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We present an explicit formula which unifies the mask of (2n − 1)-point ternary interpolating as
well as approximating subdivision schemes. We observe that the odd point ternary interpolating
and approximating schemes introduced by Lian (2009), Siddiqi and Rehan (2010, 2009) and
Hassan and Dodgson (2003) are special cases of our proposedmasks/schemes. Moreover, schemes
introduced by Zheng et al. (2009) can easily be generated by our proposed masks. It is also
proved from comparison that (2n − 1)-point schemes are better than 2n-scheme in the sense of
computational cost, support and error bounds.

1. Introduction

Subdivision is an algorithmic technique to generate smooth curves and surfaces as a sequence
of successively refined control polygons. The schemes involving convex combination of more
or less than six points at coarse refinement level to insert a new point at next refinement
level is introduced by [1–8]. They introduced odd and even points ternary schemes. Zheng
et al. [9] constructed (2n − 1)-point ternary interpolatory subdivision schemes by using
variation of constants. They also introduced ternary even symmetric 2n-point subdivision
schemes [10]. Mustafa and Khan [11] presented a new 4-point C3 quaternary approximating
subdivision scheme. Lian [12] generalized 3-point and 5-point interpolatory schemes into
an a-ary subdivision scheme for curve design. Later on, he further generalized his work
into 2m-point and (2m + 1)-point interpolating a-ary schemes for curve design [13]. Mustafa
and Najma [14] generalized and unified even-point n-ary interpolating and approximating
subdivision schemes for any n � 2. In this paper, we introduce an explicit formula
which generalizes and unifies existing odd-point ternary interpolating and approximating
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subdivision schemes. A general formula which unifies odd-point and even-point n-ary
interpolating and approximating schemes is still under investigation.

2. Preliminaries

Let Z be the set of integers and α = {aj , bj , j = −(n − 1), . . . , (n − 1), n ≥ 2} be the set of
constants. A general form of (2n − 1)-point ternary subdivision scheme S which relates a set
of control points fk = {fk

i }i∈Z
to refined set of control points fk+1 = {fk+1

i }i∈Z
is defined by

fk+1
3i−1 =

n−1∑

j=−(n−1)
ajf

k
i+j ,

fk+1
3i =

n−1∑

j=−(n−1)
bjf

k
i+j ,

fk+1
3i+1 =

n−1∑

j=−(n−1)
a−jfk

i+j .

(2.1)

Which is formally denoted by fk+1 = Sfk. The set α of constants is called mask of the scheme
S. A necessary condition for the uniform convergence of the subdivision scheme (2.1) given
by [3] is

n−1∑

j=−(n−1)
aj =

n−1∑

j=−(n−1)
bj =

n−1∑

j=−(n−1)
a−j = 1. (2.2)

The Laurent polynomial

α(z) =
∑

i∈Z

αiz
i, αi ∈ α, (2.3)

corresponding to the mask of convergent subdivision scheme (2.1) satisfies

α
(
e2iπ/3

)
= α

(
e4iπ/3

)
= 0, α(1) = 3. (2.4)

For the given n, we define Lagrange fundamental polynomials of degree 2n − 2, at the points
−(n − 1),−(n − 2), . . . , (n − 1), by

L2n−2
j (x) =

n−1∏

k=−(n−1), k /= j

x − k

j − k
, j = −(n − 1),−(n − 2), . . . , (n − 1), (2.5)
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and Lagrange fundamental polynomials of degree 2n−3 at the points −(n−2),−(n−3), . . . , (n−
1), by

L2n−3
j (x) =

n−1∏

k=−(n−2), k /= j

x − k

j − k
, j = −(n − 2),−(n − 3), . . . , (n − 1). (2.6)

3. (2n − 1)-Point Ternary Approximating and Interpolating Schemes

Here, first we present some preliminary identities then we will offer masks of (2n − 1)-point
ternary approximating and interpolating schemes.

Lemma 3.1. If L2n−2
j (−1/3) is Lagrange fundamental polynomial of degree 2n − 2 corresponding to

nodes {t}n−1−(n−1) defined by (2.5), then

L2n−2
j

(
−1
3

)
=

(−1)n+j−1∏n
k=−n+2(3k − 2)

32n−2
(
1 + 3j

)(
n + j − 1

)
!
(
n − j − 1

)
!
, (3.1)

where j = −(n − 1), . . . , (n − 1).

