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We prove the existence of weak solution to a semilinear boundary value problem without the
Landesman-Lazer condition.

1. Introduction

We consider the nonlinear boundary value problem

Δu + λku + g(u) = h(x) in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

whereΩ ⊂ R
n is open and bounded, h ∈ L2(Ω), λk is a simple eigenvalue of −Δ corresponding

to the eigenvector φk, and the nonlinearity g : R → R satisfies the following conditions:

∣
∣g(u) − g(v)

∣
∣ ≤ L|u − v|(Lipschitz continuity

)

for some constant L > 0. (H)

Landesman and Lazer [1] considered the problem (1.1)-(1.2)with continuous function
g satisfying g(−∞) < g(ξ) < g(∞), where g(±∞) = lims→±∞g(s) exist and are finite. The
authors showed that if φk is an eigenfunction corresponding to λk,Ω+ = {x ∈ Ω : φk > 0} and
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Ω− = {x ∈ Ω : φk < 0}, then the necessary and sufficient condition for the existence of weak
solution of (1.1)-(1.2) is that

g(−∞)
∫

Ω+
φkdx + g(∞)

∫

Ω−
φkdx <

∫

Ω
hφkdx < g(∞)

∫

Ω+
φkdx + g(−∞)

∫

Ω−
φkdx. (1.3)

The condition (1.3) is the well-known Landesman-Lazer condition, named after the authors.
The result of the paper [1] has since been generalized by a number of authors which include
[2–9], to mention a few.

We mention, briefly, few works without the assumption of the Landesman-Lazer con-
dition. The perturbation of a second order linear elliptic problems by nonlinearity without
Landesman-Lazer condition was investigated in [10]. The function g(u) was assumed to be
a bounded continuous function satisfying

g(t)t ≤ 0, t ∈ R. (1.4)

The nonhomogeneous term h was assumed to be an L∞-function orthogonal to an eigen-
function φ in L2, which corresponds to a simple eigenvalue λ1. Ha [11] considered the
solvability of an operator equation without the Landesman-Lazer condition. The author used
a nonlinear Carathéodory function g(x, u) which satisfies the conditions

∣
∣g(x, u)

∣
∣ ≤ b(x),

ug(x, u) ≥ 0,
(1.5)

for almost all x ∈ Ω and all u ∈ R, where b ∈ L2(Ω). The solvability of the operator equation is
proved under some hypotheses on g(x, u). The nonhomogeneous term h was assumed to be
an L2-function. Iannacci and Nkashama proved existence of solutions to a class of semilinear
two-point eigenvalue boundary value problems at resonance without the Landesman-Lazer
condition, by imposing the same conditions as in [11] in conjunction with some other
hypotheses on g and h. Furthermore, the existence of solution was proved only for the
eigenvalue λ = 1. Assuming a Carathéodory function f(x, u) with some growth restriction
and assuming an L2-function h, Santanilla [12] proved existence of solution to a nonlinear
eigenvalue boundary value problem (for eigenvalue λ = 1) without Landesman-Lazer
condition. Du [13] proved the existence of solution for nonlinear second-order two-point
boundary value problems, by allowing the eigenvalue λ of the problem to change near the
eigenvalues of m2π2 of the problem y′′ + m2π2y = 0, y(0) = y(1) = 0. The author did not
use the Landesman-Lazer condition and imposed weaker conditions on g(u) than in [12].
Recently, Sanni [14] proved the existence of solution to the same problem considered by Du
[13] with λ = m2π2 exactly, without assuming the Landesman-Lazer condition. The author
assumed that |g ′(u)| ≤ C = constant and h ∈ L2(0, 1). Other works without the assumption of
Landesman-Lazer condition include [15–21]. Wemention that most of the papers on this topic
use the methods in [22] and [12]. The method of upper and lower solutions is used in [14].
For several other related resonance problems, we refer the reader to the book of Rădulescu
[23].

The current work constitutes further deductions on the problem considered by
Landesman and Lazer [1] and ismotivated by previous works and by asking if it is possible to
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obtain a weak solution of (1.1)-(1.2) by setting u := φkv(x). The answer is in the affirmative.
The substitution gives rise to a degenerate semilinear elliptic equation. Consequently, we
prove the existence of weak solution to the degenerate semilinear elliptic equation in a φ2

k
-

weight Sobolev’s space, by using the Schaefer’s fixed point theorem. For information on
weighted Sobolev’s spaces, the reader is referred to [24, 25]. The current work is significant in
that the condition (H) enables a relaxation of the Landesman-Lazer condition (1.3), and the
solution u to (1.1)-(1.2) is constructed using the eigenfunctions φk. Furthermore, the current
analysis takes care of the situation where g(∞) = g(−∞) = 0.

