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Let T1 and T2 be piecewise smooth circle homeomorphisms with break points and identical
irrational rotation numbers. We provide one sufficient and necessary condition for the absolute
continuity of conjugation map between T1 and T2.

1. Introduction and Statement of Results

Let S1 = R/Z with clearly defined orientation, metric, Lebesgue measure, and the operation
of addition be the unit circle. Let π : R → S1 denote the corresponding projection mapping
that “winds” a straight line on the circle. An arbitrary homeomorphism T that preserves
the orientation of the unit circle S1 can “be lifted” on the straight line R in the form of the
homeomorphism LT : R → R with property LT (x + 1) = LT (x) + 1 that is connected with T
by relation π ◦ LT = T ◦ π . This homeomorphism LT is called the lift of the homeomorphism
T and is defined up to an integer term. The most important arithmetic characteristic of the
homeomorphism T of the unit circle S1 is the rotation number

ρ(T) = lim
i→∞

LiT (x)
i

mod 1, (1.1)

where LT is the lift of T with S1 to R. Here and below, for a given map F, Fi denotes its ith
iteration. Poincaré proved that the above limit exists, does not depend on the initial point
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x ∈ R of the lifted trajectory, and, up to additional of an integer, does not depend on the lift
LT (see [1]). The rotation number ρ = ρ(T) is irrational if and only if the homeomorphism
T has no periodic point. Hereafter, we will always assume that ρ is irrational and use its
decomposition in an infinite continued fraction (see [2])

ρ =
1

k1 +
1

k2 +
1
· · ·

kn +
1
· · ·

:= [k1, k2, . . . , kn, . . .].

(1.2)

The value of a “countable-floor” fraction is the limit of the sequence of rational convergents
pn/qn = [k1, k2, . . . , kn]. The positive integers kn, n ≥ 1, called incomplete multiples, are defined
uniquely for irrational ρ. The mutually prime positive integers pn and qn satisfy the recurrent
relations pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2 for n ≥ 1, where it is convenient to define
p−1 = 0, q−1 = 1 and p0 = 1, q0 = k1. Given a circle homeomorphism T with irrational
rotation number ρ, one may consider amarked trajectory (i.e., the trajectory of a marked point)
ξi = Tiξ0 ∈ S1, where i ≥ 0, and pick out of it the sequence of the dynamical convergents
ξqn , n ≥ 0, indexed by the denominators of consecutive rational convergents to ρ. We will
also conventionally use ξq−1 = ξ0 − 1. The well-understood arithmetical properties of rational
convergents and the combinatorial equivalence between T and rigid rotation Rρ : ξ → ξ + ρ
mod 1 imply that the dynamical convergents approach the marked point, alternating their
order in the following way:

ξq−1 < ξq1 < ξq3 < · · · < ξq2m+1 < · · · < ξ0 < · · · < ξq2m < · · · < ξq2 < ξq0 . (1.3)

We define the nth fundamental interval Δn(ξ0) as the circle arc [ξ0, Tqn(ξ0)] for even n and as
[Tqn(ξ0), ξ0] for odd n. For the marked trajectory, we use the notation Δn

0 = Δn(ξ0), Δn
i =

Δn(ξi) = TiΔn
0 . It is well known that the set Pn(ξ0, T) = Pn(T) of intervals with mutually

disjoint interiors defined as

Pn(T) =
{
Δn−1
i , 0 ≤ i < qn; Δn

j , 0 ≤ j < qn−1
}

(1.4)

determines a partition of the circle for any n. The partition Pn(T) is called the nth dynamical
partition of the point ξ0. Obviously the partition Pn+1(T) is a refinement of the partition Pn(T):
indeed the intervals of order n are members of Pn+1(T) and each intervalΔn−1

i ∈ Pn(T) 0 ≤ i <
qn, is partitioned into kn+1 + 1 intervals belonging to Pn+1(T) such that

Δn−1
i = Δn+1

i ∪
kn+1−1⋃
s = 0

Δn
i+qn−1+sqn . (1.5)

Class B-homeomorphisms. These are orientation-preserving circle homeomorphisms T differ-
entiable except in finite number break points at which left and right derivatives, denoted,
respectively by DT− and DT+, exist, and such that
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(i) there exist constants 0 < c1 < c2 < ∞ with c1 < DT(x) < c2 for all x ∈ S1 \ BP(T),
c1 < DT−(xb) < c2 and c1 < DT+(xb) < c2 for all xb ∈ BP(T), with BP(T) the set of
break points of T on S1;

(ii) DT has bounded variation.