Proof. Consider

n−1∏

k=−(n−1)

(
−1
3
− k

)
=
(
−1
3
+ n − 1

)(
−1
3
+ n − 2

)(
−1
3
+ n − 3

)

· · ·
(
−1
3
+ 1

)(
−1
3

)(
−1
3
− 1

)

· · ·
(
−1
3
− n + 3

)(
−1
3
− n + 2

)(
−1
3
− n + 1

)
.

(3.2)

This implies

n−1∏

k=−(n−1)

(
−1
3
− k

)
=
(
3n − 4

3

)(
3n − 7

3

)(
3n − 10

3

)

· · ·
(
2
3

)(
−1
3

)(
−4
3

)
· · ·

(−3n + 8
3

)(−3n + 5
3

)(−3n + 2
3

)
.

(3.3)

This further implies

n−1∏

k=−(n−1)

(
−1
3
− k

)
=
(
−1
3

)2n−1
{(−3n + 4)(−3n + 7)(−3n + 10)

· · · (−2)(1)(4) · · · (3n − 8)(3n − 5)(3n − 2)}.
(3.4)
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This can be written as

n−1∏

k=−(n−1), k /= j

(
−1
3
− k

)
=

(−1)2n−2
32n−2

(
1

1 + 3j

) n∏

k=−n+2
(3k − 2), (3.5)

where j = −(n − 1) · · · (n − 1). It is easy to verify that

n−1∏

k=−(n−1), k /= j

(
j − k

)
= (−1)n−j−1(n + j − 1

)
!
(
n − j − 1

)
!. (3.6)

Now by substituting (3.5), (3.6), and x = −1/3 in (2.5), we get (3.1).
This completes the proof.

Similarly, we can prove the following lemma.

Lemma 3.2. If L2n−3
j (−1/3) is Lagrange fundamental polynomial of degree 2n − 3 corresponding to

nodes {t}n−1−(n−2) defined by (2.6) then

βj = L2n−3
j

(
−1
3

)
=

(−1)n+j−2∏n
k=−n+3(3k − 2)

32n−3
(
1 + 3j

)(
n + j − 2

)
!
(
n − j − 1

)
!
, (3.7)

where j = −(n − 2), . . . , (n − 1).

Lemma 3.3. If L2n−2
j (−1/3) and L2n−3

j (−1/3) are Lagrange polynomials defined by (2.5) and (3.1),
then

χj =
L2n−2
j (−1/3) − L2n−3

j (−1/3)
L2n−2
−(n−1)(−1/3)

=
(−1)n+j−1(2n − 2)!

(
n + j − 1

)
!
(
n − j − 1

)
!
, (3.8)

where j = −(n − 2), . . . , (n − 1).

Proof. By (3.1), for j = −(n − 1), we get

β = L2n−2
−(n−1)

(
−1
3

)
=

∏n
k=−n+2(3k − 2)

32n−2(4 − 3n)(2n − 2)!
. (3.9)

Using (3.1), (3.7), and (3.9), we get (3.8). This completes the proof.

Remark 3.4. In the setting of primal parametrization, each ternary refinement of coarse
polygon of scheme (2.1) replaces the old data fk

i by new data fk+1
3i−1 and fk+1

3i , one to the
left, the other to the right, and both at one-third the distance to the neighbours fk

i−1 and
fk
i+1. In other words, ternary refinement (2.1) defines a scheme whereby fk+1

3i replaces the
value fk

i at the mesh point tk+13i = tki and fk+1
3i+1 and fk+1

3i+2 are inserted at the new mesh point
tk+13i+1 = (1/3)(2tki + tki+1) and tk+13i+2 = (1/3)(tki + 2tki+1), respectively.
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Therefore, we can select the value of x either 1/3 or 2/3 to prove the Lemmas 3.1–3.3.
In this paper, x = 1/3 has been selected. One can select x = 2/3 to proof the above lemmas.
The results of the above lemmas at x = ± 1/3 are same but the final mask of the scheme
obtained in reverse order. Negative values give a proper order of the mask, that have why
negative values have been selected to prove the above lemmas.

Now here we present the masks of (2n − 1)-point ternary approximating and
interpolating schemes.