The remaining part of this paper is organized as follows: the weighted Sobolev’s
spaces used are defined in Section 2. In addition, we use the substitution u = φkv to get
the degenerate semilinear elliptic equation in v, from which we give a definition of a weak
solution. Furthermore, we state two theorems used in the proof of the existence result. In
Section 3, we prove the existence and uniqueness of solution to an auxiliary linear problem.
In Section 4, we prove a necessary condition for the existence of solution to (1.1)-(1.2) before
proving the existence of solution to (1.1)-(1.2). At the end of Section 4, we prove that u := φkv
is in H1

0(Ω), provided that v ∈ X. Finally, we give an illustrative example in Section 5 for
which our result applies.

2. Preliminaries

We define the following weighted Sobolev’s spaces used in this paper:

L2
(

Ω, φ2
k

)

:=
{

w : Ω −→ R such that ‖w‖L2(Ω,φ2
k
) < ∞

}

, (2.1)

where ‖w‖L2(Ω,φ2
k
) =

√∫

Ω φ2
kw

2dx.

H1
(

Ω, φ2
k

)

:=
{

w : Ω −→ R such that ‖w‖H1(Ω,φ2
k
) < ∞

}

, (2.2)

where ‖w‖H1(Ω,φ2
k
) =

√∫

Ω φ2
k
w2dx +

∫

Ω φ2
k
|∇w|2dx.

For brevity, we set X = H1(Ω, φ2
k
).

Set u := φkv(x) in (1.1) to deduce

−(Δφk + λkφk

)

v − φkΔv − 2∇φk · ∇v = g
(

φkv
) − h(x) in Ω. (2.3)

Note that the first term on the left of (2.3) vanishes, multiply (2.3) by φk and use (1.2) to
deduce

−∇ ·
(

φ2
k∇v

)

= φkg
(

φkv
) − φkh(x) in Ω,

φkv = 0 on ∂Ω.

(2.4)

Thus, if we can prove the existence of solution to (2.4), then u := φkv solves (1.1)-(1.2).
Indeed, we will prove that the solution u belongs to the Sobolev space H1

0(Ω).
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Definition 2.1. We say that v ∈ X is a weak solution of the problem (2.4) provided

∫

Ω
φ2
k∇v · ∇ζ dx =

∫

Ω
φkζg

(

φkv
)

dx −
∫

Ω
φkζhdx, (2.5)

for each ζ ∈ X.

Definition 2.2. Let X be a Banach space and A : X → X a nonlinear mapping. A is
called compact provided for each bounded sequence {uk}∞k=1 the sequence {A[uk]}∞k=1 is
precompact; that is, there exists a subsequence {ukj}∞j=1 such that {A[ukj ]}∞j=1 converges in
X (see [26]).

The following theorems are applied in this paper.

Theorem 2.3 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent
subsequence (see [27]).

Theorem 2.4 (Schaefer’s Fixed Point Theorem). Let X be a Banach space and

A : X −→ X (2.6)

a continuous and compact mapping. Suppose further that the set

{u ∈ X | u = τA[u] for some 0 ≤ τ ≤ 1} (2.7)

is bounded. Then A has a fixed point (see [26]).

3. Auxiliary Linear Problem

Consider the linear boundary value problem:

Lv := −∇ ·
(

φ2
k∇v

)

+ μφ2
kv = μφ2

ks + φkg
(

φks
) − φkh in Ω, (3.1)

φkv = 0 on ∂Ω, (3.2)

where μ is a strictly positive constant; s ∈ L2(Ω, φ2
k
), g(φks), and h are functions of x only.