The ratio σT (c) := (DT−(c))/(DT+(c)) is called the jump of T in c or the T -jump. General
B-homeomorphisms with one break point was first studied by Khanin and Vul in [3].
Among other results it was proved by these authors that their renormalizations approximate
fractional linear transformations. Let T be an orientation preserving C1-diffeomorphism of
the circle. If the rotation number ρ is irrational and DT is of bounded variation then, by
a well-known theorem of Denjoy, T is conjugate to the rigid rotation Rρ (see [1]). The
conjugationmeans that there exists an essentially unique homeomorphism h of the circle such
that T = h−1 ◦ Rρ ◦ h. In this context, a natural question to ask is under what condition the
conjugacy is smooth? Several authors, for example [4–6] have shown that if T is C2+α, α > 0
and ρ satisfies certain diophantine condition then the conjugacy will be at least C1.

The classical result of Denjoy can be easily extended to the case of B-homeomor-
phisms. Next we consider the problem of the regularity of the conjugating map between two
class B-homeomorphisms with one break point and coinciding irrational rotation numbers.
The case of one break point with the same jump ratios, so called rigidity problem, was studied
in detail by Teplinskii and Khanin in [7]. Let ρ = [k1, k2, . . . , kn, . . .] be the continued fraction
expansion of the irrational rotation number ρ and define

Mo =
{
ρ : ∃C > 0, ∀n ∈ N, k2n−1 ≤ C

}
, Me =

{
ρ : ∃C > 0, ∀n ∈ N, k2n ≤ C}. (1.6)

The main result of [7] is as follows.

Theorem 1.1. Let Ti ∈ C2+α(S1 \ {bi}), i = 1, 2, α > 0 be B-homeomorphisms with one break point
that have the same jump ratio σ and the same irrational rotation number ρ ∈ (0, 1). In addition, let
one of the following restrictions be true: either σ > 1 and ρ ∈Me or σ < 1 and ρ ∈Mo. Then the map
h conjugating the homeomorphisms T1 and T2 is a C1-diffeomorphism.

In the case of different jump ratios, the following theorem was proved in [8] by
Dzhalilov et al.

Theorem 1.2. Let Ti ∈ C2+α(S1 \ {bi}), i = 1, 2, α > 0 be B-homeomorphisms with one break point
that have different jump ratio and the same irrational rotation number ρ ∈ (0, 1). Then the map h
conjugating the homeomorphisms T1 and T2 is a singular function, that is, is continuous on S1 and
Dh(x) = 0 a.e. with respect to Lebesgue measure.

Let T1 and T2 beB-homeomorphismswith identical irrational rotation number ρ. Now,
we consider dynamical partitions Pn(ξ, T1) = Pn(T1) and Pn(h(ξ), T2) = Pn(T2) appropriate
to the homeomorphisms T1 and T2. Denote by Δ̂n intervals of partition of Pn(T2). Since the
function h is a conjugation function between T1 and T2, so we have h(Δn) = Δ̂n for any
Δn ∈ Pn(T1). Denote by |A| the Lebesgue measure of the corresponding set of A ⊂ S1. Our
purpose in this paper is to give some criteria for the absolute continuity of the conjugation
map h. Our first main result is the following.
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Theorem 1.3. Assume the rotation number ρ is irrational of bounded type. Suppose that there exist a
sequence (τn) such that

∑∞
n=1 τ

2
n <∞ with

∣∣∣∣∣∣∣
|Δ1|
|Δ2| −

∣∣∣Δ̂1

∣∣∣
∣∣∣Δ̂2

∣∣∣

∣∣∣∣∣∣∣
≤ τn (1.7)

for each pair of adjacent intervals Δ1,Δ2 ∈ Pn(T1) for all n > 1. Then the conjugation map h is abso-
lutely continuous function.