Theorem 3.5. An explicit formula for the mask of (2n − 1)-point ternary scheme (2.1) is defined by

a−(n−1) = u,

aj = (u)χj + βj , j = −(n − 2),−(n − 3), . . . , (n − 1),

bj = b−j = χj

{
u − β

}
, j = 1, 2, . . . , (n − 1),

b0 = 1 − 2
n−1∑

j=1

bj ,

(3.10)

where u is free parameter while βj , χj , and β are defined by (3.7), (3.8), and (3.9) respectively.

3.1. 3-, 5-, 7-Point Ternary Approximating Schemes

Here, we present three special cases of approximating schemes generated by (3.10) with free
parameter.

(i) If n = 2 then by (2.1) and (3.10), we get the following 3-point ternary approximating
scheme:

fk+1
3i−1 = ufk

i−1 +
(
4
3
− 2u

)
fk
i +

(
u − 1

3

)
fk
i+1,

fk+1
3i =

(
u − 2

9

)
fk
i−1 +

(
13
9

− 2u
)
fk
i +

(
u − 2

9

)
fk
i+1,

fk+1
3i+1 =

(
u − 1

3

)
fk
i−1 +

(
4
3
− 2u

)
fk
i + ufk

i+1.

(3.11)

(ii) If n = 3 then by (2.1) and (3.10), we get the following 5-point ternary approximating
scheme:

fk+1
3i−1 = ufk

i−2 +
(
14
81

− 4u
)
fk
i−1 +

(
28
27

+ 6u
)
fk
i +

(−7
27

− 4u
)
fk
i+1 +

(
4
81

+ u

)
fk
i+2,

fk+1
3i =

(
7

243
+ u

)
fk
i−2 +

(−28
243

− 4u
)
fk
i−1 +

(
95
81

+ 6u
)
fk
i +

(−28
243

− 4u
)
fk
i+1 +

(
7
243

+ u

)
fk
i+2,

fk+1
3i+1 =

(
4
81

+ u

)
fk
i−2 +

(−7
27

− 4u
)
fk
i−1 +

(
28
27

+ 6u
)
fk
i +

(
14
81

− 4u
)
fk
i+1 + ufk

i+2.

(3.12)
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(iii) If n = 4 then by (3.10), we get the following mask of 7-point ternary approximating
scheme:

α = {a3, b3, a−3, a2, b2, a−2, a1, b1, a−1, a0, b0, a0, a−1, b1, a1, a−2, b2, a2, a−3, b3, a3}, (3.13)

where

a3 = u − 7
36

, a2 = −6u +
50
36

, a1 = 15u − 175
36

, a0 = −20u +
700
36

,

a−1 = 15u +
175
36

, a−2 = −6u − 14
36

, a−3 = u,

b3 = b−3 = u − 35
38

, b2 = b−2 = −6u +
210
38

, b1 = b−1 = 15u − 525
38

,

b0 = −20u +
7261
38

.

(3.14)

3.2. 3-, 5-Point Ternary Interpolating Schemes

Here, we present two special cases of approximating schemes generated by (3.10) with free
parameters.

(i) By setting n = 2 and u = β, we get the following 3-point ternary interpolating
scheme:

fk+1
3i−1 = ufk

i−1 +
(
4
3
− 2u

)
fk
i +

(
−1
3
+ u

)
fk
i+1,

fk+1
3i = fk

i ,

fk+1
3i+1 =

(
−1
3
+ u

)
fk
i−1 +

(
4
3
− 2u

)
fk
i + ufk

i+1.

(3.15)

(ii) If n = 3 and u = β, then by (2.1) and (3.10), we get the following 5-point ternary
interpolating scheme:

fk+1
3i−1 = ufk

i−2 +
(
14
81

− 4u
)
fk
i−1 +

(
28
27

+ 6u
)
fk
i +

(−7
27

− 4u
)
fk
i+1 +

(
4
81

+ u

)
fk
i+2,

fk+1
3i = fk

i ,

fk+1
3i+1 =

(
4
81

+ u

)
fk
i−2 +

(−7
27

− 4u
)
fk
i−1 +

(
28
27

+ 6u
)
fk
i +

(
14
81

− 4u
)
fk
i+1 + ufk

i+2.