Theorem 3.1 (a priori estimates). Let v be a solution of (3.1)-(3.2). Then v ∈ X and we have the
estimate

‖v‖2X ≤ C
(

‖s‖2
L2(Ω,φ2

k
) + ‖h‖2L2(Ω) + 1

)

< ∞, (3.3)

for some appropriate constant C > 0.
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Proof. Multiply (3.1) by v, integrate by parts and apply (3.2) to get

∫

Ω
φ2
k|∇v|2dx + μ

∫

Ω
φ2
kv

2dx

= μ

∫

Ω
φ2
kvs dx +

∫

Ω
vφkg

(

φks
)

dx −
∫

Ω
vφkhdx

≤ μ

(∫

Ω
φ2
kv

2dx

)1/2(∫

Ω
φ2
ks

2dx

)1/2

+
(∫

Ω
φ2
kv

2dx

)1/2(∫

Ω

∣
∣g
(

φks
)∣
∣
2
dx

)1/2

+
(∫

Ω
φ2
kv

2dx

)1/2(∫

Ω
h2dx

)1/2
(

by Hölder’s inequality
)

≤ 3ε
∫

Ω
φ2
kv

2dx +
1
4ε

(

μ2
∫

Ω
φ2
ks

2dx +
∫

Ω

∣
∣g
(

φks
)∣
∣
2
dx +

∫

Ω
h2dx

)

(

by Cauchy’s inequality with ε
)

.

(3.4)

Using H, the second term in the bracket on the right side of (3.4) may be estimated as

∣
∣g
(

φks
) − g(0)

∣
∣
2 ≤ L2∣∣φks

∣
∣
2 or

∣
∣g
(

φks
)∣
∣
2 ≤ −∣∣g(0)∣∣2 + 2

∣
∣g
(

φks
)∣
∣
∣
∣g(0)

∣
∣ + L2∣∣φks

∣
∣
2

≤ −∣∣g(0)∣∣2 + 1
2
∣
∣g
(

φks
)∣
∣
2 + 2

∣
∣g(0)

∣
∣
2 + L2∣∣φks

∣
∣
2

(

by Young’s inequality
)

.

(3.5)

Simplifying (3.5), we deduce

∣
∣g
(

φks
)∣
∣ ≤ C

(

1 +
∣
∣φks

∣
∣
)

, (3.6)

(see [26]) for some constant C = C(L, |g(0)|). Notice that (3.6) implies that

∫

Ω

∣
∣g
(

φks
)∣
∣
2
dx ≤ C

(

1 + ‖s‖L2(Ω,φ2
k
)

)2
< ∞, (3.7)

so that g(φks) ∈ L2(Ω).
Using (3.7) and choosing ε > 0 sufficiently small in (3.4) and simplifying, we deduce

(3.3).
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Definition 3.2. (i) The bilinear form B[·, ·] associated with the elliptic operator L defined by
(3.1) is

B[v, ζ] :=
∫

Ω
φ2
k∇v · ∇ζ dx + μ

∫

Ω
φ2
kvζ dx, (3.8)

for v, ζ ∈ X,
(ii) v ∈ X is called a weak solution of the boundary value problem (3.1)-(3.2) provided

B[u, ζ] =
(

μφ2
ks + φkg

(

φks
) − φkh, ζ

)

, (3.9)

for all ζ ∈ X, where (·, ·) denotes the inner product in L2(Ω).

Theorem 3.3. B[u, v] satisfies the hypotheses of the Lax-Milgram theorem precisely. In other words,
there exists constants α, β such that

(i) |B[v, ζ]| ≤ α‖v‖X‖ζ‖X ,
(ii) β‖v‖2X ≤ B[v, v],

for all v, ζ ∈ X.

Proof. We have

|B[v, ζ]| =
∣
∣
∣
∣

∫

Ω
φ2
k∇v · ∇ζ dx + μ

∫

Ω
φ2
kvζ dx

∣
∣
∣
∣
≤ μ

(∫

Ω
φ2
kv

2dx

)1/2(∫

Ω
φ2
kζ

2dx

)1/2

+
(∫

Ω
φ2
k|∇v|2dx

)1/2(∫

Ω
φ2
k|∇ζ|2dx

)1/2
(

by Hölder′s inequality
)

≤ α‖v‖X‖ζ‖X,

(3.10)

for appropriate constant α > 0. This proves (i).
We now proof (ii). We readily check that

β‖v‖2X ≤
∫

Ω
φ2
k|∇v|2dx + μ

∫

Ω
φ2
kv

2dx = B[v, v], (3.11)

for some constant β > 0. We can for example take β = min{1, μ}.

Theorem 3.4. There exists unique weak solution to the degenerate linear boundary value problem
(3.1)-(3.2).