In the proof of Theorem 1.3, we will use the consideration of theory of martingales.
The idea of using theory of martingales was established in [9] by Katznelson and Ornstein.
Our second main result is the following.

Theorem 1.4. Let T1 and T2 be B-homeomorphisms with identical irrational rotation number ρ. If
the conjugation map h is a absolutely continuous function, then for all δ > 0, the sequence of Lebesgue
measure of the set |{x : |logDTqn2 (h(x)) − logDTqn1 (x)| ≥ δ}| tends to 0 when n goes to +∞.

2. The Denjoy Theory and Ergodicity of B-Homeomorphisms

The assertions listed below, which are valid for any orientation-preserving homeomorphism
T ∈ B with irrational rotation number ρ, constitute classical Denjoy theory. Their elementary
proofs can be found in [10, 11].

(a) Generalized Denjoy estimate; let ξ0 ∈ S1 be a continuity point of DTqn , then the
following inequality holds: e−v ≤ DTqn(ξ0) ≤ ev, where v = VarS1 logDT .

(b) Exponential refinement; there exists a universal constant C1 = C1(T) such that
|Δn+m

0 | ≤ C1λ
m|Δn

0 |, where λ = (1 + e−v)−1/2.

(c) Bounded geometry; let rotation number ρ is bounded type that is the coefficients in
continued fraction expansion of ρ are bounded. Then there exist universal constants
C2 = C2(T), C3 = C3(T) such that 0 < C2 < 1 and C3 ≤ 1 with

(i) each pair of adjacent intervals of Pn(T) are C2-comparable that is their ratio of
lengths belongs to [C2, C

−1
2 ];

(ii) an interval Δn+1 of Pn+1(T) is C3-comparable to the interval Δn of Pn(T) that
contains it: C3|Δn| ≤ |Δn+1|.

(d) Generalized Finzi estimate; suppose ξ ∈ S1, η ∈ Δn−1(ξ) and ξ, η are continuity
points of DTqn . Then for any 0 ≤ k < qn, the following inequality holds:
| logDTk(ξ) − logDTk(η)| ≤ v.

Let (S1,G, μ) be a measure space and F : S1 → S1 be a measurable map.

Definition 2.1. The set A ∈ G is said to be invariant with respect to the measurable F, if A =
F−1A.

Definition 2.2. A measurable map F : S1 → S1 is said to be ergodic with respect measure μ if
the measure μ(A) of any invariant set A equals 0 or 1.

Let ξ0 ∈ S1, denote by Vn = Δn(ξ0) ∪Δn−1(ξ0).
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Lemma 2.3. Let T be a B-homeomorphism with irrational rotation number ρ. Suppose ξ ∈ Vn and ξ
be a continuity point of DTqn . Then for any 0 ≤ k < qn, the following inequality holds:

e−v
∣∣Tk(Vn)

∣∣
|Vn| ≤ DTk(ξ) ≤ ev

∣∣Tk(Vn)
∣∣

|Vn| . (2.1)

Proof. Let the system of intervals I = {I : I ⊂ Vn, and the map DTqn is continuous on I}
be continuity intervals of DTqn . Let ξ ∈ Δn−1(ξ0). Then, by the mean value theorem, for any
0 ≤ k < qn, we have

∣∣Tk(Δn−1(ξ0)
)∣∣

DTk(ξ)|Δn−1(ξ0)|
=
DTk(z1)|I1| +DTk(z2)|I2| + · · · +DTk(zd)|Id|

DTk(ξ)|Δn−1(ξ0)|
, (2.2)

where zi ∈ Ii ⊂ Δn−1(ξ0) and Ii ∈ I, 1 ≤ i ≤ d. If ξ ∈ Δn(ξ0) then we have

∣∣Tk(Δn(ξ0))
∣∣

DTk(ξ)|Δn(ξ0)|
=
DTk

(
y1
)|J1| +DTk

(
y2
)|J2| + · · · +DTk(yt

)|Jt|
DTk(ξ)|Δn(ξ0)|

, (2.3)

where yi ∈ Ji ⊂ Δn(ξ0) and Ji ∈ I, 1 ≤ i ≤ t. Apply generalized Finzi estimate to the right-
hand side of relations (2.2) and (2.3), we get

e−v ≤
∣∣Tk(Δn−1(ξ0)

