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We deduce the explicit expressions for (P +Q)D and (PQ)D of two matrices P and Q under the
conditions P 2Q = PQP and Q2P = QPQ. Also, we give the upper bound of ||(P +Q)D − PD||2.

1. Introduction

The symbol C
m×n stands for the set of m × n complex matrices, and In (for short I) stands for

the n × n identity matrix. For A ∈ C
n×n, its Drazin inverse, denoted by AD, is defined as the

unique matrix satisfying

Ak+1AD = Ak, ADAAD = AD, AAD = ADA, (1.1)

where k = Ind(A) is the index of A. In particular, if k = 0, A is invertible and AD = A−1

(see, e.g., [1–3] for details). Recall that for A ∈ C
n×n with Ind(A) = k, there exists an n × n

nonsingular matrix X such that

A = X

(
C 0

0 N

)
X−1, (1.2)
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where C is a nonsingular matrix and N is nilpotent of index k, and

AD = X

(
C−1 0

0 0

)
X−1 (1.3)

(see [1, 3]). It is well known that ifA is nilpotent, thenAD = 0.We alwayswriteAπ := I−AAD.
Drazin [2] proved that in associative ring (A + B)D = AD + BD when A,B are Drazin

invertible and AB = BA = 0. In [4], Hartwig et al. relaxed the condition to AB = 0 and put
forward the expression for (A + B)D where A,B ∈ C

n×n. In recent years, the Drazin inverse
of the sum of two matrices or operators has been extensively investigated under different
conditions (see, [5–15]). For example, in [7], the conditions are PQ = λQP and PQ = PQP ,
in [9] they are P 3Q = QP and Q3P = PQ, and in [15], they are PQP = 0 and PQ2 = 0. These
results motivate us to investigate how to explicitly express the Drazin inverse of the sum
P +Q under the conditions P 2Q = PQP andQ2P = QPQ, which are implied by the condition
PQ = QP .

The paper is organized as follows. In Section 2, we will deduce some lemmas. In
Section 3, we will present the explicit expressions for (P +Q)D and (PQ)D of two matrices P
and Q under the conditions P 2Q = PQP and Q2P = QPQ. We also give the upper bound of
‖(P +Q)D − PD‖2.

2. Some Lemmas

In this section, we will make preparations for discussing the Drazin inverse of the sum of two
matrices in next section. To this end, we will introduce some lemmas.

The first lemma is a trivial consequence of [16, Theorem 3.2].

Lemma 2.1. Let A ∈ C
n×n, B ∈ C

m×m, and C ∈ C
m×n with BC = 0, and define

M =

(
A 0

C B

)
. (2.1)

Then,

MD =

⎛
⎝ AD 0

C(AD)2 BD

⎞
⎠. (2.2)

Lemma 2.2. Let P,Q ∈ C
n×n. If P 2Q = PQP , then, for any positive integers i, j,

(i) Pi+1Q = PiQP = PQPi, P 2iQ = PiQPi,

(ii) PiQi = (PQ)i.

Moreover, if Q2P = QPQ, then

PQjPi = Pi+1Qj. (2.3)
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Proof. (i) By induction, we can easily get the results.

(ii) For i = 1, it is evident. Assume that, for i = k, the equation holds, that is, PkQk =
(PQ)k. When i = k + 1, by (i), we have

Pi+1Qi+1 = PQPiQi = PQ(PQ)i = (PQ)i+1. (2.4)

Hence, by induction, we have PiQi = (PQ)i for any i.
Assume Q2P = QPQ. By induction on j for (2.3). Obviously, when j = 1, it holds by

statement (i). Assume that it holds for j = k, that is, PQkPi = Pi+1Qk. When j = k + 1,

PQk+1Pi = PQk−1Q2PPi−1 = PQk
(
PQPi−1

)
= PQkPiQ = Pi+1QkQ = Pi+1Qk+1. (2.5)

Hence (2.3) holds for any j.

Lemma 2.3. Let P,Q ∈ C
n×n. Suppose that P 2Q = PQP and Q2P = QPQ. Then, for any positive

integerm,

(P +Q)m =
m−1∑
i=0

Ci
m−1
(
Pm−iQi +Qm−iP i

)
, (2.6)

where the binomial coefficient Ci
j = j!/i!(j − i)!, j ≥ i.