Proof. The hypothesis on h and (3.7) imply that g(φks) − h ∈ L2(Ω). For fixed g(φks) − h,
set 〈μφ2

ks + φkg(φks) − φkh, ζ〉 := (μφ2
ks + φkg(φks) − φkh, ζ)L2(Ω) for all ζ ∈ X (where 〈, ·, 〉

denotes the pairing ofX with its dual). This is a bounded linear functional on L2(Ω) and thus
on X. Lax-Milgram theorem (see, e.g., [26]) can be applied to find a unique function v ∈ X
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satisfying

B[v, ζ] =
〈

μφ2
ks + φkg

(

φks
) − φkh, ζ

〉

, (3.12)

for all ζ ∈ X. Consequently, v is the unique weak solution of the problem (3.1)-(3.2).

4. Main Results

Theorem 4.1. The necessary condition that u ∈ H1
0(Ω) be a weak solution to (1.1)-(1.2) is that

∫

Ω
g(u)φkdx =

∫

Ω
hφkdx. (4.1)

Proof. Suppose u ∈ H1
0(Ω) is a weak solution of (1.1)-(1.2). For a test function φk, using

integration by parts, we have:

∫

Ω
Δuφkdx + λk

∫

Ω
uφkdx +

∫

Ω
g(u)φkdx

= −
∫

Ω
∇u · ∇φk + λk

∫

Ω
uφkdx +

∫

Ω
g(u)φkdx

=
∫

Ω
u
(

Δφk + λkφk

)

dx +
∫

Ω
g(u)φkdx =

∫

Ω
hφkdx,

(4.2)

from which (4.1) follows, since Δφk + λkφk = 0.

Theorem 4.2. Let the condition (4.1) of Theorem 4.1 holds. Then there exists a weak solution to the
problem (2.4).

Proof. The proof is split in seven steps.

Step 1. A fixed point argument to (2.4) is

−∇ ·
(

φ2
k∇w

)

+ μφ2
kw = μφ2

kv + φkg
(

φkv
) − φkh(x) in Ω,

φkw = 0 on ∂Ω.

(4.3)

Define a mapping

A : X −→ X (4.4)

by setting A[v] = w whenever w is derived from v via (4.3). We claim that A is a continuous
and compact mapping. Our claim is proved in the next two steps.
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Step 2. Choose v, ṽ ∈ X, and define A[v] = w,A[ṽ] = w̃. For two solutionsw, w̃ ∈ X of (4.3),
we have

−∇ ·
[

φ2
k∇(w − w̃)

]

+ μφ2
k(w − w̃) = μφ2

k(v − ṽ) + φkg
(

φkv
) − φkg

(

φkṽ
)

in Ω,

φk(w − w̃) = 0 on ∂Ω.

(4.5)

Using (4.5), we obtain an analogous estimate to (3.4), namely:

∫

Ω
φk|∇w − ∇w̃|2dx + μ

∫

Ω
φ2
k|w − w̃|2

≤ 3ε
∫

Ω
φ2
k|w − w̃|2dx

+
1
4ε

(

μ2
∫

Ω
φk|v − ṽ|2L2(Ω,φ2

k
) +

∫

Ω

∣
∣g
(

φkv
) − g

(

φkṽ
)∣
∣
2
dx

)

.

(4.6)

Now

∫

Ω

∣
∣g
(

φkv
) − g

(

φkṽ
)∣
∣
2
dx ≤

∫

Ω
φ2
kL

2|v − ṽ|2dx, (4.7)

using the condition (H). We may now use (4.7) in (4.6) and simplify to deduce

‖A[v] −A[ṽ]‖X = ‖w − w̃‖X ≤ C‖v − ṽ‖L2(Ω,φ2
k
) ≤ C‖v − ṽ‖X, (4.8)

for some constantC > 0. Thus, the mappingA is Lipschitz continuous, and hence continuous.