)∣∣
DTk(ξ)|Δn−1(ξ0)|

≤ ev, e−v ≤
∣∣Tk(Δn(ξ0))

∣∣
DTk(ξ)|Δn(ξ0)|

≤ ev. (2.4)

Finally, we get

e−v ≤
∣∣Tk(Vn)

∣∣
DTk(ξ)|Vn|

≤ ev. (2.5)

Lemma 2.4. Let T be a B-homeomorphism of the circle S1 with irrational rotation number ρ, then T
is ergodic with respect to Lebesgue measure.

Proof. Suppose that there exist an invariant set A of positive but not full Lebesgue measure
|A|. Then by the Lebesgue Density Theorem,A has a density point z. We fix an arbitrary ε > 0.
By definition of density points, we can find a δ > 0 such that for any interval [a, b] satisfying
the conditions z ∈ [a, b], [a, b] ⊂ (z−δ, z+δ), we have |A∩ [a, b]| ≥ (1− ε)|[a, b]|, or, in other
words, |Ac ∩ [a, b]| < ε|[a, b]|, where Ac denotes the complement of A. Now, we choose such
n that Vn = Δn(z) ∪ Δn−1(z) ⊂ (z − δ, z + δ). We can check that

⋃qn−1
k=0 T

k(Vn) = S1 and each
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point of the circle belongs to at most two intervals of this cover. Hence, the setAc is invariant
with respect to T , using the above lemma, we get

|Ac| =
qn−1∑
k=0

∣∣∣Ac ∩ Tk(Vn)
∣∣∣ =

qn−1∑
k=0

∫

Ac∩Vn
DTk(x)dx ≤ ev|Ac ∩ Vn|

|Vn|
qn−1∑
k=0

∣∣∣Tk(Vn)
∣∣∣ ≤ 2evε. (2.6)

Since ε was arbitrary, |Ac| = 0. The theorem is proved.

Lemma 2.5. Let T1 and T2 are B-homeomorphisms with identical irrational rotation number. Then
the conjugation map h between T1 and T2 is either absolutely continuous or singular function.

Proof. Consider two B-homeomorphisms T1 and T2 of the circle S1 with identical irrational
rotation number ρ. Let ϕ1 and ϕ2 be maps conjugating T1 and T2 with the rigid rotation Tρ,
that is, ϕ1 ◦ T1 = Tρ ◦ ϕ1 and ϕ2 ◦ T2 = Tρ ◦ ϕ2. It is easy to check that the map h = ϕ−1

2 ◦ ϕ1

conjugates T1 and T2, that is

h ◦ T1 = T2 ◦ h. (2.7)

We know that conjugation function h is strictly increasing function on S1. Then Dh exists
almost everywhere on S1. Denote by A = {x : x ∈ S1, Dh(x) > 0}. It is clear that the set
A is mod 0 invariant with respect to T1. Since the class B-homeomorphism is ergodic with
respect to the Lebesguemeasure. Hence, the Lebesguemeasure of setA is either null or full. If
Lebesque measure of A is null then h is a singular function, if it is full then h is an absolutely
continuous function.

Remark 2.6. Let T1 and T2 be B-homeomorphisms with identical irrational rotation number.
Then conjugation map h−1 between T2 and T1 is either absolutely continuous or singular.

3. Martingales and Martingale Convergence Theorem

Our objective in this section is to develop the fundamentals of the theory of martingales
and prepare for the main results and applications that will be presented in the subsequent
sections.

Definition 3.1. Let (X,F) be a measurable space. A sequence (Fm) of σ-algebras on X is said
to be a filtration in F, if

F1 ⊆ F2 ⊆ · · · ⊆ F. (3.1)

Statement 3.2. The sequence of algebras generated by dynamical partitions, which is also
denoted by (Pm) (by abuse of notation) is a filtration in B, where B is a Borel σ-algebra on S1.

