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A SI-type ecoepidemiological model that incorporates reproduction delay of predator is studied.
Considering delay as parameter, we investigate the effect of delay on the stability of the coexisting
equilibrium. It is observed that there is stability switches, and Hopf bifurcation occurs when the
delay crosses some critical value. By applying the normal form theory and the center manifold
theorem, the explicit formulae which determine the stability and direction of the bifurcating
periodic solutions are determined. Computer simulations have been carried out to illustrate
different analytical findings. Results indicate that the Hopf bifurcation is supercritical and the
bifurcating periodic solution is stable for the considered parameter values. It is also observed
that the quantitative level of abundance of system populations depends crucially on the delay
parameter if the reproduction period of predator exceeds the critical value.

1. Introduction

Ecoepidemiology is a branch in mathematical biology which considers both the ecological
and epidemiological issues simultaneously. After the pioneering work of Anderson and May
[1], literature in the field of ecoepidemiology has grown enormously [2–9]. Chattopadhyay
and Bairagi [3] studied the following ecoepidemiological model withmα = θ:

dS

dt
= rS

(
1 − S + I

K

)
− λIS,

dI

dt
= λIS − mIP

a + I
− μI,

dP

dt
=
mαIP

a + I
− dP.

(1.1)
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In this model, S, I, and P represent the densities of susceptible prey, infected prey, and the
predator populations, respectively. Both susceptible and infected preys contribute to the
carrying capacity (K), but only susceptible prey can reproduce at the intrinsic growth rate
r. Disease spreads horizontally from infected to susceptible prey at a rate λ following the law
of mass action. Predator preys on infected prey only and predation process follows Holling
Type II [10] response function with search rate m and half-saturation constant a. Here, α
is the conversion efficiency of the predator defining the increase in predator’s number per
unit prey consumption. μ (= μ1 + μ2) represents the total death rate of infected prey where
μ1 is the natural death rate and μ2 is the virulence of the disease. Predators consume both
the susceptible and infected preys; however, the predation rate on infected prey may be
very high (31 times) compare to that on susceptible prey [11]. Based on the experimental
observation [11], it is assumed that predator consumes infected prey only. Predators may
have to pay a cost in terms of extra mortality in the tradeoff between the easier predation
and the parasitized prey acquisition, but the benefit is assumed to be greater than the cost
[12, 13]. So it is assumed that consumption of infected prey contributes positive growth to
the predator population. d (= d1 + d2) is the total death rate of predator where d1 is the
natural death rate and d2 is the cost due to parasitized prey acquisition. All parameters are
assumed to be positive.

Reproduction of predator after consuming the prey is not instantaneous, but mediated
by some time lag. Chattopadhyay and Bairagi [3] did not consider this reproduction delay,
defined by the time required for the reproduction of predator after consuming the prey, in
their model system. It is well recognized that introduction of reproduction delay makes the
model biologically more realistic. If τ (>0) is the time required for the reproduction, themodel
(1.1) can be written as

dS

dt
= rS

(
1 − S + I

K

)
− λIS,

dI

dt
= λIS − mIP

a + I
− μI,

dP

dt
=
mαI(t − τ)P(t − τ)

a + I(t − τ) − dP.

(1.2)

We study the delay-induced system (1.2) with the following initial conditions:

S(θ) = ψ1(θ) ≥ 0, I(θ) = ψ2(θ) ≥ 0, P(θ) = ψ3(θ) ≥ 0, θ ∈ (−τ, 0]. (1.3)

Hopf bifurcation and its stability in a delay-induced predator-prey system have been
studied by many researchers [14–19]. In this paper, we study the effect of reproduction delay
on an ecoepidemiological system where predator-prey interaction follows Holling Type II
response function, and find the direction and stability of the bifurcating periodic solutions, if
any.

The organization of the paper is as follows. Section 2 deals with the linear stability
analysis of the model system. In Section 3, direction and stability of Hopf bifurcation are
presented. Numerical results to illustrate the analytical findings are presented in Section 4
and, finally, a summary is presented in Section 5.
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2. Stability Analysis and Hopf Bifurcation

In epidemiology, the basic reproductive ratio R0, the number of new cases acquired directly
from a single infected prey when introduced into a population of susceptible, plays a
significant role in the spread of the disease. In particular, if R0 < 1, the disease dies out,
but if R0 > 1, it remains endemic in the host population [20]. For the system (1.2), the
basic reproductive ratio is given by R0 = λK/μ. In ecology, on the other hand, stress is
given on the stability of coexisting equilibrium point. We, therefore, concentrate on the
study of the stability of the coexisting or endemic equilibrium point of the system (1.2). The
ecoepidemiological system (1.2) has a unique interior equilibrium point E∗(S∗, I∗, P ∗), where
S∗ = K − (ad(r + λK)/r(mα − d)), I∗ = ad/(mα − d), and P ∗ = (1/m)(a + I∗)(λS∗ − μ).
Note that I∗ exists if m > d/α, S∗ exists if m > d/α + (ad(r + λK)/rKα) and P ∗ exists if
m > (d/α)+ (adλ(r +λK)/rα(λK−μ)) = (d/α)+ (ad(r +λK)/rKα− (rαμ/λ))with λ > μ/K.
Thus, the conditions for coexisting equilibrium point E∗ are

(i) λ > μ/K, that is, R0 > 1,

(ii) m > (d/α) + (adλ(r + λK)/rα(λK − μ)).
Let x(t) = S(t)−S∗, y(t) = I(t)− I∗, and z(t) = P(t)−P ∗ be the perturbed variables. Then, the
system (1.2) can be expressed in the matrix form after linearization as follows:

d

dt

⎛
⎜⎜⎝
x(t)

y(t)

z(t)

⎞
⎟⎟⎠ = A1

′

⎛
⎜⎜⎝
x(t)

y(t)

z(t)

⎞
⎟⎟⎠ +A2

′

⎛
⎜⎜⎝
x(t − τ)
y(t − τ)
z(t − τ)

⎞
⎟⎟⎠, (2.1)

where

A1
′ =

⎛
⎜⎜⎜⎜⎜⎝

−rS
∗

K
−
(
λ +

r

K

)
S∗ 0

λI∗
mI∗P ∗

(a + I∗)2
−d
α

0 0 −d

⎞
⎟⎟⎟⎟⎟⎠
,

A2
′ =

⎛
⎜⎜⎜⎜⎝

0 0 0

0 0 0

0
αamP ∗

(a + I∗)2
d

⎞
⎟⎟⎟⎟⎠.