Step 3. Let {vk}∞k=1 be a bounded sequence in X. By Bolzano-Weierstrass theorem, it has a
convergent subsequence, say {vkj}∞j=1. Define

v := lim
kj →∞

vkj . (4.9)

Using (4.8)-(4.9), we deduce

lim
kj →

∥
∥
∥A

[

vkj

]

−A[v]
∥
∥
∥
X
≤ lim

kj →∞
C
∥
∥
∥vkj − v

∥
∥
∥
X
= 0. (4.10)

Thus, A[vkj ] → A[v] in X. Therefore, A is compact.
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Step 4. Define a set K := {p ∈ X : p = τA[p] for some 0 ≤ τ ≤ 1}. We will show that K is a
bounded set. Let v ∈ K. Then v = τA[v] for some τ ∈ [0, 1]. Thus, we have v/τ = A[v]. By
the definition of the mapping A, w = v/τ is the solution of the problem

−∇ ·
[

φ2
k∇

(v

τ

)]

+ μφ2
k

v

τ
= μφ2

kv + φkg
(

φkv
) − φkh(x) in Ω,

φk
v

τ
= 0 on ∂Ω.

(4.11)

Now, (4.11) are equivalent to

−∇ ·
(

φ2
k∇v

)

+ μφ2
kv = μτφ2

kv + τφkg
(

φkv
) − τφkh(x) in Ω,

φkv = 0 on ∂Ω.

(4.12)

Using (4.12)we have an analogous estimate to (3.3) of Theorem 3.1, namely:

‖v‖2X ≤ τC
(

‖v‖2
L2(Ω,φ2

k
) + ‖h‖2L2(Ω) + 1

)

. (4.13)

Choosing τ ∈ [0, 1] sufficiently small in (4.13) and simplifying, we conclude that

‖v‖X ≤ C
√

‖h‖2L2(Ω) + 1 < ∞ (4.14)

for some constant C > 0. Equation (4.14) implies that the set K is bounded, since v was
arbitrarily chosen.

Since the mapping A is continuous and compact and the set K is bounded, by
Schaefer’s fixed point theorem (see, e.g., [26]), the mapping A has a fixed point in X.

Step 5. Write φkv0 = φkv|∂Ω = 0. For m = 0, 1, 2, . . ., inductively define vm+1 ∈ X to be the
unique weak solution of the linear boundary value problem

−∇ ·
(

φ2
k∇vm+1

)

+ μφ2
kvm+1 = μφ2

kvm + φkg
(

φkvm

) − φkh(x) in Ω, (4.15)

φkvm+1 = 0 on ∂Ω. (4.16)

Clearly, our definition of vm+1 ∈ X as the unique weak solution of (4.15)-(4.16) is justified by
Theorem 3.4. Hence, by the definition of the mapping A, we have form = 0, 1, 2, . . . :

vm+1 = A[vm]. (4.17)

Since A has a fixed point in X, there exists v ∈ X such that

lim
m→∞

vm+1 = lim
m→∞

A[vm] = A[v] = v. (4.18)
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Step 6. Using (4.15)-(4.16), we obtain an analogous estimate to (3.3), namely:

‖vm+1‖2X ≤ C
(

‖vm‖2L2(Ω,φ2
k
) + ‖h‖2L2(Ω) + 1

)

≤ C
(

‖vm‖2X + ‖h‖2L2(Ω) + 1
) (4.19)

for some appropriate constant C > 0. Using (4.18), we take the limit on the right side of (4.19)
to deduce that

sup
m

‖vm‖X < ∞. (4.20)

Equation (4.20) implies the existence of a subsequence {vmj}∞j=1 converging weakly in X to
v ∈ X.

Furthermore, using (3.7), we deduce

∫

Ω

∣
∣g
(

φkvm

)∣
∣
2
dx≤ C

(

1 + ‖vm‖2L2(Ω,φ2
k
)

)2
. (4.21)

Again, we use (4.18) to obtain the limit on the right side of (4.21) to deduce that

sup
m

∥
∥g

(

φkvm

)∥
∥
L2(Ω) < ∞. (4.22)

Equation (4.22) implies the existence of a subsequence {g(φkvmj )}∞j=1 converging weakly in
L2(Ω) to g(φkv) in L2(Ω).

Step 7. Finally, we verify that v is a weak solution of (2.4). For brevity, we take the
subsequences of the last step as {vm}∞m=1 and {g(φkvm)}∞m=1. Fix ζ ∈ X. Multiply (4.15) by
ζ, integrate by parts and apply (4.16) to get

∫

Ω
φ2
k∇vm+1 · ∇ζ dx + μ

∫

Ω
φ2
kvm+1ζ dx = μ

∫

Ω
φ2
kvmζ dx +

∫

Ω
ζφkg

(

φkvm

)

dx −
∫

Ω
ζφkhdx.