Definition 3.3. Let (Rm) be a sequence of random variables on a measurable space (X,F) and
(Fm) a filtration in F. We say that (Rm) is adapted to (Fm) if, for each positive integerm, Rm is
Fm-measurable.
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Denote by E(R | F) conditional expectation of random variables R with respect to
partition F.

Definition 3.4. Let (Rm) be a sequence of random variables on a probability space (X,F,P)
and (Fm) a filtration in F. The sequence (Rm) is said to be a martingalewith respect to (Fm) if,
for every positive integerm,

(i) (Rm) is integrable;

(ii) (Rm) is adapted to (Fm);

(iii) E(Rm+1 | Fm) = Rm.

Lemma 3.5 (see [12]). Let (Rm) be a sequence of random variables on a probability space (X,F,P).
If supmE(|Rm|p) < ∞ for some p > 1 and (Rm) is a martingale, then there exists an integrable
R ∈ L1(X,F) such that

lim
m→∞

Rm = R(a.e P), Rm −→ R in L1 − norm . (3.2)

Suppose f is a homeomorphism (not necessary to be B-homeomorphism) of the circle
S1. Using the homeomorphism f and sequence of dynamical partitions (Pm), we define the
sequence of random variables on the circle which is generating a martingales. For anym ≥ 1,
we set

Rm(x) =

∣∣f(Δm)
∣∣

|Δm| , if x ∈ Δm, Δm ∈ Pm. (3.3)

Lemma 3.6. The sequence (Rm) of random variables is a martingale with respect to (Pm).

Proof. To prove the martingale, it suffices to check E(Rm+1 | Pm) = Rm, for anym ≥ 1, because
the sequence of random variables (Rm) is sequence of step functions, so the sequence of step
functions is integrable and adapted to (Pm). Denote by χI indicator function of interval I.
Using definition of conditional expectation of random variables (Rm)with respect to partition
(Pm), we get

E(Rm+1 | Pm) =
qm−1−1∑
i=0

E
(Rm+1 | Δm

i

)
χΔm

i
+
qm−1∑
i=0

E
(
Rm+1 | Δm−1

i

)
χΔm−1

i
. (3.4)

Now, we calculate each sum of (3.4) separately. Note, that each interval of Pm order m is
member of Pm+1 and each intervalΔm−1

i ∈ Pm, 0 ≤ i < qm, is partitioned into km+1 + 1 intervals
belonging to Pm+1 such that

Δm−1
i = Δm+1

i ∪
km+1−1⋃
s=0

Δm
i+qm−1+sqm . (3.5)
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Using this, we get

E
(Rm+1 | Δm

i

)
=

1∣∣Δm
i

∣∣
∫

Δm
i

Rm+1(x)�(dx) =
1∣∣Δm
i

∣∣
∫

Δm
i

Rm(x)�(dx), (3.6)

E
(
Rm+1 | Δm−1

i

)
=

1∣∣Δm−1
i

∣∣
∫

Δm−1
i

Rm+1(x)�(dx) =
1∣∣Δm−1
i

∣∣

[∫

Δm+1
i

Rm+1(x)�(dx)

]

+
1∣∣Δm−1
i

∣∣

⎡
⎣
km+1−1∑
s=0

∫

Δm
i+qm−1+sqm

Rm+1(x)�(dx)

⎤
⎦

=
1∣∣Δm−1
i

∣∣
∫

Δm−1
i

Rm(x)�(dx).

(3.7)

Finally, summing (3.4), (3.6), and (3.7), we get

E(Rm+1 | Pm) =
qm−1−1∑
i=0

Rm(x)χΔm
i
+
qm−1∑
i=0

Rm(x)χΔm−1
i

= Rm. (3.8)

The following inequality (sometimes called “parallelogram inequality”) is useful for
estimating fractions, and we will use it in the proof of the next statement.