(2.2)

The characteristic equation of the system (2.1) is given by

∣∣∣A1
′ +A2

′e−ξτ − ξI
∣∣∣ = 0, (2.3)

that is,

Φ(ξ, τ) = ξ3 +
[
A + Be−ξτ

]
ξ2 +

[
C +De−ξτ

]
ξ + E + Fe−ξτ = 0, (2.4)
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where

A =
r

K
S∗ + d − mI∗P ∗

(a + I∗)2
,

B = −d,

C = −mdI
∗P ∗

(a + I∗)2
+
drS∗

K
− rmS∗I∗P ∗

K(a + I∗)2
+
( r
K

+ λ
)
λS∗I∗,

D =
mdI∗P ∗

(a + I∗)2
− drS∗

K
+
admP ∗

(a + I∗)2
,

E = −drmS
∗I∗P ∗

K(a + I∗)2
+
( r
K

+ λ
)
λdS∗I∗,

F =
drmS∗I∗P ∗

K(a + I∗)2
+
adrmS∗P ∗

K(a + I∗)2
−
( r
K

+ λ
)
λdS∗I∗.

(2.4)′

Equation (2.4) can be written as

Φ(ξ, τ) = ξ3 +m2ξ
2 +m1ξ +m0 +

(
n2ξ

2 + n1ξ + n0
)
e−ξτ = 0, (2.5)

where

m2 = A, n2 = B,

m1 = C, n1 = D,

m0 = E, n0 = F,

Σni2 /= 0, (i = 0, 1, 2).

(2.5)′

For τ = 0, (2.5) becomes

Φ(ξ, 0) = ξ3 + (m2 + n2)ξ2 + (m1 + n1)ξ + (m0 + n0)

= ξ3 +Xξ2 + Yξ + Z = 0.
(2.6)

Here

X = m2 + n2 =
rS∗

K
− mP ∗I∗

(a + I∗)2
=
(
r

K
− dλ

mα

)
S∗ +

dμ

mα
. (2.7)

Thus, X > 0 ifm > dλK/rα. After some algebraic manipulation, Y can be written as

Y = m1 + n1 =
rmaS∗P ∗

K(a + I∗)2
+
madP ∗

(a + I∗)2
+ S∗

{
rμ

K
+ λI∗

(
λ +

r

K

)
− rλS∗

K

}
. (2.8)
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So the sufficient condition for Y to be positive is

rμ

K
+ λI∗

(
λ +

r

K

)
>
rλS∗

K
or m <

d

α
+
2λad(r + λK)
rα
(
λK − μ) . (2.9)

Note that Z = m0 + n0 = adrmS∗P ∗/K(a + I∗)2 is always positive. One can write,

XY − Z =
[(

r

K
− dλ

mα

)
S∗
][{

rmaS∗P ∗

K(a + I∗)2
+
madP ∗

(a + I∗)2

}
+

{
rμS∗

K
+ λS∗I∗

(
λ +

r

K

)
− rλS∗2

K

}]

+
dμ

mα

[
madP ∗

(a + I∗)2

]
+
dμ

mα

[
rμS∗

K
+ λS∗I∗

(
λ +

r

K

)
− λrS∗2

K

]

+
dμ

mα

rmaS∗P ∗

K(a + I∗)2
− rmadS∗P ∗

K(a + I∗)2
.

(2.10)

Since all the terms in the third bracket are positive, so the sufficient condition for the positivity
of (XY − E) is

dμ

mα

rmaS∗P ∗

K(a + I∗)2
>
rmadS∗P ∗

K(a + I∗)2
or m <

μ

α
. (2.11)

Hence, by Routh-Hurwitz criterion and using existence conditions, we state the following
theorem for the stability of the interior equilibrium E∗ of the system (1.2) for τ = 0.

Theorem 2.1. If

(i) R0 > 1 or λ > μ/K,

(ii) m < m < m,
where m = max[dλK/rα, (d/α) + (adλ(r + λK)/rα(λK − μ))] and m =
min[μ/α, (d/α) + (2λad(r + λK)/rα(λK − μ))],

then the system (1.2) is locally asymptotically stable without delay around the positive interior
equilibrium E∗.

We now reproduce some definitions given by [21, 22].

Definition 2.2. The equilibrium E∗ is called asymptotically stable if there exists a δ > 0 such
that

sup
−τ≤θ≤0

[∣∣ψ1(θ) − S∗∣∣, ∣∣ψ2(θ) − I∗
∣∣, ∣∣ψ3(θ) − P ∗∣∣] < δ (2.12)

implies that

lim
t→∞

(S(t), I(t), P(t)) = (S∗, I∗, P ∗), (2.13)

where (S(t), I(t), P(t)) is the solution of the system (1.2) which satisfies the condition (1.3).
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Definition 2.3. The equilibrium E∗ is called absolutely stable if it is asymptotically stable for
all delays τ ≥ 0 and conditionally stable if it is stable for τ in some finite interval.

Note that the system (1.2) will be stable around the equilibrium E∗ if all the roots
of the corresponding characteristic equation (2.5) have negative real parts. But (2.5) is a
transcendental equation and has infinite number of roots. It is difficult to determine the sign
of these infinite number of roots. Therefore, we first study the distribution of roots of the
cubic exponential polynomial equation (2.5).

We know that iω (ω > 0) is a root of (2.5) if and only if ω satisfies

−iω3 −ω2m2 +m1iω +m0 +
(
−n2ω2 + n1iω + n0

)
(cosωτ − i sinωτ) = 0. (2.14)

Separating real and imaginary parts, we get

m2ω
2 −m0 = −n2ω2 cosωτ + n1ω sinωτ + n0 cosωτ,

ω3 −m1ω = n2ω2 sinωτ + n1ω cosωτ − n0 sinωτ.
(2.15)

This two equations give the positive values of τ and ω for which (2.5) can have purely
imaginary roots.