Moreover, if P,Q are nilpotent with Ps = 0 and Qt = 0, then P +Q is nilpotent and its index
is less than s + t.

Proof. We will show by induction that (2.6) holds. Trivially, (2.6) holds for m = 1. Assume
that (2.6) holds for m = k, that is,

(P +Q)k =
k−1∑
i=0

Ci
k−1
(
Pk−iQi +Qk−iP i

)
. (2.7)

Then, for m = k + 1, we have, by Lemma 2.2,

(P +Q)k+1 =
k−1∑
i=0

Ci
k−1
(
Pk−iQi +Qk−iP i

)
(P +Q)

=
k−1∑
i=0

Ci
k−1
(
Pk+1−iQi + Pk−iQi+1 +Qk−iP i+1 +Qk+1−iP i

)

= Pk+1 +
k−1∑
i=1

(
Ci

k−1 + Ci−1
k−1
)
Pk+1−iQi + PQk

+Qk+1 +
k−1∑
i=1

(
Ci

k−1 + Ci−1
k−1
)
Qk+1−iP i +QPk
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= Pk+1 +
k−1∑
i=1

Ci
kP

k+1−iQi + PQk +Qk+1 +
k−1∑
i=1

Ci
kQ

k+1−iP i +QPk

=
k∑
i=0

Ci
kP

k+1−iQi +
k∑
i=0

Ci
kQ

k+1−iP i.

(2.8)

Hence (2.6) holds for any m ≥ 1.
If P,Q are nilpotent with Ps = 0 and Qt = 0, then taking m = s + t − 1 in (2.6) yields

(P +Q)s+t−1 = 0, that is, P +Q is nilpotent of index less than s + t.

Lemma 2.4 (see [1, Theorem 7.8.4]). Let P,Q ∈ C
n×n. If PQ = QP , then (PQ)D = QDPD =

PDQD and PDQ = QPD.

Lemma 2.5. Let P,Q ∈ C
n×n and P be invertible. If PQ = QP , then

(P +Q)D =
(
I + P−1Q

)D
P−1 = P−1

(
I + P−1Q

)D
. (2.9)

Moreover, if Q is nilpotent of index t, then P +Q is invertible and

(P +Q)−1 =
t−1∑
i=0

(−Q)iP−i−1 =
t−1∑
i=0

P−i−1(−Q)i. (2.10)

Proof. Since P +Q = P(I + P−1Q) = (I + P−1Q)P , by Lemma 2.4,

(P +Q)D =
(
I + P−1Q

)D
P−1 = P−1

(
I + P−1Q

)D
. (2.11)

Note that the nilpotency of Q with commuting with P implies that P−1Q is nilpotent
of index t. Thus, I + P−1Q is invertible and so is P +Q, and

(P +Q)−1 =
(
I + P−1Q

)−1
P−1 =

t−1∑
i=0

(−Q)iP−i−1 =
t−1∑
i=0

P−i−1(−Q)i. (2.12)

Lemma 2.6. Let P,Q ∈ C
n×n with Q = Q1 ⊕Q2, where Q1 is invertible and Q2 is nilpotent of index

t, and let

P =

(
P1 P3

P4 P2

)
(2.13)
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be partitioned conformably with Q. Suppose that Q2P = QPQ and P 2Q = PQP . Then, P3 = 0 and

Q1P1 = P1Q1, (2.14)

Q2P4 = P2P4 = 0, (2.15)

Q2
2P2 = Q2P2Q2, (2.16)

P 2
i Qi = PiQiPi, i = 1, 2. (2.17)

Moreover, if P is nilpotent of index s, then P4P
s−1
1 = 0.