(3.16)

3.3. Comparison with Existing Ternary Schemes

In this section, we will show that the popular existing odd-point ternary schemes are special
cases of our proposed family of scheme. Here we will also compare the error bounds
between limit curve and control polygon after k-fold subdivision of odd-point and even-
point schemes.



Journal of Applied Mathematics 7

Table 1: Error bounds of odd-point and even-point ternary interpolating schemes.

k 1 2 3 4 5 6
3-point 0.033333 0.011111 0.003704 0.001235 0.000412 0.000137
4-point [10] 0.082821 0.034969 0.104765 0.006234 0.002632 0.001111
5-point 0.136205 0.058854 0.025431 0.010989 0.004748 0.002052
6-point [10] 0.199159 0.094908 0.045228 0.021553 0.010271 0.004895

Table 2: Error bounds of odd-point and even-point ternary approximating schemes.

k 1 2 3 4 5 6
3-point 0.133333 0.088889 0.059259 0.039506 0.26337 0.017558
4-point [3] 0.203672 0.129495 0.082333 0.052348 0.33283 0.021161
5-point 0.289236 0.174970 0.105846 0.064030 0.38734 0.023432
6-point [16] 0.429283 0.285291 0.189598 0.126002 0.83738 0.055650

3.3.1. Special Cases

Here we see that the most of the existing odd-point ternary subdivision schemes are either
special cases or can be obtain by setting free parameter in our proposed masks.

(i) By letting u = β in (3.10), Zheng et al. (2n − 1)-point interpolating scheme [9]
becomes special case of our scheme.

(ii) By substituting u = 2/9, and u = −7/243 in (3.15) and (3.16), we get 3-point and
5-point ternary interpolating schemes of Lian [12] respectively.

(iii) By substituting u = 35/6561 in (3.13), we get 7-point ternary interpolating
scheme of Lian [13]. Similarly, from (3.10), we can generate (2m + 1)-point ternary
interpolating schemes of [13].

(iv) For n = 2, and parameter u = μ+25/72 in our proposed mask (3.13), 3-point ternary
approximating scheme given in [7] becomes special case of our scheme.

(v) For n = 2, and u = 10/27 in (3.11), we get 3-point approximating scheme of Hassan
and Dodgson [4].

(vi) For n = 2, b = u = 2/9 and a = u−1/3 in (3.11), we get 3-point interpolating scheme
of Hassan and Dodgson [4].

3.3.2. Error Bounds

In Tables 1 and 2 by using [15], with χ = 0.1, we have computed error bounds between
limit curve and control polygon after k-fold subdivision of odd-point and even-point ternary
approximating and interpolating schemes. It is clear from Tables 1 and 2 that error bounds of
3-point ternary schemes (3.11) and (3.15) at each subdivision level k are less than the error
bounds of 4-point ternary schemes [3, 10] at each level. Similarly error bounds of 5-point
scheme (3.12) and (3.16) are less than the error bounds of 6-point schemes [10, 16]. Similar
results can be obtained by comparing other odd-point and even-point schemes. Graphical
representation of error bounds is shown in Figure 1.
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Figure 1: Comparison: error bounds between kth level control polygon and limit curves of different
subdivision schemes.

Moreover, support and computational cost of (2n − 1)-point schemes are less than 2n-
point schemes. Therefore, we conclude that (2n − 1)-point schemes are better than 2n-point
schemes in the sense of support, computational cost, and error bounds.

3.4. Effects of Parameters in Proposed Schemes

We will discuss three major effects/upshots of parameter in schemes (3.11)–(3.16). Effect of
parameters in other schemes can be discuss analogously.

3.4.1. Continuity

The effect/upshots of parameter u in schemes (3.11)–(3.16) on order of continuity is shown
in Tables 3 and 4. One can easily find the order of continuity over parametric intervals by
using approach of [4].

3.4.2. Shapes of Limit Curves

In Figure 2, the effect of parameter in (3.11)–(3.16) on graph and continuity of limit curve
is shown. These figures are exposed to show the role of free parameter when 3- and 5-point
approximating and interpolating schemes (3.11)–(3.16) applied on discrete data points. From
these figures, we see that the behavior of the limiting curve acts as tightness/looseness when
the values of free parameter vary.