(4.23)

Using the deductions of the last step, we let m → ∞ in (4.23) to obtain

∫

Ω
φk∇v · ∇ζ dx + μ

∫

Ω
φ2
kvζ dx = μ

∫

Ω
φ2
kvζ dx +

∫

Ω
ζφkg

(

φkv
)

dx −
∫

Ω
ζφkhdx, (4.24)

from which canceling the terms in μ, we obtain (2.5) as desired.

Theorem 4.3. Let v ∈ X be the solution of (3.1)-(3.2). Then, the solution u := φkv of (1.1)-(1.2)
belongs toH1

0(Ω), and we have the estimate



International Journal of Differential Equations 11

‖u‖H1
0 (Ω) ≤ C‖v‖X, (4.25)

for some constant C > 0.

Proof. We split the proof in two steps.

Step 1. Recall that φk satisfies the equations:

Δφk + λkφk = 0 in Ω ∈ R
n, (4.26)

φk = 0 on ∂Ω. (4.27)

Multiplying (4.26) by v2φk, integrating by parts and applying (4.27) we compute

∫

Ω
v2φkΔφkdx + λk

∫

Ω
v2φ2

kdx = 0 or

∫

Ω
∇
(

v2φk

)

· ∇φkdx = λk

∫

Ω
v2φ2

kdx or

∫

Ω

∣
∣∇φk

∣
∣
2
v2dx = λk

∫

Ω
v2φ2

kdx − 2
∫

Ω
φkv∇v · ∇φkdx

(4.28)

≤ λk

∫

Ω
v2φ2

kdx + ε

∫

Ω

∣
∣∇φk

∣
∣
2
v2dx +

1
ε

∫

Ω
φ2
k|∇v|2dx,

(4.29)

by Cauchy’s inequality with ε. Choosing ε > 0 sufficiently small in (4.29) and simplifying, we
deduce

∫

Ω

∣
∣∇φk

∣
∣
2
v2dx ≤ C‖v‖2X, (4.30)

for some constant C > 0.

Step 2. We have

∫

Ω
u2dx =

∫

Ω
φ2
kv

2dx,

∫

Ω
|∇u|2dx =

∫

Ω

∣
∣∇(

φkv
)∣
∣
2
dx =

∫

Ω

∣
∣∇φkv + φk∇v

∣
∣
2
dx

≤ 2
∫

Ω

∣
∣∇φk

∣
∣
2
v2dx + 2

∫

Ω
φ2
k|∇v|2dx ≤ C‖v‖2X,

(

using (4.30)
)

(4.31)
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for some constant C > 0. Thus, u ∈ H1(Ω). Hence, by a Sobolev’s embedding theorem (see
[26, page 269]), we have that u ∈ H1

0(Ω), since u|∂Ω = 0.

5. Illustrative Example

Consider the following special case for n = 1:

u′′ + u − 2u = 1 in (0, π),

u(0) = u(π) = 0.
(5.1)

In this case, the eigenfunction φk = sinx, g(u) = −2u, and h = 1. Clearly g(u) is Lipschitz
continuous and h ∈ L2(Ω). Provided the necessary condition

−2
∫π

0
u sinx dx =

∫π

0
sinx dx (5.2)

is satisfied; Theorems 4.2 and 4.3 ensure the existence of a solution u := φkv(x) ∈ H1
0(Ω) of

the problem (5.1). Now, the problem (5.1) admits the solution

u =
sinh(π − x) + sinhx

sinhπ
− 1. (5.3)

Using (5.3) in (5.2), it is not difficult to verify that the necessary condition

−2
∫π

0

(
sinh(π − x) + sinhx

sinhπ
− 1

)

sinx dx =
∫π

0
sinx dx = 2 (5.4)

is satisfied.
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Paranaense de Matemática, vol. 26, no. 1-2, pp. 117–132, 2008.

[25] A. Kufner and B. Opic, “How to define reasonably weighted Sobolev spaces,” Commentationes Math-
ematicae Universitatis Carolinae, vol. 25, no. 3, pp. 537–554, 1984.

[26] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Math-
ematical Society, Providence, RI, USA, 1998.

[27] A. Olubumma, Introduction to Real Analysis, Heinemann Educational Books, Ibadan, Nigeria, 1979.