Proof. Since Q2P = QPQ, Q2tP = QtPQt by Lemma 2.2, that is,

(
Q2t

1 0

0 0

)(
P1 P3

P4 P2

)
=

(
Qt

1 0

0 0

)(
P1 P3

P4 P2

)(
Qt

1 0

0 0

)
, (2.18)

namely,

(
Q2t

1 P1 Q2t
1 P3

0 0

)
=

(
Qt

1P1Q
t
1 0

0 0

)
. (2.19)

Thus, P3 = 0 because the invertibility of Q1. So from Q2P = QPQ and P 2Q = PQP , it follows,
respectively, that

P1Q1 = Q1P1, Q2
2P4 = Q2P4Q1, Q2

2P2 = Q2P2Q2, (2.20)

and that

P2P4Q1 = P2Q2P4, P 2
i Qi = PiQiPi, i = 1, 2. (2.21)

Since Qt
2 = 0,

Q2P4 = Q2
2P4Q

−1
1 = Qt

2P4Q
−t+1
1 = 0, (2.22)

and then P2P4 = P2Q2P4Q
−1
1 = 0. From this, we can easily verify

Ps =

(
Ps
1 0

P4P
s−1
1 Ps

2

)
. (2.23)

Therefore, if Ps = 0, then P4P
s−1
1 = 0.
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3. Main Results

In this section, we will give the explicit expressions for (P + Q)D and (PQ)D, under the
conditions P 2Q = PQP and Q2P = QPQ. Now, we begin with the following theorem.

Theorem 3.1. LetQ ∈ C
n×n with Ind(Q) = t and P ∈ C

n×n be nilpotent with Ps = 0. If P 2Q = PQP
and Q2P = QPQ, then

(P +Q)D =
s−1∑
i=0

(
QD
)i+1

(−P)i +QπP
s−2∑
i=0

(−1)i(i + 1)
(
QD
)i+2

Pi

= QQD
s−1∑
i=0

(−P)i
(
QD
)i+1

+QπPQQD
s−2∑
i=0

(−1)i(i + 1)Pi
(
QD
)i+2

.

(3.1)

Proof. If t = 0, then Q is invertible, and therefore QP = PQ. So, by Lemma 2.5, (3.1) holds.
Now assume that t > 0 and, without loss of generality,Q can be written asQ = Q1⊕Q2,

where Q1 is invertible and Q2 is nilpotent of index t. So QD = Q−1
1 ⊕ 0. Since P 2Q = PQP and

Q2P = QPQ, we can write P , partitioned conformably with Q, by Lemma 2.6, as follows:

P =

(
P1 0

P4 P2

)
, (3.2)

where P1, P2 are nilpotent since P is nilpotent. We also write I = I1 ⊕ I2, partitioned
conformably with Q.

Since P1 is nilpotent and Q1 is invertible, by Lemma 2.5,

(P1 +Q1)−1 =
s−1∑
i=0

Q−i−1
1 (−P1)i =

s−1∑
i=0

(−P1)iQ−i−1
1 . (3.3)

Also, the nilpotency of P2, Q2 implies (P2 +Q2)
D = 0 by Lemma 2.3.

By (2.15), (P2 +Q2)P4 = 0. Hence, by Lemma 2.1, the argument above, and (2.14), we
have

(P +Q)D =

(
P1 +Q1 0

P4 P2 +Q2

)D

=

⎛
⎝ Q−1

1 (I1 +Q−1
1 P1)

−1
0

P4Q
−2
1 (I1 +Q−1

1 P1)
−2

0

⎞
⎠. (3.4)

By (3.3), it is easy to verify that

(
I1 +Q−1

1 P1

)−2
=

s−1∑
i=0

(−1)i(i + 1)Q−i
1 P

i
1 =

s−1∑
i=0

(−1)i(i + 1)Pi
1Q

−i
1 . (3.5)
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Since Ps = 0, we have P4P
s−1
1 = 0 by Lemma 2.6, and, therefore, by (3.5),

QπP
s−2∑
i=0

(−1)i(i + 1)
(
QD
)i+2

Pi =
s−2∑
i=0

(−1)i(i + 1)

(
0 0

0 I2

)(
P1 0

P4 P2

)(
Q

−(i+2)
1 0

0 0

)(
Pi
1 0

∗ Pi
2

)

=
s−2∑
i=0

(−1)i(i + 1)

(
0 0

P4Q
−(i+2)
1 P i

1 0

)

=

⎛
⎝ 0 0

P4Q
−2
1

(
I +Q−1

1 P1
)−2

0

⎞
⎠.