Squaring and adding, we obtain

ω6 + pω4 + qω2 + s = 0, (2.16)

where

p = m2
2 − 2m1 − n22,

q = m2
1 − 2m0m2 + 2n0n2 − n21,

s =
(
m2

0 − n20
)
.

(2.16)′

If we assume h = ω2, then (2.16) reduces to

h3 + ph2 + qh + s = 0. (2.17)

Denote

g(h) = h3 + ph2 + qh + s. (2.18)

Note that g(0) = s and limh→+∞g(h) = +∞. Thus, if s < 0, then (2.18) has at least one positive
root.

From (2.18), we have

g ′(h) = 3h2 + 2ph + q. (2.19)
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Clearly, if Δ = p2 − 3q ≤ 0, then the function g(h) is monotonically increasing in h ∈ [0,∞).
Thus, for s ≥ 0 andΔ ≤ 0, (2.18) has no positive roots for h ∈ [0,∞). On the other hand, when
s ≥ 0 and Δ < 0, the equation

3h2 + 2ph + q = 0 (2.20)

has two real roots

h∗1 =
−p +

√
Δ

3
, h∗2 =

−p −
√
Δ

3
. (2.21)

Obviously, g ′′(h∗1) = 2
√
Δ > 0 and g ′′(h∗2) = −2

√
Δ < 0. It follows that h∗1 and h

∗
2 are the local

minimum and the local maximum, respectively. Hence we have the following lemma.

Lemma 2.4. Suppose that s ≥ 0 and Δ > 0. Then (2.17) has positive roots if and only if h∗1 >
0, g(h∗1) ≤ 0.

Proof. Noticing that s ≥ 0, h∗1 is the local minimum of g(h) and limh→+∞g(h) = +∞, we
immediately know that the sufficiency is true. So we have to prove now the necessity. In
contrary, we suppose that either h∗1 ≤ 0 or h∗1 > 0 and g(h∗1) > 0. Since g(h) is increasing for
h ≥ h∗1 and g(0) = s ≥ 0, it follows that g(h) has no positive real roots for h∗1 ≤ 0 and g(h∗1) > 0.
If h∗1 > 0 and g(h∗1) > 0, since h∗2 is the local maximum value, it follows that g(h∗1) < g(h∗2).
Thus, g(z) cannot have any positive real roots when h∗1 > 0 and g(h∗1) > 0. This completes the
proof.

Summarizing the above discussions, we obtain the following.

Lemma 2.5. One has the following results on the distribution of roots of (2.17).

(i) If s < 0, then (2.17) has at least one positive root;

(ii) if s ≥ 0, and Δ = p2 − 3q ≤ 0, then (2.17) has no positive root;

(iii) if s ≥ 0, and Δ = p2 − 3q > 0, then (2.17) has positive roots if and only if h∗1 = (−p +√
Δ)/3 > 0 and g(h∗1) ≤ 0, where g(z) = h3 + ph2 + qh + s.

Suppose that (2.17) has positive roots. Without loss of generality, we assume that it
has three positive roots, defined by h1, h2, and h3, respectively. Then, (2.16) has three positive
roots ω1 =

√
h1, ω2 =

√
h2, and ω3 =

√
h3.

From (2.15), we have

cosωkτ =
(n1 − n2m2)ω4 + (n2m0 + n0m2 − n1m1)ω2 − n0m0

(n2ω2 − n0)2 + n21w2
, k = 1, 2, 3. (2.22)

Thus, if we denote

τ
j

k =
1
ωk

⎧⎨
⎩arc cos

⎡
⎣(n1 − n2m2)ω4

k + (n2m0 + n0m2 − n1m1)ω2
k − n0m0(

n2ω
2
k − n0

)2 + n21w2
k

⎤
⎦ + 2jπ

⎫⎬
⎭, (2.23)
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where k = 1, 2, 3; j = 0, 1, 2, . . ., then ±iωk is a pair of purely imaginary roots of (2.5). Define

τ0 = τ
(0)
k0

= min
k∈{1,2,3}

{
τ
(0)
k

}
, ω0 = ωk0 . (2.24)

We reproduce the following result due to Ruan and Wei [23] to analyze (2.5).

Lemma 2.6. Consider the exponential polynomial

P
(
ξ, e−ξτ1 , . . . , e−ξτm

)
= ξn + p(0)1 ξn−1 + · · · + p(0)n−1ξ + p

(0)
n

+
[
p
(1)
1 ξn−1 + · · · + p(1)n−1ξ + p

(1)
n

]
e−ξτ1

+ · · · +
[
p
(m)
1 ξn−1 + · · · + p(m)

n−1ξ + p
(m)
n

]
e−ξτm ,

(2.25)

where τi ≥ 0 (i = 1, 2, . . . , m) and p
(i)
j , (i = 0, 1, 2, . . . , m; j = 1, 2, . . . , n) are constants. As

(τ1, τ2, . . . , τm) vary, the sum of the order of zeros of P(ξ, e−ξτ1 , . . . , e−ξτm) on the open right half hand
can change only if a zero appears on or crosses the imaginary axis.

Using Lemmas 2.5 and 2.6, we can easily obtain the following results on the
distribution of roots of the transcendental (2.5).

Lemma 2.7. For the third degree exponential polynomial equation (2.5), one has

(i) if s ≥ 0, and Δ = p2 − 3q ≤ 0, then all roots with positive real parts of (2.5) have the same
sum as those of the polynomial equation (2.6) for all τ ≥ 0,

(ii) if either s < 0 or s ≥ 0, Δ = p2 − 3q > 0, h∗1 = (−p +
√
Δ)/3 > 0 and g(h∗1) ≤ 0, then all

roots with positive real parts of (2.5) have the same sum as those of the polynomial equation
(2.6) for all τ ∈ [0, τ0).

Let

ξ(τ) = η(τ) + iω(τ), (2.26)

where η and ω are real, be the roots of (2.5) near τ = τ (j)
k

satisfying

η
(
τ
(j)
k

)
= 0, ω

(
τ
(j)
k

)
= ωk. (2.27)

Then the following transversality condition holds.