Lemma 3.7. Given a, b, c, d > 0, the following inequalities hold

min
{a
b
,
c

d

}
≤ a + c
b + d

≤ max
{a
b
,
c

d

}
. (3.9)

Proof. Consider points A = (a, b), B = (c, d), and C = (a + c, b + d) on the plan xOy. The
slope of the ray OC lies between slops of rays OA and OB.

4. Proof of Main Theorems

Let h be the conjugation homeomorphism between T1 and T2, that is, h ◦ T1 = T2 ◦ h. Without
loss of generality, we assume h(0) = 0. Consider dynamical partition Pm(T1). Define sequence
of random variables (Rm) on the S1 by this formula

Rm(x) =
|h(Δm)|
|Δm| , if x ∈ Δm, Δm ∈ Pm(T1). (4.1)

Denote by Θm(x) = Rm(x) − Rm−1(x), m ≥ 1 and R0(x) :≡ 0, x ∈ S1.
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Statement 4.1. Let the sequence (τm) be defined in Theorem 1.3. Then there exists a universal
constant C4 = C4(T) > 0 such that for allm ≥ 1, the following inequality holds

|Θm(x)| ≤ C4τm|Rm−1(x)|, x ∈ S1. (4.2)

Proof. It is clear that

|Θm(x)| = |Rm−1(x)|
∣∣∣∣
|Rm(x)|
|Rm−1(x)| − 1

∣∣∣∣. (4.3)

Now, we estimate Rm(x)/Rm−1(x). Denote by Rm(Δm) := Rm(x), x ∈ Δm and Δm ∈ Pm(T1).
Thus, we have

∣∣∣Δm−1
∣∣∣Rm−1

(
Δm−1

)
=

km∑
s=0

|Δm(s)|Rm(Δm(s)), (4.4)

where Δm(s) ⊂ Δm−1. Using Lemma 3.7, we get

minRm(Δm(s)) ≤ Rm−1
(
Δm−1

)
≤ maxRm(Δm(s)). (4.5)

It is clear that for any 0 ≤ s ≤ km holds

minRm(Δm(s))
maxRm(Δm(s))

≤ Rm−1
(
Δm−1)

Rm(Δm(s))
≤ maxRm(Δm(s))

minRm(Δm(s))
. (4.6)

Since, each pair of adjacent intervals of Pm(T1) are C2-comparable. By the assumption of
Theorem 1.3, we get

∣∣∣∣
Rm(Δm(s + 1))
Rm(Δm(s))

− 1
∣∣∣∣ ≤ C2τm. (4.7)

Hence, the rotation number ρ = [k1, k2, . . . , km, . . .] is of bounded type, and an easy trick gives
us

maxRm(Δm(s))
minRm(Δm(s))

≤ (1 + C2τm)K ≤ 1 + C4τm, (4.8)

where K = sup(km) and C4 = KC2. A similar lower bound holds true for minRm(Δm(s)) :
maxRm(Δm(s)). Therefore, we have

1 − C4τm ≤ Rm−1
(
Δm−1)

Rm(Δm(s))
≤ 1 + C4τm, (4.9)

for all 0 ≤ s ≤ km.
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Proof of Theorem 1.3. For the proof of Theorem 1.3, we use the above reasonings. By
Lemma 3.6, the sequence (Rm) of random variables is a martingale with respect to (Pm).
We want to show that Rm converges to Dh in the norm L1(S1, d�) when m → ∞. By direct
calculation, it is easy to see that Θm(x) and Rm−1(x) is orthogonal, that is

∫

S1
Θm(x)Rm−1(x)dx = 0. (4.10)

Using the assertion of Statement 4.1, we get

‖Rm‖2L2
≤ ‖Rm−1‖2L2

+ ‖Θm‖2L2
≤
(
1 + C4τ

2
m

)
‖Rm−1‖2L2

. (4.11)

Iterating the last relation, we have ‖Rm‖2L2
≤ ∏m

j=1(1 + C4τ
2
j ). So far as the series

∑∞
j=1 τ

2
j

converges. From this implies that the sequence of random variables (Rm) is bounded in L2

norm. By Lemma 3.5, the sequence of random variables (Rm) converges to some function R
in L1 norm. We prove that sequence of random variables (Rm) converges to the Dh. Indeed,
denote by αm and βm end points of interval Δm of dynamical partition Pm(T1). By definition
of Rm, we have