3.4.3. Error Bounds

The effects of parameter on error bounds at each subdivision level between kth level control
polygon and limit curves are shown in Figure 3, Tables 5 and 6. From these tables and figures,
we conclude that in case of 3-point approximating scheme continuity is maximum over 1/3 <
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Table 3: The order of continuity of proposed 3-, 5-, and 7-point ternary approximating schemes for certain
ranges of parameter.

Scheme Parameter Continuity
1/6 < u < 2/3 C0

3-point 2/9 < u < 5/9 C1

1/3 < u < 4/9 C2

5-point

−11/81 < u < −7/648 C0

−103/972 < u < −11/486 C1

−2/27 < u < −49/972 C2

−1/18 < u < −38/729 C3

7-point

7/23328 < u < 23/729 C0

157/52488 < u < 2501/104976 C1

1043/104976 < u < 67/4374 C2

53/8748 < u < 187/17496 C3

Table 4: The order of continuity of proposed 3- and 5-point ternary interpolating schemes for certain ranges
of parameter.

Scheme Parameter Continuity

3-point 1/6 < u < 2/3 C0

2/9 < u < 1/3 C1

−11/81 < u < −7/648 C0

5-point −17/324 < u < −2/81 C1

−5/108 < u < −7/162 C2

Table 5: Error bounds for 3-, 5- and 7-point ternary approximating subdivision schemes.

Scheme Parameter k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
u = 1/2 0.033333 0.011111 0.003703 0.001234 0.000411 0.000137

3-point u = 5/9 0.083333 0.046296 0.025720 0.014289 0.007938 0.004410
u = 7/12 0.133333 0.088889 0.059259 0.039506 0.026337 0.017558

u = −13/243 0.134953 0.058313 0.025197 0.010888 0.004704 0.002033
5-point u = −103/972 0.238775 0.133636 0.074792 0.041859 0.023427 0.013112

u = −1/9 0.289236 0.174970 0.105846 0.064030 0.038734 0.023432
u = 95/8748 0.270022 0.132233 0.064756 0.031712 0.015530 0.007605

7-point u = 1465/201204 0.357567 0.197809 0.109430 0.060538 0.033490 0.018527
u = 187/8748 0.457353 0.279180 0.170418 0.104028 0.063501 0.038763

Table 6: Error bounds for 3- and 5-point ternary interpolating subdivision schemes.

Scheme Parameter k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
u = 1/3 0.033333 0.011111 0.003703 0.001234 0.000411 0.000137

3-point u = 7/18 0.053333 0.023704 0.010535 0.004682 0.002081 0.000925
u = 5/18 0.097222 0.054012 0.030007 0.016670 0.009261 0.005145
u = −2/41 0.136205 0.058854 0.025431 0.010989 0.004748 0.002052

5-point u = −7/162 0.169665 0.081691 0.039332 0.018938 0.009118 0.004390
u = −1/27 0.257698 0.149528 0.086763 0.050344 0.029212 0.016950
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Figure 2: Comparison: initial polygon and different curves generated by schemes (3.11)–(3.16) are shown.
The significant upshots of parameters are also publicized.

u < 4/9 and error bound is minimum over 1/3 ≤ u ≤ 1/2. On each side of interval 1/3 <
u < 4/9 continuity decreases while error bounds increases on each side of interval 1/3 ≤ u ≤
1/2. In case of 5-, 7-point approximating scheme continuity is maximum over −1/18 < u <
−38/729 and 53/8748 < u < 187/17496, while error bound is minimum at u = −13/243 and
u = 95/8748, respectively.

While in case of 3- and 5-point interpolating scheme continuity ismaximumover 2/9 <
u < 1/3 and −5/108 < u < −7/162, while error bound is minimum at u = 1/3 and u = −2/41,
respectively.
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Figure 3: Comparison: error bounds between kth level control polygon and limit curves generated by
approximating and interpolating schemes (3.11)–(3.16), respectively.
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3.5. Conclusion

In this paper, we offered an explicit general formula for the generation of mask of (2n −
1)-point ternary interpolating as well as approximating schemes. We have concluded from
figures and tables that the (2n − 1)-point schemes are better than 2n-point schemes for n ≥ 2
in the sense of computational cost, support and error bounds. Moreover, odd-point ternary
schemes of Hassan and Dodgson [4], Lian [12, 13], Zheng et al. [9], and Siddiqi and Rehan
[7, 8] are special cases of our proposed masks.
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