Lemma 2.8. Suppose that hk = ω2
k
and g ′(hk)/= 0, where g(h) is defined by (2.18). Then,

d

dτ

[
Re
{
ξ
(
τ
(j)
k

)}]
/= 0, (2.28)

and the sign of (d/dτ)[Re{ξ(τ (j)
k
)}] is consistent with that of g ′(hk).
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Proof. Differentiating (2.5)with respect to τ , we obtain

[(
3ξ2 + 2m2ξ +m1

)
+ e−ξτ

{
2n2ξ + n1 − τ

(
n2ξ

2 + n1ξ + n0
)}] dξ

dτ
= ξ
(
n2ξ

2 + n1ξ + n0
)
e−ξτ .

(2.29)

This gives

(
dξ

dτ

)−1
=

(
3ξ2 + 2m2ξ +m1

)
eξτ

ξ(n2ξ2 + n1ξ + n0)
+

2n2ξ + n1
ξ(n2ξ2 + n1ξ + n0)

− τ

ξ
. (2.30)

It follows from (2.15) that

[
ξ
(
n2ξ

2 + n1ξ + n0
)]

τ=τ (j)
k

= −n1ω2
k + i

(
n0ωk − n2ω3

k

)
,

[(
3ξ2 + 2m2ξ +m1

)
eξτ
]
τ=τ (j)

k

=
[(
m1 − 3ω2

k

)
cosωkτ

(j)
k

− 2m2ωk sinωkτ
(j)
k

]

+ i
[(
m1 − 3ω2

k

)
sinωkτ

(j)
k + 2m2ωk cosωkτ

(j)
k

]
,

[2n2ξ + n1]τ=τ (j)
k

= n1 + i2n2ωk.

(2.31)

Using (2.31) in (2.30), we get

d

dτ
[Re{ξ(τ)}]−1

τ=τ (j)
k

= Re

{(
3ξ2 + 2m2ξ +m1

)
eξτ

ξ(n2ξ2 + n1ξ + n0)

}
τ=τ (j)

k

+ Re
{

2n2ξ + n1
ξ(n2ξ2 + n1ξ + n0)

}
τ=τ (j)

k

− Re
{
τ

ξ

}
τ=τ (j)

k

=
1
Λ

[
ωk

(
m1 − 3ω2

k

){
−n1ωk cosωkτ

(j)
k

+
(
n0 − n2ω2

k

)
sinωkτ

(j)
k

}

+ 2m2ω
2
k

{
n1ωk sinωkτ

(j)
k +

(
n0 − n2ω2

k

)
cosωkτ

(j)
k

}

−n21ω2
k + 2n2ω2

k

(
n0 − n2ω2

k

)]

=
1
Λ

[
ωk

(
m1 − 3ω2

k

)(
m1ωk −ω3

k

)
+ 2m2ω

2
k

(
m2ω

2
k −m0

)

−n21ω2
k + 2n2ω2

k

(
n0 − n2ω2

k

)]
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=
1
Λ

[
3ω6

k + 2
(
m2

2 − 2m1 − n22
)
ω4
k +

(
m2

1 − 2m0m2 − n21 + 2n0n2
)
ω2
k

]

=
1
Λ

[
3ω6

k + 2pω4
k + qω

2
k

]

=
1
Λ
hkg

′(hk),

(2.32)

where Λ = n21ω
4
k + (n0 − n2ω2

k)
2 (> 0). Thus, we have

sign
{
d

dτ
Re ξ(τ)

}
τ=τ (j)

k

= sign
{
d

dτ
Re ξ(τ)

}−1

τ=τ (j)
k

= sign
{
hk
Λ
g ′(hk)

}
/= 0. (2.33)

Since Λ, hk are positive, we conclude that the sign of {(d/dτ)Re ξ(τ)}
τ=τ (j)

k

is determined by
that of g ′(hk). This proves the lemma.

From (2.5)′ and (2.16)′, we have

p = m2
2 − 2m1 − n22 = A2 − 2C2 − B2,

q = m2
1 − 2m0m2 + 2n0n2 − n21 = C2 − 2AE + 2BF −D2,

s = m2
0 − n20 = E2 − F2.

(2.34)

Thus, from Lemmas 2.7 and 2.8, we have the following theorem.

Theorem 2.9. Let mi, ni (i = 0, 1, 2); p, q, s and τj are defined b((2.5)′), (2.34), and (2.23),
respectively. Suppose that conditions of Theorem (2.1) hold. Then the following results hold.

(i) When s ≥ 0, and Δ = p2 − 3q ≤ 0, then all roots of (2.5) have negative real parts for all
τ ≥ 0 and the equilibrium E∗ of the system (1.2) is absolutely stable for all τ ≥ 0.

(ii) If either s < 0 or s ≥ 0, Δ = p2 − 3q > 0, h∗1 = (−p +
√
Δ)/3 > 0 and g(h∗1) ≤ 0 hold,

then g(h) has at least one positive root hk and all roots of (2.5) have negative real parts
for all τ ∈ [0, τ (0)

k
), then the equilibrium E∗ of the system (1.2) is conditionally stable for

τ ∈ [0, τ (0)k ).

(iii) If all the conditions as stated in (ii) and g ′(hk)/= 0 hold, then the system (1.2) undergoes a
Hopf bifurcation at E∗ when τ = τ (j)

k
, (j = 0, 1, 2, . . .).

3. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained some conditions under which system (1.2) undergoes
Hopf bifurcation at τ = τ (j) (j = 0, 1, 2, . . .). In this section, we assume that the system (1.2)
undergoesHopf bifurcation atE∗ when τ = τ (j), that is, a family of periodic solutions bifurcate
from the positive equilibrium point E∗ at the critical value τ = τ (j) (j = 0, 1, 2, . . .). We will use
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the normal form theory and center manifold presented by Hassard et al. [24] to determine
the direction of Hopf bifurcation, that is, to ensure whether the bifurcating branch of periodic
solution exists locally for τ > τ (j) or τ < τ (j), and determine the properties of bifurcating
periodic solutions, for example, stability on the center manifold and period. Throughout
this section, we always assume that system (1.2) undergoes Hopf bifurcation at the positive
equilibrium E∗(S∗, I∗, P ∗) for τ = τ (j) and then ±iωk is corresponding purely imaginary roots
of the characteristic equation.