∣∣∣∣h(x) −
∫x

0
Rm(x)dx

∣∣∣∣ ≤ |h(x) − h(αm)| + |h(Δm)|
|Δm| |x − αm| ≤ 2|h(Δm)|. (4.12)

Moreover, using last inequality, we obtain

∣∣∣∣h(x) −
∫x

0
R(x)dx

∣∣∣∣ ≤
∣∣∣∣h(x) −

∫x

0
Rm(x)dx

∣∣∣∣ +
∫x

0
|R(x) − Rm(x)|dx ≤ 2|h(Δm)| + ‖Rm − R‖L1

.

(4.13)

From this taking the limit when m → ∞, we get h(x) =
∫x
0 R(x)dx. Since, R ∈ L1(S1, d�),

then h is absolutely continuous function and Dh(x) = R(x) almost everywhere on S1. Thus,
Theorem 1.3 is completely proved.

Statement 4.2. For all ψ ∈ L1(S1, d�) hold this equality

lim
m→∞

∥∥∥ψ ◦ Tqm1 − ψ
∥∥∥
L1

= 0. (4.14)

Proof. It is a well-known fact that the class C([a, b]) of continuous functions on [a, b] is dense
(in ‖ · ‖L1) in L1([a, b], d�) (see [13]). From this fact it implies that if ψ ∈ L1(S1, d�), then
for any ε > 0 there exists a continuous function ψε ∈ C(S1) and φε ∈ L1(S1, d�) such that
ψ = ψε + φε and ‖φε‖L1 ≤ ε. Using this and Denjoy estimate, we obtain

∥∥∥ψ ◦ Tqm1 − ψ
∥∥∥
L1

≤
∥∥∥ψε ◦ Tqm1 − ψε

∥∥∥
L1

+
(
sup

∣∣∣DTqm1
∣∣∣
−1

+ 1
)∥∥φε

∥∥
L1

≤
∥∥∥ψε ◦ Tqm1 − ψε

∥∥∥
L1

+ (1 + ev)
∥∥φε

∥∥
L1
.

(4.15)
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As ψε is uniformly continuous on S1 and by exponential refinement Tqm1 (x) uniformly tends to
x, there exists a positive integerm0 = m0(ε) such that for allm ≥ m0, the ‖ψε ◦ Tqm1 −ψε‖L1 ≤ ε.
Therefore, ‖ψ ◦ Tqm1 − ψ‖L1 ≤ (2 + ev)ε. Since ε > 0 was arbitrary and sufficiently small.

Proof of Theorem 1.4. Assume that conjugation map h is absolutely continuous, then Dh ∈
L1(S1, d�) andDh > 0 almost everywhere. For all positive integers n, the functionDh satisfies

(
Dh ◦ Tqn1

)
DT

qn
1 = D

(
T
qn
2 ◦ h

)
Dh a.e. (4.16)

Taking the logarithm, we obtain

log
(
Dh ◦ Tqn1

)
− logDh = logD

(
T
qn
2 ◦ h

)
− logDTqn1 . (4.17)

Denote by ψ = logDh, it is clear that ψ ∈ L1(S1, d�). Suppose, by contradiction, that there
exists δ > 0, such that the Lebesgue measure of the set Sn

δ
= {x : | logDTqn2 (h(x)) −

logDTqn1 (x)| ≥ δ} does not converge to 0 when n goes to infinity. Hence, for all positive
integer n:

∫

S1

∣∣∣ψ
(
T
qn
1 (x)

)
− ψ(x)

∣∣∣dx ≥
∫

Sn
δ

∣∣∣ψ
(
T
qn
1 (x)

)
− ψ(x)

∣∣∣dx ≥ δ∣∣Snδ
∣∣. (4.18)

But |Snδ | does not tend to 0 when n goes to +∞. Hence
∫
S1 |ψ(Tqn1 (x)) − ψ(x)|dx does not tend

to 0 when n goes to +∞, this contradicts Statement 4.2 and ends the proof of Theorem 1.4.
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