(3.6)

Analogous to the argument above, we can see, by Lemma 2.5,

s−1∑
i=0

(
QD
)i+1

(−P)i =
⎛
⎝Q−1

1

(
I1 +Q−1

1 P1
)−1

0

0 0

⎞
⎠. (3.7)

Thus, putting (3.6) and (3.7) into (3.4) yields the first equation of (3.1).
Similar to the discussion of (3.6), we have

QQD
s−1∑
i=0

(−P)i
(
QD
)i+1

=

⎛
⎝Q−1

1

(
I +Q−1

1 P1
)−1

0

0 0

⎞
⎠,

QπPQQD
s−2∑
i=0

(−1)i(i + 1)Pi
(
QD
)i+2

=

⎛
⎝ 0 0

P4Q
−2
1

(
I +Q−1

1 P1
)−2

0

⎞
⎠,

(3.8)

and then putting them into (3.4) yields the second equation of (3.1).

The following theorem is our main result, and Theorem 3.1 and Lemma 2.5 can be
regarded as its special cases.

Theorem 3.2. Let P,Q ∈ C
n×n with Ind(P) = s ≥ 1 and Ind(Q) = t. If P 2Q = PQP and Q2P =

QPQ. Then,

(i)

(PQ)D = PDQD = PPDQDPD = PQD
(
PD
)2
, (3.9)

Q2PD = QPDQ, (3.10)

(
PD
)2
Q = PDQPD. (3.11)
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(ii)

(P +Q)D = PD
(
I + PDQ

)D
+ PπQ

[
PD
(
I + PDQ

)D]2
+

s−1∑
i=0

(
QD
)i+1

(−P)iPπ

+QπP
s−2∑
i=0

(−1)i(i + 1)
(
QD
)i+2

PiPπ.

(3.12)

Proof. If s = 0, then P is invertible and PQ = QP . So, by Lemmas 2.4 and 2.5, (3.9) and (3.12)
hold, respectively. Therefore, assume that s > 0, and, without loss of generality, let P = P1⊕P2,
where P1 is invertible and P2 is nilpotent of index s. From hypotheses, by Lemma 2.6, we can
write

Q =

(
Q1 0

Q4 Q2

)
, (3.13)

partitioned conformably with P , and those equations in Lemma 2.6 hold. By Lemma 2.1,
therefore, we have

QD =

⎛
⎝ QD

1 0

Q4(QD
1 )

2
QD

2

⎞
⎠, Q2 =

(
Q2

1 0

Q4Q1 Q2
2

)
. (3.14)

(i) By (2.14) and (2.15),

Q2PD =

(
Q2

1P
−1
1 0

Q4Q1P
−1
1 0

)
=

(
Q1P

−1
1 Q1 0

Q4P
−1
1 Q1 0

)
= QPDQ,

(
PD
)2
Q =

(
P−2
1 Q1 0

0 0

)
=

(
P−1
1 Q1P

−1
1 0

0 0

)
= PDQPD,

PQD
(
PD
)2

=

(
P1Q

D
1 P

−2
1 0

0 0

)
=

(
P−1
1 QD

1 0

0 0

)
= PDQD

=

(
QD

1 P
−1
1 0

0 0

)
= PPDQDPD,

(3.15)

PQ =

(
P1Q1 0

0 P2Q2

)
=

(
Q1P1 0

0 P2Q2

)
. (3.16)
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By (2.17) and Lemma 2.2, (P2Q2)
s = Ps

2Q
s
2 = 0. By Lemma 2.4 and (3.16), we have

(PQ)D =

(
(Q1P1)

D 0

0 (P2Q2)D

)
=

(
P−1
1 QD

1 0

0 0

)
= PDQD. (3.17)

As a result, (3.9) holds.