Let x1 = S − S∗, x2 = I − I∗, x3 = P − P ∗, xi(t) = xi(τt), τ = τ (j) + ν, where τ (j) is defined
by (2.23) and ν ∈ R. Dropping the bars for simplification of notations, system (1.2) can be
written as functional differential equation (FDE) in C = C([−1, 0], R3) as

ẋ(t) = Lν(xt) + f(ν, xt), (3.1)

where x(t) = (x1, x2, x3)
T ∈ R3, and Lν : C → R, f : R × C → R are given, respectively, by

Lν
(
φ
)
=
(
τ (j) + ν

)
⎛
⎜⎜⎜⎜⎜⎝

−rS
∗

K
−
( r
K

+ λ
)
S∗ 0

λI∗
mI∗P ∗

(a + I∗)2
−d
α

0 0 −d

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

φ1(0)

φ2(0)

φ3(0)

⎞
⎟⎟⎟⎟⎠

+
(
τ (j) + ν

)
⎛
⎜⎜⎜⎜⎝

0 0 0

0 0 0

0
αamP ∗

(a + I∗)2
d

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
φ1(−1)
φ2(−1)
φ3(−1)

⎞
⎟⎟⎠,

(3.2)

f
(
ν, φ

)
=
(
τ (j) + ν

)
⎛
⎜⎜⎜⎜⎜⎜⎝

− r

K

(
φ2
1(0) + φ1(0)φ2(0)

) − λφ1(0)φ2(0)

λφ1(0)φ2(0) −
mφ2(0)φ3(0)
a + φ2(0)

αmφ2(−1)φ3(−1)
a + φ2(−1)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.3)

By the Riesz representation theorem, there exists a (3 × 3) matrix, η(θ, ν) (−1 ≤ θ ≤ 0) whose
elements are bounded variation functions such that

Lνφ =
∫0

−1
dη(θ, ν)φ(θ), for φ ∈ C. (3.4)
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In fact, we can choose

η(θ, ν) =
(
τ (j) + ν

)
⎛
⎜⎜⎜⎜⎜⎝

−rS
∗

K
−
( r
K

+ λ
)
S∗ 0

λI∗
mI∗P ∗

(a + I∗)2
−d
α

0 0 −d

⎞
⎟⎟⎟⎟⎟⎠
δ(θ) −

(
τ (j) + ν

)
⎛
⎜⎜⎜⎜⎝

0 0 0

0 0 0

0
αamP ∗

(a + I∗)2
d

⎞
⎟⎟⎟⎟⎠δ(θ + 1),

(3.5)

where δ is the Dirac delta function defined by

δ(θ) =

⎧⎨
⎩
0, θ /= 0,

1, θ = 0.
(3.6)

For φ ∈ C1([−1, 0], R3), define the operator A(ν) as

A(ν)φ(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1
dη(ν, s)φ(s), θ = 0,

R(ν)φ(θ) =

⎧⎨
⎩
0, θ ∈ [−1, 0),
f
(
ν, φ

)
, θ = 0.

(3.7)

Then system (3.1) is equivalent to

ẋ(t) = A(ν)xt + R(ν)xt, (3.8)

where xt(θ) = x(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1]

∫0

−1
dηT (t, 0)ψ(−t), s = 0

(3.9)

and a bilinear inner product

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)
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where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. By Theorem 2.9, we know
that ±iτ (j)ω0 are eigenvalues of A(0). Thus, they are also eigenvalues of A∗. We first need to
compute the eigenvalues ofA(0) andA∗ corresponding to +iτ (j)ω0 and −iτ (j)ω0, respectively.

Suppose that q(θ) = (1, β, γ)Teiθω0τ
(j)

is the eigenvector of A(0) corresponding to
iτ (j)ω0. Then A(0)q(θ) = iω0τ

(j)q(θ). It follows from the definition of A(0) and (3.2), (3.4),
and (3.5) that

τ (j)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

iω0 +
rS∗

K

( r
K

+ λ
)
S∗ 0

−λI∗ iω0 − mI∗P ∗

(a + I∗)2
d

α

0 − αamP ∗

(a + I∗)2
e−iω0τ

(j)
iω0 + d − de−iω0τ

(j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
q(0) =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠. (3.11)

Thus, we can easily obtain

q(0) =
(
1, β, γ

)T
, (3.12)

where

β = − iω0K + rS∗

(r + λK)S∗ ,

γ = − αamP ∗(iω0K + rS∗)e−iω0τ
(j)

(r + λK)S∗(iω0 + d − de−iω0τ (j)
) .

(3.13)

Similarly, let q∗(s) = D(1, β∗, γ∗)Teisω0τ
(j)

be the eigenvector of A∗ corresponding to −iω0τ
(j).

By the definition of A∗ and (3.2), (3.3), and (3.4), we can compute

q∗(s) = D
(
1, β∗, γ∗

)
eisω0τ

(j)
= D

(
1,

−iω0K + rS∗

λKI∗
,

d(iω0K − rS∗)
α
(−iω0 + d − de−iω0τ (j)

)
)
eisω0τ

(j)
. (3.14)

In order to assure 〈q∗(s), q(θ)〉 = 1, we need to determine the value of D. From (3.10), we
have

〈
q∗(s), q(θ)

〉
= D

(
1, β

∗
, γ∗
)(

1, β, γ
)T

−
∫0

−1

∫θ
ξ=0

D
(
1, β

∗
, γ∗
)
e−iω0τ

(j)(ξ−θ)dη(θ)
(
1, β, γ

)T
eiω0ξτ

(j)
dξ

= D

{
1 + ββ

∗
+ γγ∗ −

∫0

−1

(
1, β

∗
, γ∗
)
θeiω0θτ

(j)
dη(θ)

(
1, β, γ

)T}

= D

{
1 + ββ

∗
+ γγ∗ + τ (j)γ∗

αβamP ∗

(a + I∗)2
e−iω0τ

(j)

}
.

