)
~0.00299971 sin(12.5663706x)
- 0.00148524 sin(18.8495559x)
—0.00037644 sin(25.1327412x)
~0.00032149 sin(31.4159265x)

0.07029513 sin(3.14159265x) —

+0.00868697 sin(9.42477796x)
+0.00135088 sin (15.7079632x)
+0.00061544 sin(21.9911485x)
+0.00024665 sin (28.2743338x)

0.001 0.00002020 0.06133626

0.04030800 sin(6.28318530x)

0.00302334 sin(12.5663706x)
0.00149304 sin(18.8495559x)
0.00037793 sin(25.1327412x)
0.00032250 sin(31.4159265x)

We can rewrite the cost functional as

Ja(9) = Ja(9) + aJz (p)

For

1
§(5x3—13x2+9x) 0<x<1

3

Ja(9) = f

0

ur(%,2;) = %x2—2x+2

0

1(15x2—26x+9) 0<
x-2
0

3
Ja(p) = L pdx.

1<
2<

3
+f ux(x,2,9)—| 3
0

(5.9)

2

(5.10)
x<1

xsz dx,

x<3
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Table 2

a Ja(9) Ja(¢") o'
0.02889657 sin(8.37758041x) + 0.04493685 sin (7.33038285x)
+0.24991184 sin(1.04719755x) + 0.52713734 sin(2.09439510x)
0.9 5.78860382 8.69671794  +0.45790546 sin(3.14159265x) + 0.26256973 sin (4.18879020x)
+0.15223865 sin(5.23598775x) + 0.09116834 sin (6.28318530x)
+0.02580495 sin (9.42477796x) + 0.01946190 sin(10.4719755x)

0.32482219 sin(1.04719755x) + 0.03043404 sin(8.37758041x)
+0.04796407 sin(7.33038285x) + 0.65182517 sin(2.09439510x)
0.6 3.70770920 11.9063673 +0.54263121 sin(3.14159265x) + 0.30032478 sin(4.18879020x)
+0.16919357 sin(5.23598775x) + 0.02014690 sin(10.4719755x)
+0.02690906 sin (9.42477796x) + 0.09904027 sin(6.28318530x)

0.02815886 sin(9.42477796x) + 0.71530518 sin(3.14159265x)
+0.60922355 sin (1.04719755x) + 0.99053011 sin(2.09439510x)
0.2 0.73684310 20.7888427 +0.36120182 sin(4.18879020x) + 0.19210117 sin(5.23598775x)
+0.02095115sin(10.4719755x) + 0.10849356 sin(6.28318530x)
+0.05138069 sin(7.33038285x) + 0.03214310 sin(8.37758041x)

0.03275462 sin(8.37758041x) + 0.92069918 sin(1.04719755x)
+0.05250012 sin(7.33038285x) + 1.14670525 sin(2.09439510x)
0.04 0.26519950 25.3541218 +0.02863498 sin(9.42477796x) + 0.19820000 sin(5.23598775x)
+0.11127608 sin(6.28318530x) + 0.02127006 sin(10.4719755x)
+0.76666431 sin(3.14159265x) + 0.37689906 sin(4.18879020x)
0.05264297 sin(7.33038285x) + 0.02869561 sin(9.42477796x)
+0.93896719 sin(1.04719755x) + 1.15756155 sin(2.09439510x)
0.02 0.25964159 25.7401337 +0.77151420 sin(3.14159265x) + 0.02131060 sin(10.4719755x)
)
)

— — — =

—_ — =

+0.37869007 sin(4.18879020x) + 0.03283263 sin(8.37758041x)
+0.19895419 5in(5.23598775x) + 0.11162916 sin(6.28318530x)

0.95568491 sin(1.04719755x) + 0.02875041 sin(9.42477796x)
+0.02134722 sin(10.4719755x) + 0.19963788 sin(5.23598775x)
0.002 0.25769444 26.0957452 +0.11194885 sin (6.28318530x) + 0.05277220 sin(7.33038285x)
+0.03290315 sin(8.37758041x) + 0.77593184 sin(3.14159265x)
+1.16750459 sin(2.09439510x) + 0.38031659 sin(4.18879020x)

— — —

Taking & = 0.2 and the initial element ¢y = 0, we obtain a minimizing sequence. In this
example = 0.015 and stopping criteria 0.5 x 107 are chosen.

Optimal control function after 37 iterations is

(37 = 0.02815886 sin(9.42477796x) + 0.71530518 sin(3.14159265x)
+0.60922355 sin(1.04719755x) + 0.99053011 sin(2.09439510x)
+0.36120182 5in(4.18879020x) + 0.19210117 sin(5.23598775x) (5.11)
+0.02095115 sin(10.4719755x) + 0.10849356 sin (6.28318530x)
+0.05138069 sin(7.33038285x) + 0.03214310sin(8.37758041x).

Jo2(p37) and J3,(ps7) are 0.7368431097 and 20.78884275, respectively, for this optimal control.
For different a, the values of J}(¢), J2(¢), and optimal controls ¢* are given in Table 2.
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6. Conclusions

In a hyperbolic problem, the initial condition u(x, 0) = ¢(x) can be controlled from the targets
us(x,T; ) and uy(x,T; @) using H&-Poincare norm. The Lagrange multiplier is z; while the
function z(x,t) is the solution of adjoint problem. The symbolic optimal control function is
easily obtained in numerical examples.
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