(ii) By Lemma 2.6, (P2 +Q2)Q4 = 0 and then, by Lemma 2.1, we have

(P +Q)D =

(
P1 +Q1 0

Q4 P2 +Q2

)D

=

⎛
⎝ (P1 +Q1)D 0

Q4

[
(P1 +Q1)D

]2
(P2 +Q2)D

⎞
⎠. (3.18)

By Lemma 2.5, we have

PD
(
I + PDQ

)D
=

(
P−1
1 0

0 0

)(
I1 + P−1

1 Q1 0

0 I2

)D

=

⎛
⎝P−1

1

(
I1 + P−1

1 Q1
)D

0

0 0

⎞
⎠ =

(
(P1 +Q1)D 0

0 0

) (3.19)

and, therefore,

⎛
⎝ 0 0

Q4

[
(P1 +Q1)D

]2
0

⎞
⎠ =

(
0 0

0 I2

)(
Q1 0

Q4 Q2

)⎛⎝
[
(P1 +Q1)D

]2
0

0 0

⎞
⎠

= PπQ

[
PD
(
I + PDQ

)D]2
.

(3.20)

By (3.1), we have

(
0 0

0 (P2 +Q2)D

)
=

⎛
⎜⎜⎝

0 0

0
s−1∑
i=0

(
QD

2

)i+1(−P2)i +Qπ
2 P2

s−2∑
i=0

(−1)i(i + 1)
(
QD

2

)i+2
Pi
2

⎞
⎟⎟⎠

=
s−1∑
i=0

(
QD
)i+1

(−P)iPπ +QπP
s−2∑
i=0

(−1)i(i + 1)
(
QD
)i+2

PiPπ.

(3.21)

Thus, substituting (3.19), (3.21), and (3.20) in (3.18) yields (3.12).

Note that PQ = QP implies P 2Q = PQP and Q2P = QPQ.
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Corollary 3.3 (see [14, Theorem 2]). If P,Q ∈ C
n×n with PQ = QP and Ind(P) = s, then

(P +Q)D =
(
I + PDQ

)D
PD + Pπ

s−1∑
i=0

(
QD
)i+1

(−P)i. (3.22)

Proof. From (3.19) and Lemma 2.5, we can obtain

(
I + PDQ

)D
PD = PD

(
I + PDQ

)D
. (3.23)

Since PkQ = 0 for some k, PDQ = 0. Thus, we have the following corollary.

Corollary 3.4. Let P,Q ∈ C
n×n with Ind(P) = s ≥ 1 and Ind(Q) = t. Suppose P 2Q = PQP and

Q2P = QPQ. If there exist two positive integers k and h such that PkQ = 0 and QhP = 0, then

(P +Q)D = PD +QD +Q
(
PD
)2
. (3.24)

If Q is a perturbation of P , then, we have the following result in which ‖(P +Q)D − PD‖2 has
an upper bound. Before the theorem, let us recall that if ‖A‖2 < 1, then I +A is invertible and

∥∥∥(I +A)−1
∥∥∥
2
≤ 1

1 − ‖A‖2
,

∥∥∥I − (I +A)−1
∥∥∥
2
≤ ‖A‖2

1 − ‖A‖2
.

(3.25)

Theorem 3.5. Let P,Q ∈ C
n×n with Ind(P) = s ≥ 1 and Ind(Q) = t. Suppose P 2Q = PQP and

Q2P = QPQ. If ‖PDQ‖2 < 1, then

∥∥∥(P +Q)D − PD
∥∥∥
2
≤
∥∥PD

∥∥
2

∥∥PDQ
∥∥
2

1 − ∥∥PDQ
∥∥
2

+
‖Pπ‖2‖Q‖2

∥∥PD
∥∥2
2(

1 − ∥∥PDQ
∥∥
2

)2

+

∥∥QD
∥∥
2‖Pπ‖2

(
1 − ∥∥QD

∥∥s
2‖P‖s2

)
1 − ∥∥QD

∥∥
2‖P‖2

+

∥∥QD
∥∥2
2‖Qπ‖2‖Pπ‖2‖P‖2(

1 − ∥∥QD
∥∥
2‖P‖2

)2
×
[
1 − s

∥∥∥QD
∥∥∥s−1
2

‖P‖s−12 + (s − 1)
∥∥∥QD

∥∥∥s
2
‖P‖s2

]
.