(3.15)
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Thus, we can choose D as

D =
1

1 + ββ
∗
+ γγ∗ + τ (j)γ∗

(
αβamP ∗/(a + I∗)2

)
e−iω0τ (j)

,

∴ D =
1

1 + ββ∗ + γγ∗ + τ (j)γ∗
(
αβamP ∗/(a + I∗)2

)
eiω0τ (j)

.

(3.16)

In the remainder of this section, we use the theory of Hassard et al. [24] to compute the
conditions describing center manifold C0 at ν = 0. Let xt be the solution of (3.8) when ν = 0.
Define

z(t) =
〈
q∗, xt

〉
, W(t, θ) = xt(θ) − 2Re

{
z(t)q(θ)

}
. (3.17)

On the center manifold C0, we have

W(t, θ) =W(z(t), z(t), θ), (3.18)

where

W(z, z, θ) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · , (3.19)

z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note thatW
is real if xt is real. We only consider real solutions. For solution xt ∈ C0 of (3.8), since ν = 0,
we have

ż(t) = iω0τ
(j)z + q∗(0)f

(
0,W(z, z, 0) + 2Re

{
zq(θ)

}) def= iω0τ
(j)z + q∗(0)f0(z, z). (3.20)

We rewrite this equation as

ż(t) = iω0τ
(j)z(t) + g(z, z), (3.21)

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.22)
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We have xt(θ) = (x1t(θ), x2t(θ), x3t(θ)) and q(θ) = (1, β, γ)Teiθω0τ
(j)
, so from (3.17) and (3.19)

it follows that

xt(θ) =W(t, θ) + 2Re
{
z(t)q(t)

}

=W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+
(
1, β, γ

)T
eiω0τ

(j)θz

+
(
1, β, γ

)T
e−iω0τ

(j)θz + · · ·

(3.23)

and then we have

x1t(0) = z + z +W1
20(0)

z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+ · · · ,

x2t(0) = βz + βz +W
(2)
20 (0)

z2

2
+W (2)

11 (0)zz +W
(2)
02 (0)

z2

2
+ · · · ,

x3t(0) = γz + γ z +W
(3)
20 (0)

z2

2
+W (3)

11 (0)zz +W
(3)
02 (0)

z2

2
+ · · · ,

x1t(−1) = ze−iω0τ
(j)
+ zeiω0τ

(j)
+W (1)

20 (−1)
z2

2
+W (1)

11 (−1)zz +W
(1)
02 (−1)

z2

2
+ · · · ,

x2t(−1) = βze−iω0τ
(j)
+ βzeiω0τ

(j)
+W (2)

20 (−1)
z2

2
+W (2)

11 (−1)zz +W
(2)
02 (−1)

z2

2
+ · · · ,

x3t(−1) = γze−iω0τ
(j)
+ γ zeiω0τ

(j)
+W (3)

20 (−1)
z2

2
+W (3)

11 (−1)zz +W
(3)
02 (−1)

z2

2
+ · · · .

(3.24)

It follows together with (3.3) that

g(z, z) = q∗(0)f0(z, z) = q
∗(0)f(0, xt)

= τ (j)D
(
1, β

∗
, γ∗
)
⎛
⎜⎜⎜⎜⎜⎜⎝

− r

K

(
x1t

2(0) + x1tx2t(0)
) − λx1t(0)x2t(0)

λx1t(0)x2t(0) − mx2t(0)x3t(0)
a + x2t(0)

αmx2t(−1)x3t(−1)
a + x2t(−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
z2

2

{
2τ (j)D

[
−
(
r

K
+
β(r + λK)

K

)
+ β

∗
(
βλ − mβγ

a

)
+ γ∗

mαβγe−2iω0τ
(j)

a

]}

+ zz
{
2τ (j)

[
D −

(
r

K
+
(r + λK)

K
Re
{
β
})

+ β
∗(
λRe

{
β
} − m

a
Re
{
βγ
})

+γ∗
mα

a
Re
{
βγ
}]}
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+
z2

2

{
2τ (j)D

[
−
(
r

K
+
β(r + λK)

K

)
+ β

∗
(
βλ − mβγ

a

)
+ γ∗

mαβγe2iω0τ
(j)

a

]}

+
z2z

2

{
−τ

(j)Dr

K

{
4W (1)

11 (0) + 2W (1)
20 (0)

}

−
τ (j)D

(
r + λK − β∗λK

)
K

{
2βW (1)

11 (0) + 2W (2)
11 (0) + βW

(1)
20 (0) +W

(2)
20 (0)

}

− τ (j)Dβ
∗
m

a

{
2βW (3)

11 (0) + 2γW (2)
11 (0) + βW

(3)
20 (0)

+ γW (2)
20 (0) −

2
a

(
β2γ + 2ββγ

)}

+
τ (j)Dγ∗mα

a

[
2e−iω0τ

(j)
{
βW

(3)
11 (−1) + γW

(2)
11 (−1)

}

+ eiω0τ
(j)
{
βW

(3)
20 (−1) + γW

(2)
20 (−1)

}

−2β
(
βγ + 2βγ

)
e−iω0τ

(j)
]}

· · · .

(3.25)
Comparing the coefficients with (3.22), we have

g20 = 2τ (j)D

[
−
(
r

K
+
β(r + λK)

K

)
+ β

∗
(
βλ − mβγ

a

)
+ γ∗

mαβγe−2iω0τ
(j)

a

]
,

g11 = 2τ (j)D
[
−
(
r

K
+
(r + λK)

K
Re
{
β
})

+ β
∗(
λRe

{
β
} − m

a
Re
{
βγ
})

+ γ∗
mα

a
Re
{
βγ
}]
,

g02 = 2τ (j)D

[
−
(
r

K
+
β(r + λK)

K

)
+ β

∗
(
βλ − mβγ

a

)
+ γ∗

mαβγe2iω0τ
(j)

a

]
,

g21 = −τ
(j)Dr

K

{
4W (1)

11 (0) + 2W (1)
20 (0)

}

−
τ (j)D

(
r + λK − β∗λK

)
K

{
2βW (1)

11 (0) + 2W (2)
11 (0) + βW

(1)
20 (0) +W

(2)
20 (0)

}

− τ (j)Dβ
∗
m

a

{
2βW (3)

11 (0) + 2γW (2)
11 (0) + βW

(3)
20 (0) + γW

(2)
20 (0) −

2
a

(
β2γ + 2ββγ

)}

+
τ (j)Dγ∗mα

a

[
2e−iω0τ

(j)
{
βW

(3)
11 (−1) + γW

(2)
11 (−1)

}

+ eiω0τ
(j)
{
βW

(3)
20 (−1) + γW

(2)
20 (−1)

}
− 2β

(
βγ + 2βγ

)
e−iω0τ

(j)
]
.

(3.26)

Since there areW20(θ) andW11(θ) in g21, we still need to compute them.
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From (3.8) and (3.17), we have

Ẇ = ẋt − żq − ż q =

⎧⎨
⎩
AW − 2Re

{
q∗(0)f0q(θ)

}
, θ ∈ [−1, 0),

AW − 2Re
{
q∗(0)f0q(θ)

}
+ f0, θ = 0,

def= AW +H(z, z, θ),

(3.27)

where
H(z, z, θ) = H20(θ)

z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.28)

Substituting the corresponding series into (3.27) and comparing the coefficients, we obtain

(
A − 2iω0τ

j
)
W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (3.29)

From (3.27), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −g(z, z)q(θ) − g(z, z)q(θ). (3.30)

Comparing the coefficients with (3.28), we get

H20(θ) = −g20q(θ) − g02q(θ), (3.31)

H11(θ) = −g11q(θ) − g11q(θ). (3.32)

From (3.29) and (3.31) and the definition of A, it follows that

Ẇ20(θ) = 2iω0τ
(j)W20(θ) + g20q(θ) + g02q(θ). (3.33)

Notice that q(θ) = (1, β, γ)Teiω0τ
(j)θ, hence

W20(θ) =
ig20

ω0τ (j)
q(0)eiω0τ

(j)θ +
ig02

3ω0τ (j)
q(0)e−iω0τ

(j)θ + E1e
2iω0τ

(j)θ, (3.34)

where E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 ) ∈ R3 is a constant vector. Similarly, from (3.29) and (3.32), we

obtain

W11(θ) = − ig11

ω0τ (j)
q(0)eiω0τ

(j)θ +
ig11

ω0τ (j)
q(0)e−iω0τ

(j)θ + E2, (3.35)

where E2 = (E(1)
2 , E

(2)
2 , E

(3)
2 ) ∈ R3 is also a constant vector.
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In what follows, we will seek appropriate E1 and E2. From the definition of A and
(3.29), we obtain

∫0

−1
dη(θ)W20(θ) = 2iω0τ

(j)W20(0) −H20(0), (3.36)

∫0

−1
dη(θ)W11(θ) = −H11(0), (3.37)

where η(θ) = η(0, θ).
By (3.27), we have

H20(0) = −g20q(0) − g02q(0) + 2τ (j)

⎛
⎜⎜⎜⎜⎜⎜⎝

− r

K
− β
( r
K

+ λ
)

βλ − mβγ

a
mαβγ

a
e−2iω0τ

(j)

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.38)

H11(0) = −g11q(0) − g11q(0) + 2τ (j)

⎛
⎜⎜⎜⎜⎜⎜⎝

− r

K
−
( r
K

+ λ
)
Re
{
β
}

λRe
{
β
} − m

a
Re
{
βγ
}

mα

a
Re
{
βγ
}

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.39)

Substituting (3.34) and (3.38) into (3.36) and noticing that

(
iω0τ

(j)I −
∫0

−1
eiω0τ

(j)θdη(θ)

)
q(0) = 0,

(
−iω0τ

(j)I −
∫0

−1
e−iω0τ

(j)θdη(θ)

)
q(0) = 0,

(3.40)

we obtain

(
2iω0τ

(j)I −
∫0

−1
e2iω0τ

(j)θdη(θ)

)
E1 = 2τ (j)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− r

K
− β
( r
K

+ λ
)

βλ − mβγ

a

mαβγ

a
e−2iω0τ

(j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.41)
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This leads to

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2iω0 +
r

K
S∗

( r
K

+ λ
)
S∗ 0

−λI∗ 2iω0 − mI∗P ∗

(a + I∗)2
d

α

0 − amαP ∗

(a + I∗)2
e−2iω0τ

(j)
2iω0 + d − de−2iω0τ

(j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
E1 = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− r

K
− β
( r
K

+ λ
)

βλ − mβγ

a

mαβγ

a
e−2iω0τ

(j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.42)

Solving this system for E1, we obtain

E
(1)
1 =

2
A

∣∣∣∣∣∣∣∣∣∣∣∣∣

− r

K
− β
( r
K

+ λ
) ( r

K
+ λ
)
S∗ 0

βλ − mβγ

a
2iω0 − mI∗P ∗

(a + I∗)2
d

α

mαβγ

a
e−2iω0τ

(j) − amαP ∗

(a + I∗)2
e−2iω0τ

(j)
2iω0 + d − de−2iω0τ

(j)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

E
(2)
1 =

2
A

∣∣∣∣∣∣∣∣∣∣∣∣∣

2iω0 +
r

K
S∗ − r

K
− β
( r
K

+ λ
)

0

−λI∗ βλ − mβγ

a

d

α

0
mαβγ

a
e−2iω0τ

(j)
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where
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Similarly, substituting (3.35) and (3.39) into (3.37), we get
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and hence
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where
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Figure 1: Stable coexistence of prey and predator for τ = 0. Parameter values are given in the text.

Thus, we can determine W20(θ) and W11(θ) from (3.34) and (3.35). Furthermore, g21
in (3.26) can be expressed by the parameters and delay. Thus, we can compute the following
values:

c1(0) =
i

2ω0τ (j)

(
g20g11 − 2

∣∣g11∣∣2 −
∣∣g02∣∣2
3

)
+
g21
2
,

ν2 = − Re{c1(0)}
Re
{
ξ′
(
τ (j)
)} ,

β2 = 2Re{c1(0)},

T2 = − Im {c1(0)} + ν2 Im
{
ξ′
(
τ (j)
)}

ω0τ (j)
,

(3.48)

which determine the qualities of bifurcating periodic solution in the center manifold at the
critical value τ (j).