(3.26)

Proof. Since ‖PDQ‖2 < 1, I + PDQ is invertible. Then by (3.12), we have

(P +Q)D − PD = PD

[(
I + PDQ

)−1 − I

]
+ PπQ

[
PD
(
I + PDQ

)−1]2

+
s−1∑
i=0

(QD)
i+1

(−P)iPπ +QπP
s−2∑
i=0

(−1)i(i + 1)
(
QD
)i+2

PiPπ.

(3.27)
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In order to verity (3.26), we need to calculate the 2-norms of the right-hand side of the above
equation. By (3.25),

∥∥∥∥PD

[(
I + PDQ

)−1 − I

]∥∥∥∥
2
≤
∥∥PD

∥∥
2

∥∥PDQ
∥∥
2

1 − ∥∥PDQ
∥∥
2

,

∥∥∥∥∥PπQ

[
PD
(
I + PDQ

)−1]2∥∥∥∥∥
2

≤ ‖Pπ‖2‖Q‖2
∥∥PD

∥∥2
2(

1 − ∥∥PDQ
∥∥
2

)2 ,

∥∥∥∥∥
s−1∑
i=0

(
QD
)i+1

(−P)iPπ

∥∥∥∥∥
2

≤
s−1∑
i=0

∥∥∥QD
∥∥∥i+1
2

‖P‖i2‖Pπ‖2

=
s∑
i=1

∥∥∥QD
∥∥∥i
2
‖P‖i−12 ‖Pπ‖2

=

∥∥QD
∥∥
2‖Pπ‖2

(
1 − ∥∥QD

∥∥s
2‖P‖s2

)
1 − ∥∥QD

∥∥
2‖P‖2

,

∥∥∥∥∥QπP
s−2∑
i=0

(−1)i(i + 1)
(
QD
)i+2

PiPπ

∥∥∥∥∥
2

≤
s−2∑
i=0

(i + 1)
∥∥∥QD

∥∥∥i+2
2

‖P‖i+12 ‖Qπ‖2‖Pπ‖2

=
s−1∑
i=1

i
∥∥∥QD

∥∥∥i+1
2

‖P‖i2‖Qπ‖2‖Pπ‖2.

(3.28)

Let q := ‖QD‖2‖P‖2 and S :=
∑s−1

i=1 iq
i. Then,

(
1 − q

)
S =

s−1∑
i=1

qi − (s − 1)qs =
q
(
1 − qs−1

)
1 − q

− (s − 1)qs =
q − sqs + (s − 1)qs+1

1 − q
. (3.29)

Thus

s−1∑
i=1

i
∥∥∥QD

∥∥∥i+1
2

‖P‖i2‖Qπ‖2‖Pπ‖2

=

∥∥QD
∥∥2
2‖Qπ‖2‖Pπ‖2‖P‖2

[
1 − s

∥∥QD
∥∥s−1
2 ‖P‖s−12 + (s − 1)

∥∥QD
∥∥s
2‖P‖s2

]
(
1 − ∥∥QD

∥∥
2‖P‖2

)2 .

(3.30)

By the above argument, we can get (3.26).

Finally, we give an example to illustrate our results.



12 Journal of Applied Mathematics

Example 3.6. Consider the matrices

P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
3

0 0 0

0 0 0 0

0 0 0 0

0 0 0
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.31)

We observe that P 2Q = PQP andQ2P = QPQ, but PQ/=QP . It is obvious that s = Ind(P) = 2,
and

PD =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, QD =

⎛
⎜⎜⎜⎜⎜⎝

3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 3

⎞
⎟⎟⎟⎟⎟⎠. (3.32)

Since ‖PDQ‖2 = (1/3) < 1, I + PDQ is invertible and

(
I + PDQ

)−1
=

⎛
⎜⎜⎜⎜⎜⎜⎝

3
4

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.33)

By (3.12),

(P +Q)D − PD =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
4

0 0 0

0 0 0 0

0 0 0 9

0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.34)

We can compute ‖(P + Q)D − PD‖2 = 3
√
10. On the other hand, it is easy to get that ‖P‖2 =

‖PD‖2 = ‖Pπ‖2 = ‖Qπ‖2 = 1, ‖Q‖2 = 1/3, ‖QD‖2 = 3. By (3.26), we get the upper bound of
‖(P +Q)D − PD‖2 is 16(1/4), it is bigger than and close to the exact norm.
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