Theorem 3.1. ν2 determines the direction of the Hopf bifurcation. If ν2 > 0, then the Hopf bifurcation
is supercritical and the bifurcating periodic solutions exist for τ > τ (j). If ν2 < 0, then the Hopf
bifurcation is subcritical and the bifurcating periodic solutions exist for τ < τ (j). β2 determines the
stability of the bifurcating periodic solutions: the bifurcating periodic solutions are stable if β2 < 0 and
unstable if β2 > 0. T2 determines the period of the bifurcating periodic solutions: the period increase if
T2 > 0 and decrease if T2 < 0.
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Figure 2: Time series solutions of the prey and predator populations of the system (1.2): (a) τ = 1, (b)
τ = 25. Parameter values are given in the text. This figure shows that the coexisting equilibrium E∗ is
absolutely stable for all delay.

4. Numerical Simulations

In this section, we present some numerical simulations to illustrate the analytical results
observed in the previous sections. We consider the following set of parameter values:

r = 3, K = 40, λ = 0.03, m = 0.45, a = 15, μ = 0.28, α = 0.42, d = 0.09. (4.1)

For the above parameter set, the system (1.2) has a unique coexistence equilibrium point
E∗ = (S∗, I∗, P ∗) = (20.9091, 13.6364, 22.0992). When τ ≥ 0, the system (1.2) satisfies all
conditions of the Theorem 2.9(i). Consequently, the coexistence equilibrium point E∗ becomes
absolutely stable. Figure 1 shows the behavior of the system (1.2) when τ = 0, and Figure 2
depicts the same for τ = 1 and τ = 25. If we change the value of m from 0.45 to 0.72 in the
given parameter set, then conditions of the Theorem 2.9(ii) are satisfied and the system (1.2)
becomes conditionally stable around the coexistence equilibrium point E∗ for τ ∈ [0, τ0) (see,
Figure 3(a)) and unstable for τ > τ0 (see, Figure 3(b)).

For the given parameter set with m = 0.72, one can evaluate that τ0 = 2.3187 and
g ′(hk) = 0.3312/= 0, so the system (1.2) undergoes a Hopf bifurcation at E∗ when τ = τ0
following the condition (iii) of Theorem 2.9. We have constructed a bifurcation diagram (see,
Figure 4) to observe the dynamics of the system when τ varies. For this, we have run the
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Figure 3: Behavior of the system (1.2) for different τ : (a) τ = 1, (b) τ = 3. All parameters are as in Figure 2
exceptm = 0.72. This figure represents the conditional stability of the coexisting equilibrium E∗.

system (1.2) for 500 time-steps and have plotted the successive maxima and minima of the
prey and predator populations with τ as a variable parameter. This figure shows that the
coexisting equilibrium E∗ is stable if τ is less than its critical value τ0 = 2.3187 and unstable if
τ > τ0 and a Hopf bifurcation occurs at τ = τ0.

Using Theorem 3.1, one can determine the values of v2, β2 and T2. For the given
parameter set with m = 0.72, one can evaluate that v2 = 58.4107 (>0), β2 = −1.3298 (<0),
and T2 = 1.9364 (>0). Since v2 > 0 and β2 < 0, the Hopf bifurcation is supercritical and the
bifurcating periodic solutions exist when τ crosses τ0 from left to right. Also, the bifurcating
periodic solution is stable (as β2 < 0) and its period increases with τ (as T2 > 0). From the
bifurcation diagram (Figure 4), it is clear that when the delay, τ , exceeds the critical value τ0
(= 2.3187 days approximately), the system (2.4) bifurcates from stable focus to stable limit
cycle. One can also notice that the amplitude of the oscillations increases with increasing τ .

5. Summary

In this paper, we have studied the effects of reproduction delay on an ecoepidemiological
system where predator-prey interaction follows Holling Type II response function. We have
obtained sufficient conditions on the parameters for which the delay-induced system is
asymptotically stable around the positive equilibrium for all values of the delay parameter
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Figure 4: Bifurcation diagram of the susceptible prey, infected prey and predator populations with respect
to the delay τ . Parameters are as in Figure 3(b). This figure shows that the coexisting equilibrium E∗ is
stable if τ < τ0 = 2.3187 and unstable if τ > τ0.

and if the conditions are not satisfied, then there exists a critical value of the delay parameter
below which the system is stable and above which the system is unstable. By applying the
normal form theory and the center manifold theorem, the explicit formulae which determine
the stability and direction of the bifurcating periodic solutions have been determined.
Our analytical and simulation results show that when τ passes through the critical value
τ0, the coexisting equilibrium E∗ losses its stability and a Hopf bifurcation occurs, that
is, a family of periodic solutions bifurcate from E∗. Also, the amplitude of oscillations
increases with increasing τ . For the considered parameter values, it is observed that the Hopf
bifurcation is supercritical and the bifurcating periodic solution is stable. The quantitative
level of abundance of system populations depends crucially on the delay parameter if the
reproduction period of predator exceeds the critical value τ0.
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[19] C. Çelik, “The stability and Hopf bifurcation for a predator-prey system with time delay,” Chaos,
Solitons and Fractals, vol. 37, no. 1, pp. 87–99, 2008.

[20] B. Grenfell and M. Keeling, Dynamics of Infectious Disease in Theoretical Ecology, R. M. May and R. A.
McLean, Eds., 3rd edition, 2007.

[21] F. Brauer, “Absolute stability in delay equations,” Journal of Differential Equations, vol. 69, no. 2, pp.
185–191, 1987.

[22] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics
in Science and Engineering, Academic Press, Boston, Mass, USA, 1993.

[23] S. Ruan and J. Wei, “On the zeros of a third degree exponential polynomial with applications to
a delayed model for the control of testosterone secretion,” IMA Journal of Mathemathics Applied in
Medicine and Biology, vol. 18, no. 1, pp. 41–52, 2001.

[24] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of
London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1981.


